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Adhesion and electronic structure of graphene on hexagonal boron nitride substrates

B. Sachs,1,* T. O. Wehling,1,† M. I. Katsnelson,2 and A. I. Lichtenstein1

1I. Institut für Theoretische Physik, Universität Hamburg, Jungiusstraße 9, D-20355 Hamburg, Germany
2Radboud University of Nijmegen, Institute for Molecules and Materials, Heijendaalseweg 135, NL-6525 AJ Nijmegen, The Netherlands

(Received 7 October 2011; published 3 November 2011)

We investigate the adsorption of graphene sheets on h-BN substrates by means of first-principles calculations
in the framework of adiabatic connection fluctuation-dissipation theory in the random-phase approximation.
We obtain adhesion energies for different crystallographic stacking configurations and show that the interlayer
bonding is due to long-range van der Waals forces. The interplay of elastic and adhesion energies is shown to
lead to stacking disorder and moiré structures. Band-structure calculations reveal substrate induced mass terms
in graphene, which change their sign with the stacking configuration. The dispersion, absolute band gaps, and
the real-space shape of the low-energy electronic states in the moiré structures are discussed. We find that the
absolute band gaps in the moiré structures are at least an order of magnitude smaller than the maximum local
values of the mass term. Our results are in agreement with recent scanning tunneling microscopy experiments.
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I. INTRODUCTION

The development of graphene-based nanoelectronic de-
vices, such as high-speed transistors, calls for high electron
mobilities. Currently, substrates beneath the graphene present
an important source of disorder including corrugation effects
of the graphene,1–4 charge traps,1,5–9 and dangling bonds.10,11

A promising candidate to become a new standard substrate ma-
terial is hexagonal boron nitride (h-BN). This BN polymorph is
remarkably similar to graphite: The alternating B and N atoms
form two-dimensional layers of strong sp2 bonds within a
honeycomb arrangement and a lattice constant which differs
by less than 2% from that of graphene. The h-BN sheets are
weakly bound by long-range adhesive forces at an equilibrium
distance of 3.3 Å.12 The electronic structure, however, exhibits
clear differences: the chemically inequivalent sublattices make
h-BN an insulator with a band gap of 6.0 eV.13 Recently,
the fabrication of graphene devices on h-BN with highly
improved electron mobilities and carrier inhomogeneities,
reaching a quality comparable to suspended graphene, has
been reported.14,15 Thereby, the graphene was found to keep
its zero band gap and to stack quasirandomly orientated on the
h-BN substrate.

In this paper, we analyze the adhesion behavior and the
electronic structure of graphene on h-BN from first principles.
The paper is organized as follows: In Sec. II, we show that
methods beyond standard density-functional theory (DFT) are
necessary to describe the weak nonlocal attraction between the
h-BN and the graphene layers. We calculate adhesion energies
using the random-phase approximation (RPA) within the
framework of the adiabatic connection fluctuation-dissipation
theorem (ACFDT). On the basis of elasticity calculations, we
discuss in Sec. III mechanisms to release the stress resulting
from the lattice mismatch and leading to the formation of moiré
superstructures. Section IV is devoted to the band structure and
energy gaps of graphene on h-BN. From DFT band-structure
calculations we derive a low-energy tight-binding description
of graphene on h-BN and find mass terms that change their
sign with the stacking configuration. This leads to an absolute
gap in the moiré structure that is at least an order of magnitude
smaller than the maximum local values of the mass term.

The real space shape of the low-energy states, particularly the
issue of sublattice polarization and the occurrence of so-called
snake states in regions where the mass term changes its sign,
is discussed in Sec. V. Finally, conclusions and an outlook are
given in Sec. VI.

