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Transport in curved nanoribbons in a magnetic field
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We study the low-field and ballistic electronic transport in curved nanoribbons subject to static and uniform
magnetic fields, where the curved nanoribbon is placed between two leads that inject scattering states. The method
we present is based on a tight-binding form of the time-independent two-dimensional Schrodinger equation in
curvilinear coordinates, with electric scalar and magnetic vector potentials included, and it enables a numerical
description of transport in arbitrarily shaped curved nanostructures. A description of transport in terms of the
scattering-state basis in the presence of magnetic field, together with curvature and possibly misaligned contacts,
requires the use of a local Landau gauge. Based on the use of a stabilized transfer matrix method, we compute the
conductance and normalized electronic density at the Fermi level for several curved nanoribbons in cylindrical
and toroidal geometry, with and without the magnetic field. The magnetic field determines the number of injected
propagating modes by affecting the Landau-level energies in the contacts, while a complex interplay between the
magnetic field and the nanoribbon shape (both its curvature and helicity) determines the transmission of injected

modes.
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I. INTRODUCTION

Curved nanoribbons are narrow nonplanar strips fash-
ioned from semiconductor heterostructures that support a
two-dimensional (2D) electron gas.> They are among a
growing variety of curved nanostructures that can be fabricated
today.>® Curved nanostructures can be produced from planar
heterostructures by selective underetching in combination
with strain mismatch.>’~'9 Other methods involve transfer
from planar to curved substrates,'! growth of curved layers
using curved templates (nanowires, nanotubes, or nanor-
ings) as substrates,'>"!> or thermal transformation of curved
templates.'® Among the most prominent curved structures
are flexible electronic devices,'”'® used for applications
ranging from flexible integrated circuits'® to artificial retinas.>
Techniques such as dry transfer printing'>?' and electro-
hydrodynamic jet printing?> have been developed to enable
deposition of electronic devices onto flexible substrates, such
as polymers.>??

Curvature presents a novel, mechanical degree of free-
dom available for tailoring these nanostructures’ physi-
cal properties. Theoretical and experimental investigations
of optical properties of curved nanostructures for vari-
ous resonators,”*2° photoluminescence tuning,3>*! coherent
emission and lasing,n'33 and metamaterials®* have been
reported. There have also been a number of papers on mag-
netic properties of curved nanostructures: magnetization,>3%
spin-orbit interaction,***° and spin-wave confinement and
interference.*!#?

Theoretical work on the electronic properties of curved
nanostructures has so far been largely focused on the
effects of the curvature-induced geometric potential and
the classification of states,**™*° as well as transportso‘53 in
simple structures with analytical shapes (e.g., cylindrical
or with periodic corrugation). Similar features have been
addressed experimentally.>*>% Considering that experimen-
tally fabricated nanostructures typically have imperfections in
shape,’ there is a need for a theoretical approach, necessarily
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computationally based, that is capable of addressing transport
in arbitrarily shaped curved nanostructures.

Within the envelope function and effective mass framework,
electronic states in curved nanostructures can be obtained
by solving the 2D Schrodinger equation (SE) in curvilinear
coordinates, derived from the three-dimensional (3D) SE in
the limit of zero thickness.”%> The problem of including
arbitrary magnetic fields into the 2D SE through the covariant
Peierls substitution has been solved recently.®* It has been
shown that the dynamics of a particle on the surface can
be decoupled from the one along the normal to the surface
by using a suitable gauge transformation in the derivation
of the 2D SE. In the same work, analytic forms of the
2D SE with magnetic field have been given for spherical,
cylindrical, and toroidal coordinate systems. As the low-field
and nearly ballistic quantum transport in nanostructures at
low temperatures is dictated by the transmission properties of
the states in the vicinity of the Fermi level,®*%7 a theoretical
account of electronic transport in curved nanostructures in this
regime can, therefore, be described by solving the 2D SE in
curvilinear coordinates with open boundary conditions.

In this paper, we study the linear and ballistic transport
properties, specifically the electronic density and conductance,
of curved nanoribbons subject to a static magnetic field. The
presented theoretical and numerical framework is based on a
tight-binding form of the time-independent two-dimensional
Schrodinger equation in curvilinear coordinates and is entirely
general: it enables a computational description of ballis-
tic transport in an arbitrarily shaped two-terminal curved
nanostructure. A curved nanostructure is connected to large
reservoirs via leads that are the source/drain for scattering
states. We adopt a suitable orthogonal curvilinear coordinate
system to parametrize a generic curved surface and discretize
the 2D SE, due to Ferrari and Cuoghi,%® by using a second-
order finite-difference scheme. We explain the Hermiticity
properties of the discretized curvilinear Hamiltonian and dis-
cuss the local Landau gauge used to include arbitrarily directed
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magnetic fields in the leads and in the curved nanoribbons.
We also compare the Peierls phase approximation with the
exact way of including the magnetic field in the curvilinear
2D SE. The obtained tight-binding form of the 2D SE in
curvilinear coordinates can be solved by well-established
numerical methods for planar nanostructures, such as the
transfer matrix,®®70 scattering matrix,”"’> recursive Green’s
function,”® and nonequilibrium Green’s function techniques.®’
We use the stabilized transfer matrix approach due to Usuki
et al.,®® since it provides both the transmission/reflection
coefficients and a convenient way to reconstruct the wave
function. By using the Landauer formula®’ to calculate the
conductance from the transmission coefficients, as well as
by using the wave function to calculate the electron density,
we show that coherent electron transport is affected by the
curvature and magnetic field through the number of injected
propagating modes (modulated by the magnetic field flux in
the leads) and their transmission properties (determined by
the interplay between the magnetic field and the nanoribbon’s
curvature and helicity).

This paper is organized as follows. In Sec. II, we lay out the
theoretical concepts and the corresponding numerical model.
We explain how the surface divergence, which appears in the
curvilinear 2D SE, is related to the curvature properties and
the normal component of the magnetic vector potential. In
Sec. IT A, we start from the 2D SE in curvilinear coordinates,
with the electric scalar potential and the magnetic vector
potential included, and focus on the curvilinear Laplacian
by explaining its Hermitian properties and how they are
affected by its finite-difference version. We present several
discretization schemes that may be used. In Sec. Il B, we derive
atight-binding form of the 2D SE in curvilinear coordinates by
using a second-order finite-difference scheme. We analyze the
consequences of the non-Hermitian nature of the tight-binding
(discretized) curvilinear Hamiltonian matrix. In Sec. IIC, we
explore the conditions for the validity of the Peierls phase
approximation. In Sec. IID, we explain how the magnetic
field is included in the lead/curved nanoribbon/lead system.
We discuss the necessity of using the Landau gauge in the
leads to ensure proper mode injection and discuss cases in
which a local Landau gauge (amounting to a continuous
gauge transformation) may need to be applied to the curved
nanoribbon. In Sec. III, we apply the described numerical
technique to calculate the electron density at the Fermi level
and conductance in several nanoribbons in cylindrical and
toroidal geometries, with and without the magnetic field. A
summary and concluding remarks are given in Sec. IV.

II. THEORETICAL AND NUMERICAL FRAMEWORK

Conductance in the linear, ballistic, steady-state quantum
transport regime in nanoribbons is determined by the trans-
mission properties of the electronic states near the Fermi
level.%5%7 In curved nanoribbons, we will calculate the
transmission and electron density near the Fermi level from
the time-independent 2D SE in curvilinear coordinates in the
scattering-state basis. As shown previously, by starting from
the 3D SE and using the covariant Peierls substitution and a
layer thinning procedure,®® one can arrive at its 2D version
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completely decoupled from the direction normal to the thin
curved surface. We state this equation in its time-independent
form

1 -
%[ —W?VEiy +iehVs - Agyr

+2iehg Aoy + e*gV A A ]+ VY = Ey, (D)

where the 2D curvilinear Laplacian is given by

1 .
Vi = ﬁawgg”aﬂ//) 2)

and the 2D curvilinear divergence by
> 1 i,
Vs As = —ai(/88" A)). 3)
N V88" A,

Here, 9, = 9/0u’, As = (A1,A5,0), u' is a curvilinear co-
ordinate on the surface S (here only i = 1,2 are included
since the normal component i = 3 has been decoupled), A;
are the covariant components of the magnetic vector potential,
g are the contravariant components of the metric tensor,
g is the determinant of the metric tensor with covariant
components, V = e® + V, ® is the electric scalar potential,
and V; is the geometric potential given by

h2

m

V= ki — kaT?, )
where k; and k, are the principal curvatures of the surface S.7*
It can be shown (see Appendix A) that there is a connection
between the surface divergence Vg - Ag, the curvature prop-
erties, and the normal component of the vector potential Aj;.
Assuming an orthogonal coordinate system and V - A = 0, the
following relation holds
- 1 0A3
Vg Ag = —Azlii=0(g11h22 + g22h11) — s . (5
8 U™ 50
where h;; are the elements of the second fundamental form
of the surface (covariant components of the metric tensor,
gij» being the elements of the first fundamental form of the
surface)’* and Aj is the projection of A onto the normal to
the curved surface (it simply corresponds to the component of
A along the normal to the surface). We can further introduce
effective potentials due to the magnetic vector potential

1 -
V3 = —EhVS . AS , (63)
2m
1 -
Vs = -—e’g" AiA; (6b)
2m

where V3 and Vg define the potentials due to the normal
component Az and the surface component Ag, respectively.
We can now rewrite Eq. (1) in the form

1 .
—[—R*V5y + 2iehg" A ]+ Very = EYr,  (])
2m

where Ve = V 4 Vg + i V3. Letus further rescale the previous
equation, for convenience that will become apparent shortly,

by multiplying it by ,/g. We get

1 _ .
ﬂ[—hzv@ +2ieh\/gg" Aid;j | + /g Verr = VEEV,
®)
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where gi = 0;(,/88"9;) = /g V3. At the end, it should be
mentioned that the Hamiltonian, as given by Eq. (1), is
Hermitian (see Appendix B 1).

