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Charge redistribution and interlayer coupling in twisted bilayer graphene under electric fields
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We investigate the electronic density redistribution of rotated bilayer graphene under a perpendicular electric
field, showing that the layers are actually coupled even for large angles. This layer-layer coupling is evidenced
by the charge transfer on these structures as a function of the external voltage. We find an inhomogeneous excess
charge distribution that is related to the moiré patterns for small angles, but that persists for larger angles where
the carriers’ velocity is equal to that of single layer graphene. Our results show that rotated bilayer systems are
coupled for all rotation angles.
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I. INTRODUCTION

The electronic properties of graphene can be modified by
piling up a few layers, thus changing the behavior of the
charge carriers due to the interlayer coupling. One of the
main reasons behind the interest in bilayer graphene (BLG)
is precisely that its low-energy properties are different from
those of monolayer graphene. Bilayer graphene with Bernal
(or AB) stacking has massive chiral fermions, and a gap can be
opened by applying an electric field.1–3 In contradistinction,
the dispersion relation of BLG with direct (or AA) stacking
is linear, and remains gapless with an applied gate voltage.
Even though Bernal stacking is the lowest energy arrangement
for bulk graphite, in few-layer graphene other stack orderings
are possible: Indeed, bilayer graphene with AA stacking has
been observed,4 as well as twisted bilayer graphene,5–7 which
consists of two adjacent graphene layers where one of the
layers is rotated with respect to the other, resulting in larger
unit cells with intriguing electronic properties.8–13

As a matter of fact, there is an ongoing controversy on the
electronic characteristics of rotated bilayer graphene. Several
experiments on rotated few-layer graphene grown on SiC
show an electronic behavior similar to that of single-layer
graphene, with the same carriers’ velocity as that of an isolated
graphene monolayer; for this reason, these systems have been
considered as composed of uncoupled graphene sheets.5,14–16

However, experimental results in twisted graphene bilayers
fabricated by chemical vapor deposition indicate that twisted
graphene bilayers may be coupled, especially for small rotation
angles, as evidenced by the appearance of low-energy van
Hove singularities17 and the measured renormalization of the
carrier velocity.18

From the theoretical viewpoint, it is established that twisted
BLG with a relative rotation angle (RRA) greater than 10◦
presents a linear dispersion relation with the same velocity
as monolayer graphene.8,10,19 For RRA between 1◦ and 10◦,
the carrier velocity diminishes, as evidenced by continuum8

and combined tight-binding/first-principles calculations.10 For
smaller angles, around 1◦, flat bands appear close to the Fermi
energy.9,10 However, for certain rotation angles where theo-
retical calculations predict a renormalization of the carriers’
velocity, some experimental results have shown a behavior

like that of monolayer graphene15,16 while others do obtain the
predicted renormalized velocity for small RRA.18 In principle,
the key to understand this disagreement is to elucidate the
coupling strength in adjacent graphene layers.20

In this paper we propose a way to assess the interlayer
interaction in twisted bilayer graphene by exploring the spatial
distribution of the electronic density. We show that in spite of
the linear dispersion relation and the Fermi velocity of these
systems, the layers can be actually coupled even for large
rotation angles. The layer-layer coupling is evidenced by the
charge transfer between layers under an applied electric field.
In addition, we find an inhomogeneous excess charge for small
angles, persisting for larger angles where the carriers’ velocity
is equal to that of single layer graphene. We have found that the
average excess charge density on a layer of a twisted bilayer
graphene, due to an applied electric field, depends on the RRA.
The charge transfer is larger the smaller the angle but even
for RRA above 20◦ there is a significant charge transfer. The
charge has an inhomogeneous distribution over the twisted unit
cell, with a relative weight on sites A and B also depending on
the angle.

This paper is organized as follows. In Sec. II we describe
the geometry of the commensurate graphene bilayers and
the model employed to calculate the electronic properties.
Section III is devoted to explain and discuss our results. We
conclude in Sec. IV, where we summarize our main findings.

II. GEOMETRY AND MODEL

A. Geometry

The system studied consists of two graphene layers which
are rotated from a Bernal stacking configuration, subject to a
potential difference. We consider the bottom layer to be at
a positive potential +V and the top layer at −V . Although
an external electric field does not open a gap,8 this potential
difference produces an electronic charge transfer from the
bottom to the top layer. Consequently, an electronic excess
density n builds up on the top layer. We will show that the
excess charge depends on the interlayer coupling.