II. ADHESION OF GRAPHENE ON h-BN

DFT is a successful approach to describe ground-state
properties of solids. However, widely used semilocal ap-
proximations for the exchange-correlation energy like the
local-density approximation (LDA) and generalized gradient
approximation (GGA)16,17 do not take long-range correlations
into account correctly. Thus they fail to reproduce van der
Waals attraction and the prediction of equilibrium geometries
of van der Waals bound layered systems, such as graphite or
h-BN, proves problematic with these methods.18,19 A highly
accurate means to describe van der Waals forces from first prin-
ciples is provided by the random-phase approximation to the
correlation energy.20,21 Evaluated in the ACFDT framework,
the RPA correlation energy reads22

ERPA
c =

∫ ∞

0

dω

2π
Tr{ln[1 − νχKS(iω)] + νχKS(iω)}, (1)

where χKS is the response function of the noninteracting
Kohn-Sham (KS) system and ν = ∑

i<j
e2

|�ri−�rj | is the electron-
electron interaction. Together with the total KS Hartree-Fock
energy, usually referred to as exact exchange energy EEXX,23

the total ground-state energy of the system reads E = EEXX +
ERPA

c . The ACFDT-RPA method has been proven accurate
to describe bulk properties of solids such as lattice constants
as well as adsorption energies.23 For layered van der Waals
bonded systems ACFDT-RPA yields a much more accurate
description of the structural properties than LDA and vdW
DFT methods.24,25

To simulate the graphene–h-BN system in this way, calcu-
lations were performed with the Vienna ab initio simulation
package (VASP)26 using plane-wave basis sets within the
projector-augmented wave (PAW) method.27,28 To this end,
a unit cell (four atoms) containing graphene on an h-BN layer
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FIG. 1. (Color online) (a) Top view of the calculated stacking con-
figurations for graphene on h-BN with the carbon atoms (yellow/light
grey), boron (red/dark grey) and nitrogen (green/grey). Between each
neighboring images the graphene lattice is shifted downward by half
a B-N bond. (b) Moiré structure with persisting lattice mismatch. A
lattice mismatch of 1.8% corresponds to a 55 × 55 moiré unit cell.
For clarity, a smaller moiré unit cell (13×13) is shown. (c) Adhesion
energy (Eads) landscape in the moiré pattern (color coded). (d) The
same for the local sublattice symmetry breaking �. +/− indicate the
sign of �.

with 25 Å of vacuum above was constructed. Six stacking
configurations were considered [Fig. 1(a)]: starting from
configuration I, the graphene sheet was translated downward
by half a B-N bond length in each step until the initial
configuration was reached again. The lattice constant was
chosen as 2.49 Å, referring to the LDA optimized lattice
constant of h-BN (a discussion of the lattice mismatch follows
below). χKS, ERPA

c , and EEXX were evaluated with the LDA
KS orbitals. In these computationally demanding simulations,
convergence of the results was reached at a kinetic energy
cutoff of 347 eV for the response function, a plane-wave cutoff
of 520 eV, and a mesh of 7 × 7 × 1 k points. Additionally,
standard LDA/GGA calculations were performed for the same
geometries with a 24 × 24 × 1 k-points grid and a kinetic
energy cutoff of 500 eV.

Figure 2 shows the RPA total energies per unit cell (relative
to the energy at large separation) for the different stacking con-
figurations as a function of the interlayer spacing d. The curves
show that, starting from the highest-energy configuration I,
the lowest-energy configuration V is approached stepwise.
Configurations I, II, and III exhibit total-energy minima at
interlayer spacings between 3.50 and 3.55 Å, whereat II
and III are energetically virtually equivalent with minima of
−65 meV; the minimum of configuration I is only slightly
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FIG. 2. (Color online) Total RPA energies per unit cell for the
stacking configurations I–VI as a function of the distance d between
the graphene and h-BN layer. Inset: RPA correlation energy (relative
to the correlation energy at large separation) of configuration V as
function of d−4 between 2.9 and 4.7 Å.

higher (−62 meV). Configuration V, where the carbon atoms
sit on top of a boron atom and in the middle of the BN hexagon,
is energetically most favorable with a minimum of −83 meV
and an equilibrium layer distance of 3.35 Å. Energetically
closest to V are IV (−71 meV) and VI (−70 meV), where
the nitrogen atom is also not covered by a C atom or a C-C
bond. The curves exhibit no additional energy barrier for
translation. For distances larger than 4 Å, all configurations
become energetically indistinguishable.