A. Curvilinear Laplacian in the tight-binding form

Unlike its Cartesian counterpart, the curvilinear Laplacian
given by Eq. (2) can only be Hermitian up to the prefactor
1/,/g once it is cast into a finite-difference form.”>’® In
other words, it is Hermitian only up to a truncation error of
the Taylor expansion by which a particular finite-difference
scheme is derived. A finite-difference approximation of the
planar Hamiltonian gives a Hermitian Hamiltonian matrix,
as is well known, while the same approximation of the
curvilinear Hamiltonian in the curved nanoribbon can yield a
non-Hermitian Hamiltonian matrix. The latter will be derived
in more detail in this section and in Sec. II B. By rescaling the
Laplacian, as in Eq. (8), we remove this Hermiticity problem
from the rescaled Laplacian, and, consequently, from the
rescaled Hamiltonian, by moving the prefactor that prevents
achieving the Hermiticity to the main diagonal. The problem
of finding appropriate discretization schemes for the rescaled
Hamiltonian in Eq. (8) is easier than for the original Hamilto-
nian from Eq. (7). The non-Hermiticity can be minimized by
choosing a sufficiently small grid size, such that ,/g does not
vary too much across one grid cell. In the limit where curvature
is constant (like in a cylinder), the curvilinear tight-binding
Hamiltonian, obtained using the finite differences, is exactly
Hermitian. Sufficiently smooth curvature variation on the
finite-difference grid is also important to be able to capture
potentially sharp curvature features.

In order to determine which conditions should be met to
have a small variation of /g over one grid cell, we can imagine
an orthogonal coordinate system and refer to the definition
of the metric tensor (g;; = 97 /du’d7/du’), which is diagonal
in that case. If we assume that the curvilinear coordinate
u' is angular, the metric tensor component g;; at any point
will be equal to the squared radius of the curvature at that
point along u’. First, we need enough points on the surface to
capture all the curvature features. Therefore, the grid size (in
radians) should satisfy Au’ < 1, meaning that the radius of the
curvature should be much larger than the grid size (in meters)
along the geodesic in that point. So, a grid size of 1 nm will
generate a fine-enough mesh for curvature radii not smaller
then a few tens of nanometers. Second, the radii of curvature
in both surface directions should vary smoothly and slowly
over neighboring points; in other words, the relative change in
the grid size along the geodesic should be much smaller than
1. The second requirement can be visualized by first defining
a uniform (constant grid size) rectangular grid on a planar
surface and then introducing curvature, due to which the grid
will become nonuniform [Fig. 1(b)]. We can then assess the
metric tensor variations by knowing the relative change in the
grid size along the geodesic over neighboring points.

Even after the rescaling, Eq. (8), we still cannot use arbitrary
finite-difference schemes, but only those that preserve the

- .=
Hermiticity of the rescaled Laplacian V. The reason for
possible non-Hermiticity in arbitrary finite-difference schemes
are the off-diagonal terms of the metric tensor (g'? = g?'
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FIG. 1. (Color online) (a) The four-point scheme for discretiza-
tion of the first partial derivatives by using Eq. (9). (b) An example
of a curved surface parametrized by curvilinear coordinates u! and
u®. Leads are planar continuations of the curved surface in both
directions along the longitudinal coordinate u'. In order to calculate
the wave function value at the grid point denoted by the large solid
circle (central point) from the four-point scheme, we have to know
the metric tensor values at all the surrounding points, denoted by the
small solid circles, as well as at the central point.

or g1» = g»1), which are nonzero if the coordinate system is
not orthogonal. Among possible finite-difference schemes to

discretize Vé, we will mention two: The four-point formula
(Fig. 1) given by

d fo.0 1

Sut = aa Lt T S = )+ 0(40),
3 fo,0 1 2
T ot = f )+ 0(8)),

where A; and A, are the grid sizes along u' and u?
axes, respectively, and the central difference scheme (by

simultaneously using two different grid sizes)”
f -f
9 foo bolo3) 7%'0(0'7%), i=j in v,
W S S (10)
ul® S1.00.)—f~1,00-1) i ?é .. VZ
242 ’ J m N

Here, we will work only with orthogonal coordinate sys-
tems, in which case there is no need for the more complicated
finite-difference schemes given by Eqgs. (9) and (10) and the
ordinary central-difference scheme is enough. [Actually, in the
limit g = g;; = 0,i # j, the term in Eq. (10) for whichi # j
vanishes from Vé and we are left with the ordinary central-
difference scheme]. In the case a nonorthogonal coordinate
system is needed, we can go back and use (9) or (10) and
follow the procedure outlined in the rest of this section. So,
considering an orthogonal coordinate system and applying the
ordinary central-difference scheme we can come up with a
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. - . =2 .. . .
tight-binding representation of Vg, discretized at some slice
n, as

no—
——m(vsl//)n =L,¥, + Ln,nfl‘pnfl + Ln,n+l\1’n+la
an

where W, is a column vector containing all wave function
values on the nth slice (slice is a set of all points with the
longitudinal coordinate u' constant) and the (M + 1) x (M +
1) matrices L are given by

1
0,72

Cn0 —fre 0 .. 0
-3 1 s
fz .1 Cn,1 2651 0
_1
L, = 0 —fie,s Cn2 e 0 1,
L O 0 —fye ,lfu Cn,pt
(12a)
n £
—frd, 0 0
0 —frdt
Lyjs = . (12b)
L
00 —pd,
where
n +% n _% m +2
Cn,m:f1dn,m+f1dnm+f nm+f2 enmy
dy =188 ntim, (13)

! +1 22
en,m - tén (\/Eg )n,m+la

with ne =h*2mAL, for 0<1 <1, fly =2/(Al, +
A’](’zl)) and M + 1 the number of points in a slice. The
assumption is that M is constant for all slices. If the curved
nanoribbon has varying width, we can always set a hardwall
potential at the extra points around the narrow regions.
We assume a 2D nonuniform curvilinear grid, with A’ the
longitudinal grid size between slices n and n 41 and A7}
the transversal grid size between points m and m + 1 along
a slice. Equation (11) reflects the lack of symmetry between
the two curvilinear surface directions in our problem: There is
the longitudinal direction with open boundaries, along which
the current flows carried by complex traveling waves, and
the transversal direction along which the potential defines
the shape of real (confined) transverse modes. This form
of Eq. (11) makes it suitable for use with the transfer
matrix method, where the slice wave functions (containing
all transverse points) are transferred along the longitudinal
direction.

The form of the matrix (12a) will depend on the boundary
conditions in the u” direction. While the system is always
open in the longitudinal (i.e., transport) direction along the
coordinate u!, it might be either closed (hardwall potential)
or periodic (e. g., closing onto itself, like in a cylinder) in the
transverse direction u>. In the former case we use the Dirichlet
boundary conditions, which give the form (12a), while in the
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latter the periodic boundary conditions, where we have the
following additional terms

1
0 -4
_f26n(2)’

+
L,(M+1,1)=— Men,zv,

L,(LLM+1) = "

If the coordinate system is not orthogonal (g"/ # 0,i # j) and
we use either one of the schemes (9) or (10), then, besides
having more complex matrix elements, L, ,+; would also
depend on the boundary condition in the transverse direction
(being a three-diagonal matrix in that case).

B. The tight-binding 2D Schrodinger equation

We will now discretize the rest of Eq. (8) to obtain the
curvilinear 2D SE in the tight-binding form. To avoid having
imaginary potential on the main diagonal of the Hamiltonian
matrix, we will first rewrite the imaginary terms containing
the magnetic vector potential in Eq. (8) as

Dieh/gg" Aid;y +ieh/gVs - Asy
=ieh/gg" A;d; +iehdi(\Jgg" A;y).  (15)

Since these terms contain the first derivative of the wave
function, we will use the central-difference scheme like for the
casei # j in Eq. (10), in order to avoid having wave-function
values at half-integer grid points. We obtain the following
tight-binding form at some slice n

ieh iy .
ﬁ[ﬁgl]Aiajw +9;(Vgg" Ajy¥)]la
= Pn‘I’n + Pn,nfl\l’nfl + Pn,nJrl‘I’n+lv (16)
where
ie mfll 0 m—1
P,(mm+1)=—f; z[en’mflAg(n,m — DA,

+ef) _ Ax(n,m)AY],

n,m—1
1
P,(mm — 1) = —’he m-— lz[egym_lAz(n,m — A
+e;}n As(n,m — 2)A5 7], (17)

Pn.nil(mym) :t f] 2[ n,m—1 1(n,m - I)Arll

d:l:l

n,m—1

Ai(n £ Lm — DAY

(The matrix indices in the above equations are m € [1,M],
m € [2,M + 1], and m € [1,M + 1], respectively). Note that
when m is used as a matrix index on the left-hand side of
Eqgs. (17) its range is [1,M + 1], while the corresponding
transverse grid position on the right-hand side is in the range
[0,M], hence m — 1 is used on the right-hand side. The
magnetic vector potential components 1n Eqs. (17) are the
covariant components, given by A= A; e’ where el = Vu'.