In order to build a commensurate unit cell we follow
a procedure similar to that of Campanera et al., finding
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FIG. 1. (Color online) A twisted unit cell (4,3) for a RRA of
9.43◦; it contains 148 atoms. The AA, AB, and BA sites are shown.

coincidence lattice points in the BLG crystal.21 We start
with two graphene layers with Bernal (AB) stacking. For this
arrangement there are two nonequivalent sites within a layer,
namely, the A site, where an atom of the upper layer lies
directly on top of another atom of the lower layer, and the B
site, where the atom is exactly at the center of the hexagon of
the lower layer. We have chosen a B site as our rotation center.
We do a clockwise commensurable rotation from a vector �r =
m�a1 + n�a2 to �t1 = n�a1 + m�a2, where �a1 = (−1/2,

√
3/2)a0

and �a2 = (1/2,
√

3/2)a0 are the graphene bilayer lattice vec-
tors; n, m are integers, and a0 = 2.46 Å is the lattice constant.
The unit cell vectors can be chosen as �t1 = n�a1 + m�a2 and
�t2 = −m�a1 + (n + m)�a2. All magnitudes needed, such as the
relative rotational angle (RRA), the number of atoms in the
unit cell, and the reciprocal lattice vectors, can be expressed
as functions of n,m, and a0. For instance, the RRA is given
by cos θ = (n2 + 4mn + m2)/2(n2 + mn + m2). Henceforth,
we label a commensurate unit cell by the indices (n,m), which
determine uniquely the atomic structure of the corresponding
rotated bilayer.

Figure 1 shows the unit cell of the (4,3) bilayer, along with
the unit cell vectors �t1 and �t2. In a rotated bilayer, we distinguish
four distinct regions, centered in specific sites given by the
different possible atomic stackings. We label as AB a site with
a top atom at the center of a hexagon. An AA site has an
atom exactly on top of another, with a similar stacking for the
nearest neighbors, and a BA site has an atom in the bottom
layer exactly at the center of a hexagon of the top layer. These
sites are indicated in Fig. 1.

The unit cells presenting distinct moiré patterns correspond
to small angles (below 10◦); therefore, in order to obtain large
nontrivial unit cells, we choose n and m as two integers without
any common divisors. By varying these numbers, any RRA
from 0◦ to 60◦ can be attained.21 It should be noted that
structures with rather close RRA can be obtained from very
different n and m. Such structures have similar moiré patterns,
but they arise from unit cells with quite different number of
atoms. We did most of our calculations for m = n − 1. This
choice gives the smallest unit cell for a set of RRA and covers
fairly well the range of angles of interest. However, other
structures with dissimilar n, m indices were generated in order
to check that our results do not depend on the shape of the unit
cell.

For a bilayer graphene or graphite, moiré patterns are often
observed for angles below 10o. For instance, a (17,16), with
a 2o RRA, results in a unit cell with 3268 atoms. Setting the
rotation axis on a B site and a unit cell with m = n − 1 gives
a unique AA site and an AB site along the diagonal of the unit
cell. The AA site lies at 1/3 of the diagonal and the AB site
lies at 2/3. From our construction we get at every corner of
our unit cell a BA site. There are also some other interesting
points inside the unit cell; we will call a slip site21 a point like
that in the middle of the line joining an AB site and the end of
the main diagonal line. A slip site apparently looks as derived
by a relative translation of the two layers, hence its name.

B. Tight-binding model

We model the bilayer graphene band structure within the
tight-binding approximation. Within each layer, we consider a
fixed nearest-neighbor intralayer interaction γ0 = 3.16 eV. For
the layer-layer interaction we consider a distance-dependent
hopping between more than nearest layer-to-layer neighbors.
Thus, the Hamiltonian is given by H = H1 + H2 + Hint,
where H1 and H2 are the Hamiltonians for the top and the
bottom layer and Hint describes the interlayer coupling,

Hint = −
∑

i,j

γ1e
−β(rij−d)c

†
i cj + H.c., (1)

where γ1 = 0.39 eV is the nearest-neighbor interlayer hopping
parameter, d is the interlayer distance, rij is the distance
between atom i on the top layer and atom j on the bottom
layer, and β = 3. This value of β reproduces accurately the
dispersion bands calculated with a density functional theory
approach.9,19,22 Besides, it gives a value of γ3, the second-
nearest-neighbor interlayer hopping, in agreement with values
employed by other authors.23,24 We let every atom in the top
layer interact with the atoms in the bottom layer located inside
a circle of radius 3a0, taking into account the complexity of
the unit cell. This breaks the electron-hole (e-h) symmetry
due to the fact that we are mixing the two sublattices. The
asymmetry depends on the value of β and on the RRA, being
larger for smaller angles; it manifests in the difference between
the electron and hole velocities. We find a larger velocity for
electrons, as in the experimental results obtained by Luican
et al.,18 with a greater e-h asymmetry in the experimental
values.