To get further insight to the nature of the attractive forces
between graphene and h-BN, we analyze the decay of the RPA
correlation energy ERPA

c with the interlayer spacing d (Fig. 2
inset). We find ERPA

c ∼ d−4. This is clearly different from an
exponential falloff as would be expected for local correlation
effects as included in LDA or GGA. It rather indicates bonding
of vdW type, which yields power-law decays18 ERPA

c ∼ d−p

with p = 4 for two-dimensional (2D) insulating systems.18,19

A comparison of the RPA calculations with the standard
LDA and GGA methods is given in Fig. 3. The LDA (see
also Ref. 29) yields a qualitatively correct equilibrium layer
separation but underestimates the RPA adhesion energy by
about 30%. The GGA, actually an improvement over the
LDA in many cases,16,17 exhibits an even more dramatic
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FIG. 3. (Color online) Total energies per unit cell of configuration
V from RPA, LDA, and GGA.
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underbinding with a weak minimum giving a negligible
adhesion energy of less than 6 meV/unit cell at an extremely
high equilibrium distance. The LDA and GGA curves nearly
coincide for distances larger than 4.5 Å and underestimate
the van der Waals interaction also in this asymptotic region.
The results clearly show that long-range correlations have to
be taken into account for an accurate description of the layer
attraction.

III. EXISTENCE OF MOIRÉ STRUCTURES

We now turn to the discussion of the consequences of the
lattice mismatch (1.8% in LDA and 1.9% in GGA) between
the graphene and the h-BN and address the question whether
stacking disorder or moiré superstructures should occur. To
this end, we estimate the total-energy difference of a structure
with stacking according to the minimum-energy configuration
V in the entire sample and a moiré structure with persisting
mismatch [Fig. 1(b)].

In the case of persisting mismatch in the system, a moiré
pattern with a large unit cell (55 × 55 for 1.8% mismatch) is
formed [Fig. 1(b)]. Here, out-of-plane corrugations resulting
from interlayer spacings varying between 3.35 Å (region V)
and 3.55 Å (region I) are negligible, since their amplitude
(0.2 Å) is small as compared to their wavelength (∼135 Å).
Hence we focus on in-plane deformations. It is visible from
Fig. 1(b) that our choice of stacking configurations I–VI
simulated in RPA covers the sample uniformly and gives a
sketch of the energy landscape [Fig. 1(c)]. Those parts of the
moiré pattern, where the nitrogen atoms are mainly beneath the
center of the carbon rings (regions IV–VI), are energetically
more favorable than regions I–III. For the moiré structure we
estimate the average adhesion energy per two carbon atoms
by the average over the adhesion energies of configurations
I–VI. We obtain an average adhesion energy of 69 meV/(two
C atoms). This is 14 meV/(two C atoms) less than the adhesion
energy of 83 meV/(two C atoms) in configuration V.

In the other case with the entire sample in configuration V,
the lattice mismatch must be overcome and strain energy has
to be brought up to force graphene and h-BN to have the same
lattice constant. Now, two situations have to be distinguished.
For graphene on a h-BN crystal as in Refs. 14,30,31 and 32,
the uppermost h-BN layer will likely keep its lattice constant at
the bulk value. To stretch the graphene on the lattice constant
of h-BN, 40 meV/(two C atoms) of strain energy have to be
overcome. Therefore the strain energy overcompensates the
adhesion energy gain of 14 meV/(two C atoms) by far when
forcing the entire sample to configuration V. Hence the lattice
mismatch between the graphene and the h-BN will persist
and strain will be released by realizing different stacking
configurations as in the moiré structure depicted in Fig. 1.
This explains why multiple stacking configurations have been
realized in the experiment of Ref. 14 and also explains the
recent observations of moiré patterns in scanning tunneling
microscopy (STM) experiments.30,32