The relations of the covariant components to the contravariant
components A = Alé,, where ¢, = 37 /dui, are A} = g1 A!
and A, = gy A?, if the coordinate system is orthogonal. The
relations to the magnetic vector components expressed with
respect to the unit curvilinear vectors d;, /1: Zlc?,-, which is

often done if one starts with calculating A in the Cartesian
coordinate system and then performs either a coordinate
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system transformation to the desired curvilinear system or
a vector projection in the case of arbitrary curvature, are
Al = JgTZI and A, = @Zz. In the case of using 2 we
see that it should be multiplied by the actual grid size along the
geodesic (in meters), (,/g1122))n.m A;’f’zﬂ)) at the grid position
(n,m).

As with the L matrices in Eqgs. (12), if the transverse
boundary condition is periodic, we have additional terms of
the following form in Egs. (17)

e 1
P,(1,M+1) = —%fzoz[eg’oAz(n,O)Ag

+ e, o Aa(n, M)AY],

. (18)
ie 1
P,(M+1,1) = %fZME[eSVMAZ(n,M)AQ”
+e, ) Ax(n,0)A].
Finally, the tight-binding 2D SE can be written as
Hn.n+1‘I’n+l + Hn,n—l‘I’n—l + Hn‘I’n - EGn‘I’nv (19)
with
(V&m0 0 EE 0
0 (OV/'REEEE 0
G, = _ ) ) . (20
0 e 0 (V&nm
and
H, = Ln + Pn + Gnvnv
(2D

Hn,n:l:l = Ln,n:l:l + Pn,n:tl s

where V, is a column vector containing the potential
Vet —iV3 = V + Vg of the nth slice (since iVj is already
incorporated into the P, and P, ,. matrices).

Equation (19) is the central equation of this paper. Its
form is similar to that of the planar case,®®’? but with more
complicated matrix elements. In order to solve it, we make
use of the stabilized transfer matrix technique due to Usuki
et al.,®® because it provides both the reflection/transmission
coefficients and a convenient way to calculate the wave func-
tions needed for electron density calculation. The modified
stabilized transfer matrix technique, as used in this work, is
described in detail in Appendix C.

Although Eq. (19) is derived from the exact curvilinear
Schrodinger equation [Eq. (1)], the usual discretization error,
associated with the second-order finite-difference scheme,
here may lead to a non-Hermitian tight-binding Hamiltonian.
The non-Hermiticity stems from the discretization of the

1 iel

H,mm+ )~ —frtez - =2
(m,m +1) 5 e { =5

~ m—1 +% ie

~ — e _—

2 en,m—l Xp{ 7

1
S[Aa01m — DAY + Az(n,m)A’Z”]} .
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curvilinear Laplacian in the case when curvature is spatially
nonuniform, as explained in Sec. Il A, and/or from the fact
that we allow the curvilinear grid to be nonuniform in general.
The Hermiticity of a discretized Hamiltonian matrix is a
desirable property, because it makes the numerical solution of
the eigenvalue problem easier. Even though our computational
method requires the solution of the eigenvalue problem only
in the leads—which are typically, but not necessarily, flat,
so the Hamiltonian in them is Hermitian—we employed
discretization schemes in Eq. (19) that enable the construction
of a discretized non-Hermitian curvilinear Hamiltonian whose
eigenvalue problem can be mapped onto that of a Hermitian
matrix with the help of certain matrix transformations. In
Appendix B, we give a detailed account of the Hermitian
properties of both the exact and the tight-binding Hamilto-
nians, along with the aforementioned matrix transformations.
After transforming the original non-Hermitian eigenvalue
problem, we obtain a Hermitian eigenvalue problem with
the same eigenvalues and transformed wave functions. From
this we draw two conclusions: First, the eigenvalue problem
becomes more manageable computationally, albeit with the
additional reverse transformation necessary to reconstruct the
original wave functions, and, second, although the transformed
wave functions do form a complete and orthonormal basis,
being eigenvectors of a Hermitian matrix, our original wave
functions may not form such a basis. However, the latter
consequence is unavoidable, since it is a side effect of the
discretization error of the finite-difference approximation in
the case of spatially nonuniform curvature and/or nonuniform
curvilinear grid. As explained in Sec. IT A, this side effect can
be minimized by choosing a sufficiently small grid size that
prevents sharp curvature variations across one grid cell. If in
addition the curvilinear grid is nonuniform, one should ensure
sufficiently smooth grid size variations over neighboring grid
cells.

C. The Peierls phase approximation

It is instructive to see how the matrix elements look in the
limit of small curvature variations (smooth and slow transitions
between different curvatures) and a weak magnetic field. For
the matrix element H,, (m,m + 1) the first condition allows us
to write

+1 0 +1

enm ~et! (22)

n,m?>

since the metric tensor varies very slowly over one unit cell
in this limit. Further taking a weak magnetic field limit such
that terms of the form A; A; are small, we obtain the following
Peierls phase form:

[Ac(n,m — DAY + Az(n,m)A';]}

(23)
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Similarly,
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_1 iel
Hy(mm — 1)~ =[]\, exp {f—[fh(n,m — DAL+ As(nm — 2)A§”2]} :

h2

(24)

1 e 1
Hoi(mm) = f1d, . exp {¢5§[A1(n,m — DAY+ Ai(n £ Lm — 1)A'fi1]} .

h

Of course, there will be additional terms in Eq. (23) and the first
of Egs. (24) if we use the periodic boundary conditions in the u?
direction, obtained by summing Eqs. (14) and (18) in a similar
way. If we further neglect the remaining field-dependent term
Vs from Eq. (6b), since it is second-order in magnetic vector
components, we have represented the effect of the magnetic
field in a curved nanoribbon through the Peierls phase, as is
often done in planar nanostructures.%®73

In planar nanostructures subject to a perpendicular mag-
netic field, the Landau gauge with zero transverse component
(A, = 0) is typically chosen to ensure plane-wave injection
from the leads (more on this issue in the next section).
Therefore, the phase in H,(m,m + 1) is typically zero in
planar structures. In contrast, in curved nanostructures subject
to a magnetic field, the curvature may make it impossible to
eliminate A, through gauge transformations, so there may be
nontrivial phase factors in H,(m,m £ 1). We will discuss the
issue of gauge transformations in the next section.

Let us estimate the magnitude of the magnetic field for
which the Peierls phase approximation is justified. We can say
|A| ~ |§|D, where D is the largest transverse dimension of
the device. For the Peierls phase to hold we need

e AIA < 1 1B h 6.6 x 1071Tm?

h|| <<,||<<6AD— D .
In a typical nanostructure, A =~ 1 nm and D =~ 100 nm, so we
have |§| « 6.6 T. To estimate Vs, which depends on both
the curvature and the magnetic field, we introduce R as the
radius of curvature in our device and notice that g;; ~ R2.
By again using |A| & |B|D and Eq. (6b), we can easily show
that Vg < 1 eV for |1§| &K 4/m/|e|/D. We see that for Vs the
condition is inversely proportional to D, which is reasonable
because Vs is of the second order in A and, therefore, small
for small device size. In GaAs and with D =~ 100 nm we have
Vg « 1 eV for |B| « 6 T, which is a similar condition as the
one given by Eq. (25).

The Peierls phase approach is often used for simulating the
effect of magnetic field in planar nanostructures.®®”3 Equation
(19), modified such that matrix elements that contain the
magnetic vector potential are given by Egs. (23) and (24),
along with setting Vg = 0, represent the generalization of that
approach for curved nanostructures. Equations (23) and (24)
reduce to the form used earlier for planar nanostructures in the
limit of flat metric and a uniform grid, as do the other matrix
elements in Eq. (19). Having in mind the approximations used
to derive Egs. (23) and (24) and to be able to neglect Vg, the
Peierls phase approach for curved nanostructures has limited
applicability for weak magnetic fields and small curvature
variations. Since planar nanostructures are the limit of a flat

(25)

metric (unit metric tensor, no curvature variations), the only
condition for the Peierls phase approximation validity in them
is a sufficiently weak magnetic field.

D. Handling the magnetic field: The local Landau gauge

In order to properly inject transverse modes and compute
their velocities (the latter being critical for the calculation
of the transmission matrix, as described in Appendix C 1),
we have to include the leads in the transport calculation. A
curved nanoribbon is placed between two leads that connect
it to macroscopic reservoirs of charge. The leads act as the
source/sink for the scattering states, whose plane-wave form
in the leads allows us to calculate the conductance using
the Landauer-Biittiker formalism.®” So, we will include a
necessary portion of the leads in the simulation region; in
the case of planar leads, we will in general have to connect
a planar rectangular grid of the leads to a curvilinear grid of
a nanoribbon via a transition grid. The magnetic field will be
present in the entire simulation region, including the leads. The
basis that describes the lead/curved nanoribbon/lead system
consists of scattering states, whose form in the injecting lead
is a sum of the incident and reflected waves and in the outgoing
lead a single transmitted wave.