In order to compute the charge density and total energy, we
perform a sum over the Brillouin zone (BZ); the k points were
selected with a Monkhorst-Pack scheme,25 taking into account
the symmetries of the BZ. Convergency tests were made to
select the appropriate number of k points for the mesh.

Under an external bias, the LDOS21 and the charge density
in a twisted unit cell are inhomogeneous. This, along with the
discreteness of the crystal lattice points, lead us to compute the
Fourier transform (FT) of the charge excess density. As there
are large oscillations of the charge density between the two
sublattices, we computed separately the FT contributions of
the A and B atoms. Furthermore, the FT allows us to evaluate
in a continuous way the charge density on AB, BA, and AA
regions on the top layer. Only the zero order and the three
lower components were needed to fully reproduce the charge
distribution.
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FIG. 2. (Color online) Excess electronic density on the top layer
as a function of V for several rotated bilayer graphene structures.
The rotation angles are indicated in the figure. Inset: Fermi velocity
in twisted bilayer graphene, vT , normalized with respect to that of
monolayer graphene, vG, as a function of the rotation angle RRA.

III. RESULTS AND DISCUSSION

As discussed in the preceding section, when a potential
difference is applied to a coupled bilayer, charge is transferred
from one layer to the other. In the geometry chosen, there is an
excess electronic charge n that builds up on the top layer. Note
that if the layers are uncoupled, there is also a charge transfer
due to the relative shift of the Dirac cones in the two layers,
but the amount will be smaller than in a bilayer with nonzero
coupling.

In Fig. 2 we plot the excess electronic density on the
top layer as a function of V for several rotated bilayers,
including the AB case for comparison. We see how the excess
electronic density diminishes with increasing rotation angle,
indicating that the coupling between the rotated graphene
layers is reduced for higher RRA, albeit nonnegligible in
any case. The values for large angles are rather similar; this
saturation is correlated to the behavior of the carriers’ velocity
for increasing angle, which is equal to that of monolayer
graphene for large RRA; see inset of Fig. 2.

In Fig. 3 we show the angle dependence of the charge
transfer for a fixed, nonzero electric field (V = 0.08 V).
The excess electronic charge has a strong variation for small
angles, and then tends to a constant value, although there is a
smooth variation even in the range from 20◦ to 30◦. However,
this limiting value for the excess electronic charge is much
higher than the one obtained for an uncoupled bilayer: The
inset of Figure 3 depicts the excess charge on a bilayer AB
subject to the same electric field as a function of the interlayer
coupling constant. We label this fictitious varying interlayer
hopping γ̃1 to distinguish it from the parameter γ1 defined in
Sec. II B. We see that the charge transferred between layers
in an uncoupled system (γ̃1 = 0) is n = 0.21 × 1012 cm−2,
roughly 30% smaller than the excess electronic charge for
the largest RRA value in Fig. 3, almost n = 0.3 × 1012 cm−2.
Therefore, reaching a saturation in the charge transfer does
not necessarily mean that the twisted bilayers are uncoupled.
Notice as well that the charge with diminishing angle tends to
the value of the perfect stacked AB bilayer.
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FIG. 3. (Color online) Excess electronic density on the top layer
as a function of the rotation angle for a fixed electric field (V =
0.08 V). Inset: Excess charge density as a function of the interlayer
coupling for AB bilayer graphene.