Second, one can conceive a situation where graphene
is adsorbed on a free-standing monolayer of h-BN. In
this case, the elastic properties of h-BN have to be ac-
counted for since, then, a compression of h-BN is possible.
Our first-principles calculations (see the Appendix) yield

two-dimensional Lamé parameters and Young’s moduli of
λ = 59 N/m, μ = 125 N/m, Yh-BN,2D = 309 N/m for single
h-BN sheets. Compared to graphene, where YG,2D ≈ 340 N/m
(YG,3D ≈ 1.0 TPa),33 the stiffness of h-BN is on the same order
(about 10% smaller) and thus remarkably high. For graphene
on free-standing h-BN, we find that a composition of stretched
graphene and compressed h-BN is energetically most favorable
and obtain a common optimized lattice constant of 2.467 Å
(LDA) with the total strain energy being 18 meV/(two C
atoms). Hence this strain energy is very close to the adhesion
energy gain of 14 meV/(two C atoms). This might lead to an
interesting competition of these two energy contributions and
one might expect that systems with graphene on free-standing
h-BN are highly sensitive to the experimental environment.

IV. BAND STRUCTURE AND ENERGY GAPS

We now investigate the band structure of graphene–h-BN
hybrid structures and study the changes upon formation of a
moiré structure. To this end, we calculated the band structure
of all geometries depicted in Fig. 1(a) within the LDA. For
configurations II, IV, and VI we detect a small shift of the
Dirac point in the hexagonal Brillouin zone away from the
K to the M point (IV, VI) and in the opposite direction (II).
Mapping the problem on a nearest-neighbor tight-binding (TB)
model, we see that a description of graphene in configurations
II, IV, and VI requires two different hopping parameters, t and
t̃ , as the threefold symmetry of the graphene nearest-neighbor
bonds is broken—analogous to the case of uniaxially strained
graphene.3,4 Fits of the TB model to the DFT results yield
constant t = 2.45 eV in all regions and t̃ �= t in regions II, IV,
and VI (Table I). In agreement with Refs. 29 and 34, we extract
finite band gaps � in all regions varying between 7 and 57 meV.
However, we find that these gaps have different signs (Table I),
where we use the convention that � > 0 corresponds to states
close to valence-band maximum being entirely localized in
sublattice B, while � < 0 corresponds to states at valence-
band maximum being localized in sublattice A.

In a moiré structure like in Fig. 1(d) this leads to a landscape
of local sublattice symmetry breaking � with changing signs
[Fig. 1(d), Table I]. We note that the local sublattice symmetry
breaking does not necessarily lead to local spectral gaps in the
local density of states (LDOS).

To gain understanding of the effect of the modulated gap
landscape in the moiré structure on graphene electrons, we
consider the following tight-binding model:

H = −t
∑
〈i,j〉

(a†
i bj + H.c.) + 1

2

∑
i

�i(a
†
i ai − b

†
i bi) (2)

TABLE I. Band gap � and ratio of the two inequivalent nearest-
neighbor hopping parameters t̃/t with t = 2.45 eV in structures with
broken trigonal symmetry. The average band gap is −4 meV.

I II III IV V VI

� (meV) +57 +7 −34 −25 −47 +14
1 − t̃/t 0 0.010 0 −0.002 0 −0.010
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FIG. 4. (Color online) (a) Bands close to the Fermi level of a 20 × 20 moiré cell of entirely ungapped graphene (red line) and graphene with
sinusoidally modulated gap (average gap � �G=0 = 0) with realistic amplitudes (green dashed line) and increased amplitudes A, B (blue/purple
dashed lines). No band gap opens. For visualization purposes, the Dirac point has been shifted back to the K point. (b) Bands below the Fermi
level at the Brillouin-zone boundary (folded to the M point) for ungapped graphene (red line), realistic amplitudes (green dashed line), and
increased amplitudes (blue dashed line): minigaps open for finite amplitudes.

with t = 2.45 eV the nearest-neighbor hopping, a
†
i (b†i ) the

creation operators of an electron on sublattice A (B), and �i

the local mass term. The lattice vectors of the moiré unit cell
of size n × n are defined as �an1,2 = n�a1,2 with �a1 = a(1,0)
and �a2 = a(−1/2,