In order to keep the scattering-state basis for the purposes
of transport calculation in the presence of magnetic field, one
has to use the Landau gauge in the planar leads, such that there
is no transverse component of the magnetic vector potential
in the leads and no explicit dependence on the longitudinal
coordinate.®’” The Landau gauge ensures that the Hamiltonian
eigenstates are plane waves along the longitudinal direction.
In Fig. 2, we have an example of a lead injecting scattering
states into a nanoribbon in toroidal geometry. The lead
connects to the structure at the bottom left corner. The lead’s
Cartesian coordinate system, shown at the bottom left (z is the
longitudinal coordinate in the lead, y is the transverse, and x is
the normal coordinate) serves as the reference. We can write an
arbitrary magnetic field, present in the whole structure, in terms
of the lead’s Cartesian coordinate system, B = (B,,B,,B;),
and define a Landau gauge for each component separately;
namely we can define A* = (0,0,B,y), A” = (0,0, — Byx),
and A7 = (—B;y,0,0), so for an arbitrarily directed magnetic
field é, we can employ the superposition principle and
write A = A* + A” + A%, That is, the total magnetic vector
potential will then be given by

A = (—B.y,0,B,y — Byx). (26)
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21 GT - gauge transformation

By GT
X/ ' \

y

By GT

FIG. 2. (Color online) An example of a curved nanoribbon for
calculating the magnetic vector potential: the nanoribbon (dark blue)
on top of a half-torus (light blue), with the leads extending downward
at both ends. The Cartesian coordinate system in the left lead
(shown in the lower left corner) is taken as a reference system,
according to which the magnetic field components B,, By, and B,
are specified. Gauge transformations (GT), equivalent to coordinate
system translations and rotations in the plane perpendicular to each
component, are also shown.

With A in place for the injecting lead, we can calculate the
injected scattering states by solving the eigenvalue problem
of the transfer matrix between the first two slices that belong
to the lead.%® Explanation of one technical point is needed
here. In order to obtain the correct number of forward-
and backward-propagating states by numerically solving the
eigenvalue problem in the lead, as in Appendix C, it is
important to properly choose the reference level for A. This
can be done by centering the reference coordinate system to
follow the midline that “cuts” the lead in half in the transverse
direction: In other words, we can choose the u? =0 grid
line such that it extends into the lead and splits it in two
halves symmetrically. On suckl a choice, the terms in A in
Eq. (26) due to the different B components will always be
either even or odd functions of the transverse position, which
gives the correct number and distribution of forward- and
backward-propagating states. We will refer to this u> = 0 line
simply as the midline or the bisector. More details on the
calculation and sorting of injected modes can be found in
Appendix C.

Now, our nonplanar structure is placed between two leads,
which could, in principle, be misaligned, and we need to be
able to inject scattering states from both of them. It was shown
(see Appendix E in Baranger and Stone’’) that, in planar
structures with misaligned leads, in order to have the Landau
gauge and properly inject plane waves from each lead, one
has to use suitable gauge transformations in order to properly
account for the magnetic field in all leads. These gauge
transformations ensure that the magnetic vector potential is
calculated in the Landau gauge locally for each lead. The
problem of including magnetic field in the presence of multiple
misaligned leads is addressed in a similar way elsewhere.”®
In order to smoothly connect the magnetic vector potential
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in different leads, gauge transformations will be required in
the device region as well. Since there is no unique analytical
expression for gauge transformations for different geometries
(like cylindrical or toroidal), we illustrate the approach with
the aid of Fig. 2. We generalize the requirement to have
a local Landau gauge in each lead to the requirement to
have a local Landau gauge in every slice of the lead/curved
nanoribbon/lead system.

The idea is the following: For a given magnetic field
orientation, any coordinate system translation as well as
coordinate system rotations in the plane perpendicular to the
field can be shown to be equivalent to gauge transformations
that make the gauge locally Landau.”” In other words, if
we define A associated with a given B in some coordinate
system, then rotate and/or translate that system as specified
above, after which we define A’ in the transformed coordinate
system in the same way as in the initial coordinate system
(i.e., give it the same functional dependence on the new
coordinates as we had in the old), then it can be shown
that there exists a scalar function f such that (in the same
set of coordinates, for instance, the old ones) A’ = A + V f.
When employing the transfer matrix method, which uses
slice-specific dynamical matrices as described in Sec. 1I B,
the relevant matrices in each slice contain the magnetic vector
potential according to the local Landau gauge (however, it
is written in the curvilinear coordinates that parametrize the
surface). Gauge-independent quantities, such as the electron
density or conductance, are, of course, insensitive to these
gauge transformations. In Appendix D 1, we show that the
multitude of gauge transformations required to obtain the local
Landau gauge slice by slice can be represented as a single
gauge transformation.

In Fig. 2, we apply this approach to the magnetic vector po-
tential components (A*, AY, or A?) generated by each magnetic
field component (By, By, or B;) independently, starting from
Eq. (26) and having in mind the superposition principle. As
already mentioned, we can always identify a midline through
our device on which the reference coordinate system origin
is situated in the reference (injecting) contact. The gauge
transformations are then performed for each magnetic vector
potential component (A¥, AY, or A%) independently such that
the coordinate system origin moves along the bisector from
one lead to the other, while the local z axis is tangential
to the projection of the bisector onto the plane normal to
the respective magnetic field component. In the example of
Fig. 2, nontrivial gauge transformations are needed only for
the magnetic vector potential associated with the B, field
component, because it is the only field component requiring
rotations; the projection of the bisector onto the plane normal to
B, is a semicircle (more details can be found in Appendix D 2).
Projections of the bisector onto the planes normal to B, and
B, are straight lines, and, thus, require only translations along
the longitudinal axis (the z axis of the reference system for B,
and the x axis for B;), while the values of the components of
Ain Eq. (26) related to these magnetic field components vary
along the y axis, which is normal to the respective longitudinal
axes and, therefore, neither directions nor values of these
magnetic vector components are changed going from slice to
slice.
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III. EXAMPLES

We apply the method of Sec. II to calculate the electron
density and conductance for various nanoribbons. To define
curved nanoribbons of various shapes, we use a virtual
substrate specified by a curvilinear coordinate system, like
cylindrical, spherical, and torodial [in other words, we mimic
placing the ribbon on top (or wrapping it around) a cylinder,
sphere, or a torus] and then we apply a hardwall potential
to define the ribbon edges. This method allows us to use
relatively simple coordinate systems to work with complicated
shapes. For each curvilinear coordinate system there are
several quantities, related to the nonzero curvature, that have
to be precalculated: the first fundamental form (or the metric
tensor) g and the two principal curvatures, k; and k,. Sufficient
information for this task can be found in many textbooks and
handbooks’*” and online mathematical resources.

A. Cylindrical geometry

The cylindrical geometry is relatively simple and very
useful for modeling various curved nanoribbons that are being
produced today.*”->30 We assume the ribbon will be placed
on a cylinder of radius r, with (¢,x) being the natural surface
coordinates and x being the direction of cylinder axis. By
applying a hardwall potential in (¢,x) we can define the edges
of the curved nanoribbon that is placed on top of or wrapped
around the cylinder and proceed to calculate its conductance
and electronic density by the previously described numerical
technique. The leads are assumed cylindrical to avoid the
need for transitional regions, which is a good approximation
if the nanoribbon is narrow compared to the circumference
of the cylinder. The leads extend away from both ends of
the nanoribbon and along the cylinder axis, as depicted in
Fig. 3(b).

In Figs.3 and 4, we present calculation results for a
cylindrical nanoribbon with helicity (wrapped around the
cylinder) for two different magnetic field directions. The radius
of the cylinder is r = 40 nm and its length is 4777, while the
nanoribbon width corresponds to one-third of the circumfer-
ence. The helix occupies one-half of the length. The Fermi
level is at 8 meV, and the grid contains 500 x 250 points.
The curved nanoribbon has no scattering centers; therefore,
any difference between the actual normalized conductance
and the number of injected propagating modes (formed in
the injecting lead subject to the magnetic field), which can
be seen in Figs. 3(a) and 4(a), is due to the curvature and
helicity and their coupling with the magnetic field. For the
direction of magnetic field as in Fig. 3(b), there is a very weak
dependence of the Landau level energies in the injecting lead
on the magnetic field, due to the fact that the field has a small
flux through the narrow cylindrical lead, but the dependence is
not strong enough to affect the number of injected propagating
modes. (The flux would be zero if the leads were perfectly
planar.) In Fig. 3(a), there are three modes injected throughout
the magnetic field range, but even at B = 0 only two are
transmitted; the reason for the reflection is the ribbon’s helicity
(we will discuss helicity in more detail later). From Fig. 3(a),
we can see that, for higher magnetic fields, the transmission
gradually decreases, until it is completely suppressed at around
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FIG. 3. (Color online) (a) Normalized conductance vs. magnetic
field for a nanoribbon with helicity in cylindrical geometry. The leads
are assumed cylindrical to avoid the need for transitional regions
and, as a consequence, have the Landau levels energies affected
by the magnetic field flux in the leads (Landau level quantization),
albeit weakly. The lead on the left-hand side is the injecting lead.
Magnetic field direction with respect to the structure is shown in (b)
and would be parallel to the leads if they were exactly planar. Even
at zero field, not all of the three injected modes propagate through,
due to the ribbon helicity. (b) Electron density at the Fermi level
shown for B, = 2.663 T on the logj, scale, where there is resonant
transmission, and for B, = 4.5 T, where the normalized conductance
is zero (transmission suppressed). A quasibound state [right panel of
(b)] is associated with the resonant transmission feature from (a).