The excess charge presents an inhomogeneous spatial
distribution that depends on the rotation angle. As there is
a strong oscillation in the density between neighboring A and
B sites, we choose to plot it for these points separately. In
Fig. 4 we show the excess density on the top layer for a
(15,14) bilayer with V = 0.08 V. Different regions with respect
to the electronic density distribution can be distinguished,
corresponding to the stacking regions previously identified
(see Fig. 1). For example, the BA zones, located at the corners
of the unit cell, present an increase in the electronic density
in the A atoms, whereas it decreases on the B atoms. On the
other hand, AB zones display the opposite behavior: The A
atoms show a reduction of the electronic charge, which in turn
increases on the B atoms. The asymmetry is quite large, as
can be seen in Fig. 4. The excess charge density in B (A)
atoms in AB (BA) sites is 300% larger than the averaged
value (n = 0.7 × 1012 cm−2; see Fig. 3), varying from −1.4
to 2.8 × 1012 cm−2. On the other hand, the AA regions
present smaller charge fluctuations, with similar electronic
density values for A and B atoms. This can be understood
by considering the local surroundings of the atoms: The AB

FIG. 4. (Color online) Contour plot of the excess electronic
density, in units of 1012 cm−2, on the top layer in the A (left) and
B (right) atoms for the (15,14) rotated bilayer, with 2524 atoms
in the unit cell. The position coordinates (x and y axes) are in Å
(V = 0.08 V).
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FIG. 5. (Color online) Averaged FT of the excess electronic
density on the top layer as a function of the rotation angle for a
fixed potential V = 0.08 V for different stacking regions on the unit
cell, namely, AA, AB, and slip.

or BA regions resemble the stacked AB bilayer, where there
is a difference between the LDOS and the charge density in
both sites, whereas the AA region is more like the stacked AA
bilayer, with similar density values in A and B sites.

Given such differences, we have studied the charge distri-
bution in different stacking regions as a function of the rotation
angle in the top layer. We average the FT of the excess charge
density in atoms A and B, evaluated at the AA, AB, BA, and
slip points of the unit cell. Figure 5 shows this averaged FT for
a fixed V = 0.08 V at the AA, AB, and slip regions for angles
below 10◦. As there is a symmetry under the interchange of A
and B sites on the AB and BA regions, only the values of the
AB site are shown. Several features should be noted: (i) The
AA site takes less charge than the AB site; (ii) the slip site
density behavior is very similar to that of the total density; and
(iii) for very low angles, the density is more homogeneous, as
opposed to the LDOS, which peaks at AA sites near the Fermi
energy for small RRA.10

Besides these magnitudes related to the charge transfer
under an applied perpendicular electric field, one way to
theoretically assess the electronic coupling is to calculate
the interlayer coupling kinetic energy in the unbiased double
layer. We define Ecoupl as the expected value of the interaction
Hamiltonian, Ecoupl = 〈ψ |Hint|ψ〉, where |ψ〉 is the ground-
state wave function of the total coupled bilayer Hamiltonian.
This quantity is directly related to the interlayer interaction,
which should vary with the RRA. Figure 6 presents the
interlayer coupling energy Ecoupl as a function of the rotation
angle. We see that although Ecoupl increases with increasing
rotation angle, it is by no means negligible for RRA over 20◦.
The energy for low angles decreases, tending to the value of
the stacked AB bilayer, −5.1 meV.

Finally, we note that in the analysis of the bias-induced
charge transfer we have neglected the Coulomb energy
EC corresponding to the two charged layers.26,27 We can
estimate the charging energy EC by considering that the
bilayer is like a capacitor with oppositely charged plates, and
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FIG. 6. (Color online) Total coupling energy per atom of the
twisted bilayers as a function of the RRA.

assuming that the electronic density is uniformly distributed
in the two-dimensional layers. With these assumptions, EC =
e2n2S

2ε
d0, where e is the elementary charge, d0 is the interlayer

separation, S is the sample area, and ε is the dielectric
constant of the medium. This Coulomb energy induces an
extra potential between the layers given by �V (n) = e2nd0

ε
.

Because of the small separation between the two graphene
layers, the Coulomb potential induced by the charge transfer
is much smaller than the externally applied bias, so therefore
it is justified to neglect it in the calculation of the bias-induced
charge imbalance.

IV. CONCLUSIONS

In summary, we have shown that the coupling between
rotated graphene bilayers can be evidenced by several means.
First, the application of an external electric field induces a
charge transfer between layers that can be explored as a
way to indicate the electronic coupling; this charge transfer
depends on the RRA. Second, the spatial charge inhomo-
geneities are also a signal of the electronic coupling between
layers, analogous to the differences in the LDOS reported
by other authors.21 The coupling was theoretically estimated
by computing the coupling energy, i.e., the difference in the
energy of a coupled bilayer and the energy of two uncoupled
graphene layers. This magnitude is nonzero for all angles, thus
evidencing that rotated graphene bilayers are coupled for all
rotation angles. The values of the excess charge density and
the coupling energy tends toward the stacked AB bilayer for
low twist angles.
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