√
3/2) being the simple graphene unit-cell

vectors and a the graphene lattice constant. We denote the local
mass term by �i , where i = (l,m) describes the position within
the moiré cell. �i is periodic with the moiré cell. Transforming
the �i to the reciprocal space, we find that the zeroth-order
Fourier component

� �G=0 = 1

N

∑
i

�i (3)

is given by the average of all local gaps in the moiré cell. In
addition to � �G=0, the effect of the first-order components of
� �G with the smallest possible �G �= 0 on the band structure
is discussed in the following. To this end, we consider a
sinusoidally modulated gap term,

�i = A sin(2πl/n + �1) + B sin(2πm/n + �2) + C. (4)

Here, A, B, C, and �1,2 denote constants. Taking the local mass
terms obtained from DFT in regions I–VI, realistic parameters
A = 18.6 meV, B = 42.0 meV, �1 = 1.884, and �2 = 1.531
can be obtained from a fit.

First, we concentrate on the question of whether or not
the modulated gap landscape opens an absolute band gap.
In Fig. 4(a) the two energy bands closest to the Fermi level
for a 20 × 20 graphene supercell are depicted with a gap
landscape as given by Eq. (4) and different amplitudes A,
B. The average gap is set to zero (� �G=0 = C = 0). The
green dashed line shows the case of a gap landscape with
realistic amplitudes A, B as given above. We see that the bands
nearly coincide with the bands obtained for entirely ungapped
graphene (�i = 0, red solid line) and most importantly, no
band gap opens. This holds even for unrealistically large values
of the modulation amplitudes on the order of the hopping t

[also see Fig. 4(a), blue and purple dashed lines]. For large
modulation amplitudes, another important feature becomes

visible: a renormalization of the Fermi velocity vF = 1
h̄

∂E
∂k

.
For A, B being 100 times larger than the realistic values, vF

drops down by about 50% (purple dashed line). For a realistic
gap landscape, though, this effect is too small to be detected
in experiments—in contrast, e.g., to the case of twisted bilayer
graphene.35

So, near the Fermi level, the energy bands of graphene
are only weakly affected by a modulated gap landscape
with realistic parameters and zero average gap—no band gap
opens and the amplitudes are too low to renormalize the
Fermi velocity measurably. At the Brillouin-zone boundary
[Fig. 4(b)], however, a difference to the perfect isolated
graphene becomes apparent: here, minigaps open similar to
the case of graphene on Ir(111) moirés.36,37

Now we discuss the scenario of a nonzero average gap, i.e.,
the case where the zeroth Fourier component is nonvanishing
(� �G=0 = C �= 0). Figure 5 shows the bands near the Fermi
level of a realistic gap landscape with C = 5 meV (green
dashed line) and C = 15 meV (blue dashed line). Here, an
absolute band gap on the order of C opens that remains stable
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FIG. 5. (Color online) Bands close to the Fermi level of a 20 ×
20 moiré cell with a sinusoidally modulated gap with realistic ampli-
tudes and nonzero average gap � �G=0 = C. Band gaps as large as C

open.
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FIG. 6. (Color online) 20 × 20 graphene supercell (red/grey:
sublattice A; black: sublattice B) with sinusoidally modulated gap
terms with realistic amplitudes of A = 18.6 meV, B = 42.0 meV,
and vanishing average gap (� �G=0 = 0). The size of the dots depicts
the contribution of each atom to states close to the Dirac point in an
infinitesimal energy window around the valence-band maximum (a)
and the conduction-band minimum (b).

upon adding � �G �=0 terms of realistic amplitudes. Similar as
for the Fermi velocity discussed in Fig. 4(a), our calculations
showed that the band gap reduces measurably (but does not
entirely close) when the modulation amplitude is increased
by orders of magnitude. However, in the realistic scenario of
graphene on h-BN, Fig. 5 clearly shows that the only quantity
determining the absolute band gap is the zeroth Fourier
component � �G=0. Hence the average gap � �G=0 corresponds
to the absolute spectral gap in the moiré structure, while
amplitude and periodicity of spatially oscillating contributions
to � renormalize the Fermi velocity. For the structure of
Fig. 1(b) we find �̄ ≈ −4 meV. Therefore we expect an
absolute gap that is at least an order of magnitude smaller
than the maximum local values of |�|. This is well in line
with the absence of a gap being reported in transport14 and
STM experiments.30 Our TB simulations further show that
velocity renormalizations are below 2% for the moiré structure
of Fig. 1(b).