4 T. The suppression can also be observed in the plot of the
electron density [Fig. 3(b)], where at 4.5 T the wave function
is confined to the region close to the injecting lead. In contrast,
at 2.663 T, a quasibound state is responsible for the resonant
transmission, visible as a sharp peak in Fig. 3(a).

The variation in the Landau level energies in the leads with
varying magnetic field is much more pronounced in Fig. 4,
where the magnetic field is nearly perpendicular to the lead
and produces maximal flux. Consequently, the number of
injected propagating modes varies appreciably in the magnetic
field range of interest. We use this example to illustrate the
onset of discrepancies between a calculation based on the
exact equation (19) and the Peierls phase approximation.
The discrepancy between the curves calculated using the
exact equation (19) and the Peierls phase approximation
becomes apparent at fields higher than about 2.3 T, Fig. 4(a).
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FIG. 4. (Color online) (a) Normalized conductance vs. magnetic
field obtained with the exact equation (19) (thick solid red curve)
and within the Peierls phase approach (thin solid black curve) for
a nanoribbon with helicity in cylindrical geometry. The leads are
assumed cylindrical to avoid the need for transitional regions. The
lead on the left-hand side is the injecting lead. The magnetic field
direction with respect to the structure is shown in (b) and would be
normal to the leads if they were exactly flat. The number of injected
propagating modes is shown with a thin dashed black curve and
is influenced by the magnetic field flux in the leads (Landau level
quantization). There is a discrepancy in the conductance between the
exact and Peierls phase approaches starting at around 2.3 T. Resonant
reflection is present at B = 4.582 T in the exact (thick red) curve.
(b) Electron density at the Fermi level, represented through color on
the logy scale, corresponding to the resonant reflection at B = 4.582
T. A quasibound state is formed, primarily confined to the right-hand
side of the helical part, looking from the left, injecting, lead.

The appearance of the resonant reflection (the sharp dip
in transmission), often observed in 2D coherent electron
systems of nonuniform width,3'-%3 is present in the exact
(thick red) curve at 4.582 T. In these nanostructures, although
the nanoribbon has constant width (there are no cavities
along the nanoribbon), the interplay between helicity and the
magnetic field might lead to the formation of quasibound
states responsible for resonant reflections. These reflections
are very sensitive to the amplitude and direction of magnetic
field. The interplay between the helicity and magnetic field is
also responsible for the incomplete transmission from about
2Tt033T.
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B. Toroidal geometry

Toroidal geometry is more complicated than the cylindrical
one and enables us to demonstrate the technique on nanorib-
bons with spatially nonuniform curvature. We use a standard
parametrization of a torus of radii R and r, where R is the
radius of the large circle going through the middle of the torus
and r is the radius of the small circle, whose center remains
on the larger circle as its rotation around the large circle’s axis
maps the torus surface. The surface coordinates are the two
angles, (0,¢), where 6 is related to r and ¢ to R. To avoid
transitional regions, we adopt cylindrical leads here as well,
because of their natural compatibility with a “straightened”
torus. Having a curved nanoribbon that consists partially of
a cylindrical shape and partially of a toroidal shape causes
problems in constructing the tight-binding Hamiltonian, since
the adopted longitudinal curvilinear coordinates have different
units: length in the cylindrical part and angle in the toroidal
part. To avoid this we can rescale the longitudinal coordinate
in the torus to get the units of length there as well:

0 — é - (,‘9, Al,tor - Al,tor = CAl,lorv (27)

where A| (o is the longitudinal grid size in the toroidal part.
The constant ¢ has units of length and if we choose ¢ =
Ay ey1/ At tor, We can, in addition to equating the units, obtain
a uniform grid along the cylindrical lead-toroidal nanoribbon-
cylindrical lead system. The corresponding change in the
metric tensor is

90 06 2930 90 c? (28)

gu
Similarly, g'' = c?>¢!' and § = g/c%.

In Figs. 5-7 we present calculation results for several
different nanoribbons in toroidal geometry, with and without a
magnetic field. The radii of the torus are R = 200 nm and
r =40 nm. The Fermi level is at 8 meV, while the grid
size is 575 x 230 for the toroidal part and 50 x 230 for
each of cylindrical leads. The leads extend downward from
the nanoribbon as shown in the electron density plots. This
particular geometry, in combination with the magnetic field in
the x direction [see the configuration in Fig. 5(b)] leads to one
important point. Even though the leads can be geometrically
equivalent, due to the combination of curvature and magnetic
field, the calculated transverse mode profiles in the leads might
not be the same. This fact requires a slight modification of the
transfer matrix method by Usuki et al.%® [see their Eq. (2.17)]
to account for different mode-to-site conversion matrices in
the incoming and outgoing leads. In Appendix C, we present
the details of these necessary changes in case the two contacts
cannot accommodate the same mode profile.

In Fig. 5, for the magnetic field along the x axis (the largest
flux through the leads), we see that the actual conductance
follows the number of propagating modes for most of the mag-
netic field magnitudes applied (there is no nanoribbon helicity)
and then undergoes oscillating behavior when the magnetic
field is sufficiently strong so there is only one propagating
mode. This is a much more visible consequence of the resonant
reflection, mentioned in connection to Fig. 4. In Fig. 5(b)
electron density plots are shown for two characteristic points:
zero conductance at B, = 4.456 T (resonant reflection) and

195419-9



B. NOVAKOVIC, R. AKIS, AND I. KNEZEVIC

(@) 3.5

- - -~Number of prop. modes

1 =Conductance [292/h]
|

3

2.5¢

2,

1.5f

1,

0.5¢

0 1 2 3 4 5
Magnetic field [T]
(b)

Quasibound state

Switchover e
.3

B=4.646T -3.5
B=4.456T |,

%

FIG. 5. (Color online) (a) Normalized conductance vs. magnetic
field for a nanoribbon in toroidal geometry. The leads are assumed
cylindrical to avoid the need for transitional regions. The number
of propagating modes, given by the dashed line, is influenced by
the magnetic field in the leads (Landau level quantization). There are
strong resonant reflections at high magnetic fields, where there is only
one injected mode. (b) Electron density at the Fermi level, represented
through color, for unit conductance (complete transmission) at B, =
4.646 T and zero conductance (resonant reflection) at B, = 4.456 T.
For complete transmission at B, = 4.646 T, there is an edge channel
formed that changes sides according to what can be expected from
the classical Lorentz force. An extended quasibound state, responsible
for the resonant reflection, is visible on the log;, scale in the central
region of the nanoribbon at B, = 4.456 T.

X

unit conductance (complete transmission) at B, = 4.646 T. An
extended quasibound state in the middle part of the nanoribbon
is visible in the electron density plot in the log;y scale at
B, =4.456 T, while for the case of complete transmission
there is an edge state that changes sides according to what can
be expected from the classical Lorentz force.

Figure 6 illustrates a situation where it is necessary to
include gauge transformations, as explained in Sec. IID and
Appendix D 2. Since the magnetic field is in the y direction
(perpendicular to the plane of the torus and leads), the
projection of the bisector (the middle longitudinal grid line
of the nanoribbon) onto the plane normal to the magnetic field
is a half-circle. In each slice perpendicular to the current flow,
a local coordinate system (as depicted in Fig. 2) is rotated
with respect to the reference system; each such rotation in the
plane perpendicular to the magnetic field results in a gauge
transformation. Therefore, we have a series of slice-dependent
local Landau gauges as we move along the nanoribbon, which
in this specific case means that A, = 0.
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FIG. 6. (Color online) Sample electron density plot at the Fermi
level for a toroidal nanoribbon subject to a magnetic field in the y
direction. Electron density is represented through color (light denotes
high and dark denotes low). This situation illustrates the use of the
gauge transformations, as explained in Sec. II D and Appendix D 2,
since the projection of the middle longitudinal grid line on the plane
normal to the field is a half-circle, which requires the use of rotations
in every slice of the toroidal part of the nanoribbon. The formed edge
state reflects the symmetry of the problem and agrees qualitatively
(the side at which it is formed) with the result obtained by applying
the classical Lorentz force.

The edge state visible in the plot of electron density
corresponds qualitatively (the side at which it is formed) to
what can be expected from the classical Lorentz force and
reflects well the symmetry of the problem. The details on how
one performs the gauge transformations in this case in order
to connect the local (slice-by-slice) Landau gauges are given
in Appendix D 2.

In Fig. 7, we can see the results for a torodial nanoribbon,
with and without helicity, in the absence of magnetic field. The
normalized conductance for the nanoribbon without helicity
agrees exactly with the number of injected propagating modes,
meaning that there is complete transmission. Comparing the
result of the conductance vs. Fermi level for the nanoribbons
with and without helicity confirms that the observed difference
between the normalized conductance and the number of
propagating modes is due to helicity. As we also observed in
Figs. 3 and 4, helicity plays a role similar to a quantum point
contact in a flat wire (i.e., has the ability to quench propagation
of certain modes). As shown earlier,* even without magnetic
field one might expect resonant conductance features. The
reason we do not see them here is because, due to the relatively
large radius of the curvature of the nanoribbons considered
here, the geometric potential is on the order of 0.1 meV, which
is much smaller then the Fermi energy (8 meV). Another
reason is that there are no sharp changes in curvature and,
therefore, no sharp variations in the geometric vector potential,
which can cause quantum interference effects.

IV. SUMMARY AND CONCLUDING REMARKS

We presented a theoretical and numerical technique for
investigating the linear, ballistic transport properties of curved
nanoribbons in a static, uniform, and arbitrarily directed
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FIG. 7. (Color online) (a) Normalized conductance vs. Fermi
level in the leads for a nanoribbon in toroidal geometry with and
without helicity, in the absence of magnetic field. The leads are
assumed cylindrical to avoid the need for transitional regions. The
number of injected modes is changing due to the change in the Fermi
energy. Comparison of the conductance for these two nanoribbons
shows that helicity is the reason for the observed difference between
the actual normalized conductance and the number of propagating
modes. (b) Normalized electron density at the Fermi level, represented
through color (white denotes high and black denotes low) for the
nanoribbons with (right panel) and without helicity (left panel) when
the Fermi level energy is equal to 13.5 meV.

magnetic field. Having started from the two-dimensional
curvilinear Schrodinger equation with magnetic vector and
electric scalar potentials included, after a rearrangement and
rescaling of the Schrodinger equation we identified an effective
potential, which is in general a complex quantity and depends
on the magnetic field. The resulting equation was cast into a
tight-binding form by using a second-order finite-difference
scheme, which can be conveniently solved by a stabilized
transfer matrix method. We analyzed the constraints on the
Hermiticity of the discretized curvilinear Hamiltonian and
proposed several suitable finite-difference schemes. While we
adopted orthogonal coordinate systems throughout this paper,
the framework is general enough that it can be extended to
nonorthogonal coordinate systems if required.

Special attention was paid to the way in which the magnetic
field should be included in the model. The requirement
of working in the scattering-state basis, coupled with the
structure’s curvature, led us to a model for the inclusion of the
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magnetic field through a local Landau gauge. The use of the
local Landau gauge is necessary to properly inject modes from
the leads and avoid artificial numerical suppression of mode
propagation, which can happen in finite-difference approaches
to solving the Schrodinger equation in magnetic field, because
an inadequate gauge in the effective complex potential de
facto acts as a barrier to transmission. We have explained how
slice-by-slice gauge transformations can be generated based
on the structure’s shape and the magnetic field direction.

Since the Peierls phase is often used to account for
the magnetic field in planar nanostructures, we have also
investigated the requirements for the validity of the Peierls
phase approximation generalized to curved structures, where
the magnetic field influence is captured through complex
exponential terms. We find that there exists an upper limit on
the magnetic field strength and curvature variations, connected
to the structure’s dimensions as well as the grid size, beyond
which the Peierls phase approach is no longer valid.

We illustrated the method by numerically calculating the
electron density at the Fermi level and conductance for
several cylindrical and toroidal nanoribbons, with and without
helicity, and subject to magnetic fields of different orientations.
Interesting features that demonstrate the interplay between
geometry and the magnetic field can be observed in these
structures: For example, the prominent resonant reflection
conductance features that occur due to a formation of bound
states can be manipulated by curvature, helicity, and magnetic
field.
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APPENDIX A: THE SURFACE DIVERGENCE OF THE
MAGNETIC VECTOR POTENTIAL

By using the fact that V - A =0 for the Landau gauge
in the Cartesian coordinate system and that the curvilinear
coordinate system we are using is orthogonal, we derive a
relationship between the surface curvilinear divergence Vy -
A s and the normal component Az and curvature properties,
given by Eq. (5).

Since V - A = Ointhe rectangular coordinate system, it will
remain zero in any other coordinate system. So if we assume
a general curvilinear coordinate system suitable for defining a
curved surface in the limit where the thickness goes to zero,”®
we get

R 1 iy 1
V-A=—3&(GGIA,)= —3,(VGG®A
\/6 ( ]) \/6 ( b)

+ %33(\/6143) =0. (A1)

75

Here, a and b are the surface curvilinear coordinates and

G Gip O
G=|Gy Gpn 0], (A2)
0 0 1
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where G is the determinant of the matrix (A2) and G/ are the
contravariant components. If we evaluate Eq. (A1) at u® = 0,
we get

1 1
—04(/288" Ap| o) = ——=0:(VGA3)|
\/g ‘ =0 G u3=0

since

(A3)

Gap = gap + [0g + @@)"] ,u’ + (aga") , ) (A4)

and @ is a matrix with elements satisfying Weingarten

equations®’

1 1
ap = E(glzhzl —gnhi), ap= g(hugzl — ha1g11),

1 1
a = ;(hZZgIZ —hi2g»), axp= g(h21g12 — hag11).

(A5)

Using the fact that the coordinate system is orthogonal (g2 =
g21 = 0) and that in our notation As = (A|,3—0,A2/.320,0),
where A| ;3 are the covariant components of the magnetic
vector potential, after some algebra we arrive at the final
equation (5) from (A3).

APPENDIX B: HERMITICITY OF THE EXACT AND
TIGHT-BINDING HAMILTONIANS

1. Exact Hamiltonian

Here, we will investigate the Hermiticity property of the
exact Hamiltonian, given by Eq. (1). The first term on the
left-hand side of Eq. (1) is the curvilinear Laplacian and it is
well known that it is Hermitian. Therefore, we will not give the
formal proof, but the method is similar to the one we will use
for other terms. The fourth term on the left-hand side is real
and does not contain any derivatives, so it is Hermitian, too.
The terms that are not obviously Hermitian are the imaginary
terms containing the magnetic vector potential (the second
and third terms on the left-hand side). If we introduce & =
(ieli/m)g'/ A;9; + iV, we need to prove

/ " (hy)dS = / (hoY" yds, B1)

where d.S is an infinitesimal surface element on the curved
surface S. It is known that the infinitesimal volume element
can be expressed in a curvilinear coordinate system as” dV =
VGdu'du?du®, where the three-dimensional metric tensor
Gi; is defined in Appendix A. We can now write

AdV)p—o = Jgdu'du*dv’ = dS = /gdu'du*. (B2)

The first term in A consists of a sum of four terms (two if
the curvilinear coordinate system is orthogonal). For example,
for (i,j) = (1,1), we can use the integration by parts and the
fact that the wave function vanishes at infinity:

ieh /du /a’u o* g A g W

u=¢*g11A1/g zeh/ 5 . W0
= - d * A 1
{ dvzalwdul m “ W(p g 1\/§|u =-
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—/walw*g“m\/@dul}

h
=—1 Yo1(¢"g" Ay /B)du' du?

h
_ Uwg“Alams ds

+ f wcﬁ*ﬁal(ﬁg”m)dﬂ. (B3)

Similar derivations can be carried out for the other three terms,
so we have in total for the first term in &

7
Ll [ gegii 3;vdS
m

_ leh[/wglea(pdS

+ e} VANS |.
f¢¢ ﬁ (\/gg ) ]

The second term on the right-hand side in Eq. (B4) is the
matrix element of —2i V3. After the partial cancellation with
i V5 in h we then have

(B4)

/¢*<hw>ds— —@/w —=0(/E A S
ieh .
~ [ yglagaygas = / (h$)" ydS,

(B5)

which proves the Hermiticity of the exact Hamiltonian.

2. Tight-binding Hamiltonian

The tight-binding Hamiltonian derived by using finite-
difference schemes does not have to be Hermitian, regardless
of the fact the exact Hamiltonian is Hermitian. However, it
is computationally advantageous to have Hermitian matrices
when one wants to solve the eigenvalue problem. Here, we will
show that the discretization schemes employed in Secs. IT A
and II B, along with some matrix transformations, allow for the
definition of Hermitian matrices. To obtain the tight-binding
Hamiltonian, we can rewrite Eq. (19) in the form of an
eigenvalue problem. We have

H, HO,l 0 0 7 v,
H o H, Hj, 0 v,
0 H2,l H2 0 ‘I’2
0 -+ 0 Hyy_ 1 HyJ LYy
Gy 0 - - 071 % A
0G 0 ---0 v, 0
|0 0G0 [|w |||
R : 0
0 .o ... 0 Gy | Lwy B

(B6)

where A =Hp_;¥_; and B=Hy n+1¥y41 are the open
boundary conditions. If we extend all the matrices to include
slices sufficiently far away from the curved region, we will
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eventually be able to use the Dirichlet boundary conditions
(analytically the wave function vanishes at infinity), so A = 0
and B = 0. We then can write the eigenvalue problem as

HY = EGV, (B7)

where the matrix definitions follow from Eq. (B6) with A = 0
and B = 0.

As mentioned in Sec. (I A), one of the consequences of
using the second-order discretization scheme is that the final
tight-binding Hamiltonian matrix G~'H will not be Hermitian
due to the existence of the curvilinear Laplacian. By rescaling
the Schrodinger equation [Eq. (8)] we eventually arrived at
a generalized eigenvalue problem given by Eq. (B7), where
H is the rescaled tight-binding Hamiltonian matrix. Using a
suitable matrix transformation we can obtain the eigenvalue
problem in a standard form

HG 'G¥ = EGGY, (G 'HG HGW = EGw,  (BY)
where the definition of G is obvious, since G = GG and
G is diagonal. In this transformed eigenvalue problem, the

Hamiltonian is given by G 'HG ' and the wave function
by GW. Since the matrix G is diagonal, the condition for
Hermiticity of this transformed Hamiltonian reduces to H =
H', where  represents the conjugate transpose. Furthermore,
this condition reduces to

L,=L]
H, =H Lo =L
7 o ntln L B9
{H’L"il = Hltil,n } Pn = P:rt ( )

i
Pn,n:i:l - Pn:tl,n

where we used definitions from Eq. (21).

If our curvilinear grid is uniform, such that A7 = const =
A; and A} = const = A,, the conditions in Eq. (B9) are
satisfied, as can be seen from Eqgs. (12a)—(14) and Egs. (17) and
(18). Therefore, the eigenvalue problem in Eq. (B8) contains a
Hermitian matrix. Since, in general, we prefer the possibility
of using a nonuniform curvilinear grid, with A} varying in
the longitudinal direction and A% in the transversal direction,
the rescaled Hamiltonian matrix H will not be Hermitian. In
that case we can introduce further matrix transformations, %7
defined by a diagonal block matrix F, with diagonal matrices
F, on its main diagonal given by

2
Fn(mvm) = ,
Jog+ath (ar+ar?)

where, as before, the index m on the left-hand side designates
matrix elements with limitsm € [1,M 4 1], while on the right-
hand side all the quantities are defined on the grid having limits
[0, M] and, therefore, we use m — 1 instead of m. We can now
construct a Hermitian eigenvalue problem by the following
matrix transformation in the second of Egs. (BS8):

(B10)

(F~'G'HFF'G HGW¥ = EF'Gv,
(G'F'HFG HGF ¥ = EGF !,
which can be rewritten as

H® = E®, (B11)
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where H=G '"F'HFG ' is a Hermitian matrix and & =
GF'w.

APPENDIX C: STABILIZED TRANSFER MATRIX
SOLUTION TO EQ. (19)

To solve Eq. (19) for the transmission/reflection coefficients
and electron density, we first rearrange it in the transfer matrix

form:
‘I’n _ ‘I’n—l
=)

where the transfer matrix T, is given by

0 1
Tn = [_H—l Hn’n_] H;L+1(E . Gn _ Hn)] . (Cz)

n,n+1

(ChH

For our case of linear (small temperature and bias) and ballistic
transport we solve this equation only for E = Ep, where Ep
is the Fermi level energy. Writing equations of the form given
by Eq. (C1) for every slice in our curved nanoribbon we can
connect the two slices at the interface with the left lead to the
two slices at the interface with the right lead

Wy v,
=Twn---T ,

where the domain bounded by slices 0 and N belongs to the
curved nanoribbon and the rest belongs to the left (smaller
than 0) and right (greater than N) leads.

We now express the wave functions on the left- and
right-hand sides of Eq. (C3) in terms of the reflection and
transmission coefficients multiplying forward- and backward-
propagating eigenfunctions of the leads. In the Landau gauge,
these eigenfunctions are proportional (up to the normalization
constant) to the product of plane waves along the lead and
transverse modes.%” The decomposition of the wave functions
in Eq. (C3)is possible because each ¥, (“slice wave function”)
is a superposition of forward and backward traveling waves,
with amplitudes determined by specific injection conditions
as well as any reflection and transmission that the wave
undergoes. For the wave incident at the left lead (with unit
amplitude) we can write

w_ 1 v t
o lenle) [ ]enle) e

(C3)

where
vt i
(e [w N e } (C5)
L/R*L/R *L/RML/R
with
+ + +
Y=ok Vel )

+ . + +
XL/R = d1ag[)LO’L/R, ...,AM’L/R],

where 1/1?1 s is the eigenfunction of the /-th transverse mode at
the (—1)-th (for L) and N-th (for R) slice, where + stands for
forward and — for backward propagation, while AfL s (similar
notation as for eigenfunctions) is a phase factor that represents
the difference in phase between eigenfunction values at two
neighboring slices (eigenfunctions are plane waves along the
lead). It should be noted that \Ilf/ g 1s a matrix of dimension
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(M + 1) x (M + 1), while ¥,, is a column vector of dimension
M+1) x1.

We can construct the matrices Ty z by using the transfer
matrix form [Eq. (C1)] within the leads (planar geometry) and
knowing that wave function values at two neighboring slices in
the leads differ only by a phase factor. We obtain the following
eigenvalue problems for the left and right leads

0 1 ﬁL
—Hy {Ho_ Hy | (EF-1—Hy) || 57,9},

+
=25 [Ai b ] , (C7)
I,LY L

0 1
—HyL v Hveon Hyly vy (EF - 1= Hyp)

Vi + Vi
X |:Ai L | = AR E V| (C8)
1RV IR LRV R

Here, for the purpose of keeping the same notation as in
Eq. (C1), slices 0 and 1 appear, but it should be considered
that they belong to the leads. In fact, since the leads are planar
and uniform and the magnetic field is also uniform, we could
have chosen any other combination of three consecutive slices
that belong to the same lead in Egs. (C7) and (C8). Matrices
Hy, Ho. 1 and Hy 41, Hy 41, n+141 follow from the matrices in
Eq. (21) in the zero-curvature limit and are given in earlier
papers on coherent transport in planar nanostructures.®®7?
Finally, we obtain the following matrix equation to be solved

[H:T;'TNMTOTLB]. (C9)

Straightforward solution of Eq. (C9) is not stable nu-
merically because of the existence of evanescent waves
(exponentially growing or decaying), whose numerical value
can become extremely small or large after only a few matrix
multiplications. We employ a stabilized iterative technique due
to Usuki et al.%® with two minor modifications: in the wave
function calculation and in allowing the left and right lead
Hamiltonians to differ (either through different geometry or
magnetic field flux). The fact that the lead Hamiltonians can
differ is made explicit in the above equations. The stabilized
iterative version of Eq. (C9) for the calculation of transmission
coefficients in the column vector t is

G+ UHD B )
|:Clj cy ] T, [Cf ¢/ }pm’

0 1 0 1
—1<j<N+1, (C10)
with T_; = T, and Ty, = T' and
pY =[ } 0. } (C1D)
P Py

By using the block matrix inversion to calculate T;l and
setting T2 =1, T = 0, where the position of the block
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matrix in Ty is denoted by the superscript [their value is not
important because they are multiplied by 0 in Eq. (C4)] we get

+3 477!
TN+l — [0 [‘IIRA'R] :| .

_wHwty+1! (C12)
1 -V} [Wirg]

The form of P and its block matrices is determined from the
condition that the form of the matrix on the left-hand side of
Eq. (C10) is satisfied. We obtain

‘ : . ‘ . .
P(]J) — _P(ZJ)T?C(IJ)’ P(ZJ) — [T?]C(zj) + T?Z] , (C13)
where different block matrices in T; are specified with the
row and column numbers in the superscript. Starting from the
initial conditions C(IO) =1and C(ZO) = 0 and solving Eq. (C10)
iteratively we obtain the transmission coefficients from

t=C"*, (C14)

In a similar way for the reflection coefficients we have

i+ D)y G+ )T 2
|:])(1J7L )D(ZJJF )] — [D(lj)D(Zj)]P(j)’ r = D(1N+ )’ (C15)
with the initial conditions D(lo) =0and D(Zo) =1

For the calculation of electron density we define a new
operator /), using the already calculated operator P4,

with the initial condition ®¥+) = P{"*" Now the electron
density originating from a single transverse mode / in the
injecting lead will be

n (nm) = |8 (m,D|*, n € [0,N],

(C17)

where the indices (n,m) represent longitudinal and transverse
grid positions, respectively.

1. Velocities of propagating states in the presence
of magnetic field

With A in place as in Eq. (26), we can calculate the
injected (evanescent and propagating) scattering states from
each lead by solving the eigenvalue problem of the transfer
matrix between the first two slices (n = —1,0) that belong to
the leads [here we make use of the fact that the scattering states
in the leads are plane waves in the longitudinal (transport)

direction]®®
. v U
eXP(lklAl)[ \Ilol} =Ty |: ‘I’ol j| ,

(C18)
0 1
TO = -1 -1 s
—H{\Ho_ Hy' (E-1— Ho)

where k; denotes the longitudinal component of the wave
vector. Leads are assumed planar, so the H matrices satisfy
the tight-binding 2D SE for a planar grid,®® into which
Eq. (19) reduces in the limit of zero curvature (g;; = g'* = 1).
Explanation of one technical point is needed here. In order
to obtain the correct forward- and backward-propagating
states from a numerical solution to Eq. (C18), it is important
to properly choose the reference level for A. This can be
done by centering the reference coordinate system to follow
the midline that “cuts” the lead in half in the transverse
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direction: In other words, we can choose the u?> = 0 grid line
such that it extends into the lead and splits it in two halves
symmetrically. On such a choice, the terms in Ain Eq. (26), due
to the different B components, will always be odd (linear in y)
or even (independent of y) functions of the transverse position,
which gives correct number and distribution of forward- and
backward-propagating states.”?

A correct evaluation of velocities is important since one
of our goals is to calculate the transmission through a curved
nanoribbon,

Ty = |20 /0, (C19)
where i is the outgoing mode index, j is the incoming mode
index, with v; and v; being the corresponding velocities, while
1;; is the matrix of transmission amplitudes, Eq. (C14).

It turns out that the relation v® :hkﬁl)/m*, where k(ll)
for a propagating mode of index / is calculated as explained
above, does not hold in the presence of a magnetic field.””88
To calculate the appropriate relationship we can use a tight-
binding Hamiltonian on a planar grid in a magnetic field. By
working in the |n,m) basis (n denotes slice index and m denotes
the transverse index in a slice)

= Yumln.m)
n,m

and defining the velocity operator in the x direction (which is
assumed longitudinal in the leads) as usual,

Xln,m) = nlAqln,m), (C20)

1
N o
0 lh[x 1,

we can define the velocity at the slice n as

'A' wan,u

5 cos (k(l)A ) 1(n,m)A1] .
(C22)

(c21)

v =L loy)) =

[sm (k(l) A )

Here, H is the Hamiltonian with the matrix representation
given by Eq. (B6) in flat metric and with a uniform grid
assumed in the leads, so #; is the longitudinal hopping
energy. We also make use of the fact that for a sufficiently
small grid size one can employ the translational operator of
the form V,11.m = VYnm exp(Eik, A1)} In the Peierls phase
approximation (weak magnetic field so a small A) Eq. (C22)
equals

2HA . €
i ] Wl sin{ [ = = A1) | A4}
(C23)

As A; depends only on the transverse coordinate [a conse-
quence of the Landau gauge, see (26)], the only dependence
of the current on the slice index n would occur through the
term |,,,|>. However, since a mode’s transversal profile is
constant inside a lead of constant width, and is modulated by a
plane wave in the longitudinal direction, its square amplitude
does not depend on n for any m and velocity (and current)
per mode is conserved between slices in the lead. Therefore,
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it is sufficient to evaluate the mode velocity at (n = —1) in
Egs. (C22) and (C23).

APPENDIX D: LOCAL LANDAU GAUGE

1. Local Landau gauge: Gauge transformations

The local Landau gauge transformation can be defined in a
formal mathematical language. In analogy with a misaligned
multiterminal structure,”” here we can derive very similar
equations with a slightly different interpretation: A local
Landau gauge in every lead becomes a local Landau gauge
in every slice, while the planar device region between the
leads, used to smoothly connect local Landau gauges in the
leads, becomes the curved regions between slices used to
smoothly connect local Landau gauges in slices. The slice
at the position of the reference coordinate system is numbered
0 (slice —1 belongs to the left lead), so we can write for the
gauge transformation between slices 0 and n

A, (o) = Ay (Ro) + V f, (Ro)

where X is a point in the reference coordinate system, which
is positioned at the slice 0. It is straightforward to derive the
function f, for an arbitrary rotation’’ and a translation needed
for the gauge transformation between the magnetic vector
potential at the Oth slice, Ao, and the magnetic vector potential
at nth slice, An. The gauge transformation then generated by
Jn in Eq. (D1) allows us to express An in the same form as
Ay but in a different coordinate system, translated and rotated
with respect to the reference coordinate system in which A,
1s calculated (see Fig. 2). For example, if AO = —Byoxo, then
An =-B ynxn

The gauge transformation given by f, should be turned on
only at the position of nth slice and turned off at the positions
of all other slices, whereas in the rest of the domain (curved
nanoribbon’s surface), it should be a smooth function. This
can be achieved by multiplying f,, by the following auxiliary
function:

D)

1, on slice n
&, = { smooth, between slices n—1 and n+1 (D2)
0, everywhere else .
Equation (D1) now becomes
An=AKo+V (Ef) = Ao+ Ve fu+ &V fr.  (D3)

At the slice n, V&, =0 and &, = 1 and we have a correct
gauge transformation, given by Eq. (D1) evaluated at the slice
n. In the domain bounded by slices 0 to n — 1 and n + 1
to N both the auxiliary function and its gradient are zero,
so there is no gauge transformation of the form generated
by f,. In the domain bounded by slices n — 1 to n 4+ 1 both
the auxiliary function and its gradient are nonzero and we
have some unavoidable gauge transformation, but we are not
interested in its exact form since we work on the discrete
grid only (space between discrete slices is not included in our
calculation). To generate the total gauge transformation we
calculate functions f; and §; for each slice i and sum them up

N
f=) &f
i=1

(D4)

195419-15



B. NOVAKOVIC, R. AKIS, AND I. KNEZEVIC

For a magnetic field of general direction we can write the
total magnetic vector potential in the following form:

Ap = AY + A) + A3, (D5)

where the magnetic vector potential components are each due
to a magnetic field component denoted by the superscript.
Therefore, for Eq (26) we have that Ao = By, YoZo, AS =

— By, x02p, and Af) = —B_,y0Xo. Since the curl operator is
linear we can use the principle of superposition and apply
the necessary gauge transformations independently to these
magnetic vector potential components. By applying the semi-
graphical and formal mathematical methods explained above,
we can decide which component needs a gauge transformation
and calculate it. -

In deriving Eq. (5) we used the fact that V- A = 0 in the
Landau gauge. If we use the separation into components ex-
plained in the previous paragraph, we see that the components
of A not requiring gauge transformations will not alter the fact
that V- A = 0. However, in general, we might have a field
component that requires a gauge transformation generated by
the function in Eq. (D4). If we designate the field component
requiring a gauge transformation by g we have

N
A=A+ Vf=A+Y VES)
i=0
. N
0+ LAiVE+EVS] (D6)
i=0
Therefore,
. . N
VAT =V A+ Y 2V VE+ iV + &V S
i=0
N
=Y [2Vfi - V& + £VE+EV i, (D7)
i=0

since V- A4 = 0, A? (as well as any other A?) being in the
Landau gauge. This is clearly nonzero for arbitrary point on
the surface of the curved nanoribbon, but since we work on a
discrete grid let us evaluate Eq. (D7) at the points belonging
to some slice n:

(VA = (V2 f)=(V-Vi), = [V
= (VA‘]—VA)(,) =0,

(A7 — AD)],
(D8)

where we used the properties of the function &; and the fact
that all Aq ’s are in the Landau gauge. So, at the points on the
grid we st111 have zero divergence, meaning that we can still
use Eq. (5) to calculate V3 on the grid.

2. Gauge transformation for Fig. 6

From Eq. (26) we see that

Ag = (0,0, — By,x0). (DY)

From our discussion in Sec. [ID we know that the slice 0
does not need a gauge transformation: We can directly use
Eq. (D9) evaluated at the slice 0, because the longitudinal axis
(the z¢ axis for the B,, component) is already tangential to
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the bisector at the point of its intersection with the slice 0,
and the coordinate system is positioned at that point. When
we transform the coordinates in Eq. (D9) to our toroidal
coordinates (0,¢,r) and evaluate the result at the position of
the slice 0 (¢9 = 0) we get

Ao(%) = By, (cost — 1),

where X, are points for which X, € {slice 0}.

Angle ¢ is measured from the slice 0, which is at the
interface with the left lead in Fig. 2, while angle 6 is measured
from the bisector toward the negative y, axis (where the y, axis
belongs to the reference coordinate system in Fig. 2). If the
Cartesian coordinate system is like the reference coordinate
system in Fig. 2, but positioned in the center of the torus (from
where R is measured), then the formulas relating the Cartesian
coordinates of the torus surface (x,y,z) to the curvilinear
coordinates (6,¢) are given by

(D10)
2(0)

x = — (R +rcosf)cos¢p, y = —rsind,

(D11)
z = (R + rcosf) sing,

where ¢ is measured from the negative x axis and 6 in the
clockwise direction looking along the current flow (from left
to right in Fig. 2).

The transformation to the toroidal coordinates can be done
by using Eq. (D11) and the following relations:

X=x+R+r, Yo=Yy, z20=2, (D12)
Xg = @sind) — fcoscosg + Bsinfcosg,
§o = —0Ocosh — #sing, (D13)

2o = ¢cosg + Fcoshsing — fsinfsing.

Since we know that after the gauge transformation the form
of A is the same, but expressed in a new coordinate system,
which is translated and rotated according to the slice position
(see Fig. 2 for the B, component), we conclude that

A (Z7) (D14)
Equation (D14) can be derived in a formal way by using
Eq. (D1). If we assume that for some slice n the coordinate
system (as shown in Fig. 2) is rotated by the angle «,

(clockwise here) and translated by the lengths a along the
Xo axis and b along the z( axis we obtain for f,

= ¢B,,r(cosd — 1), 0<i <N.

fu (Xo) = By, |: (x0z0 — bxo) sin’a, + azocos’a,

1/1 1
+§ (EZé - Exg

Now, since Ag =

—bzo + axo) sin2an:|. (D15)

— By, x0Zo, by using Eq. (D1) we obtain
A, (%) = — By, {& [(xo — a) cos®a,, — 3 (z9 — b) sin2a, |

(zo — b) sinzan]} .
(D16)

+Xo [% (xo — a) sin2¢, —

Using the transformations between coordinates (xg, yo,2o) and
(X,, s Yns Zn)

X9 = a + z,sina,, + x,Ccosq,,,

z0 = b + z,cosa,, — x,sinq,,, (D17)
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X9 = Z,sinc,, + X, cosc,,,
7o = Z,cosa, — X, sinq,,, (D18)
it can be shown that, from Eq. (D16), K,, = —By,x,2,. On the
other hand, by using the transformations between coordinates
(x0,¥0,20) and (6,¢,r) given by Eqgs. (D11) and (D12), along
with the transformations between unit vectors in Eq. (D13),
we obtain

Ai(Z") = $By,r(cosd — 1), 0<i <N, (D19)
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where we used the facts that o, = ¢,,, sing, = b/ (R +r), and
cosp, = (R+r —a)/(R+r). Equation (D19) is the same
as Eq. (D14), previously obtained in an easier way, with the
formal distinction in the argument of A;: the transformation to
the toroidal coordinates in Eq. (D14) is done from the rotated
and translated coordinate system (x;,y;,z;), since we know
A; (%) and Ay () have the same form, while in Eq. (D19) it
is from the reference coordinate system by formally deriving
the gauge transformation according to Eq. (D1).
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