V. REAL-SPACE SHAPE OF LOW-ENERGY STATES

To understand how spatially modulated gap terms (� �G�=0)
affect the graphene electrons and how they manifest, for
instance, in local probe experiments, we visualize the states
close to the Fermi level in real space. Figures 6–8 illustrate a
20 × 20 graphene supercell with sublattice A atoms as dots in
black and sublattice B atoms as dots in red/grey color. Here,
the size of the dots illustrates the contribution of each atom
to the states below the Fermi level [Figs. 6(a), 7(a), and 8(a)]
and above [Figs. 6(b), 7(b), and 8(b)] in close proximity to the
Dirac point.

FIG. 7. (Color online) The same as Fig. 6 for a 20 × 20 moiré
cell with a sinusoidally modulated gap with amplitudes Ã = 25A,
B̃ = 25B, and zero average gap (� �G=0 = 0). So-called snake states
occur.

FIG. 8. (Color online) The same as Fig. 6 for a 20 × 20 cell of
sinusoidally gapped graphene with realistic amplitudes A, B and a
finite average gap (here � �G=0 = 50 meV).

Figure 6 shows the case of realistic modulation ampli-
tudes and vanishing average gap � �G=0 = 0. In this case,
the amplitudes of low-energy states are equally distributed
over both sublattices throughout the entire moiré cell as
in ungapped graphene. There is no clear enhancement or
decrease of probability density in any region of the moiré
cell. However, increasing the gap modulation amplitude
by a factor of 25 (Fig. 7) induces a localization of the
low-energy states in regions where the local gap |�i | is
small—so-called snake states occur, but no absolute band gap
opens. Apparently, the states are equally localized in both
sublattices.

Whether or not snake states occur depends on the ratio of the
modulation amplitudes A,B to the energy En ≈ 2πh̄vF /(na)
related to the moiré periodicity na. 20 × 20 and 50 × 50 moiré
cells lead to En ≈ 0.7 and 0.3 eV, respectively. In the case
of large modulation amplitudes A,B > En (corresponding to
Fig. 7), the wave functions near the Dirac point clearly have the
shape of snake states—in contrast to the case of A,B 
 En,
where the low-energy LDOS is almost homogeneous in the
entire moiré cell (Fig. 6). The situation of Fig. 6 is well in line
with no gap or LDOS inhomogeneities being detected in the
local probe experiments of Ref. 30. It is, however, important
to note that a moiré periodicity of 100a, which might be
reached by external strain or twisting, already corresponds
to an intermediate case of A, B, and En being on the same
order magnitude.

The shape of the low-energy states again changes for a
system with a nonzero average gap � �G=0 ≈ A,B on the
order of the modulation amplitudes. In Fig. 8 the case of a
realistically modulated gap landscape and � �G=0 = +50 meV
is depicted: the states are homogeneously distributed in space
fully but sublattice polarized—with the state below Fermi level
almost entirely localized in sublattice B [Fig. 8(a)] and vice
versa [Fig. 8(b)]. Our DFT calculations yield the case of a much
smaller average gap on the order of few meV (� �G=0 
 A,B).
In that case, two situations have to be distinguished: First, in
the case of � �G=0 
 A,B 
 En sublattice polarized states
as in Fig. 8 should be detectable in STM experiments, if
the LDOS is measured inside an energies range E < � �G=0,
which is sufficiently close around the Dirac point. Otherwise
low-energy states without any sublattice polarization as shown
in Fig. 6 will be detected. This situation would be again in
line with the STM experiments of Ref. 30. Differently,
in the case of � �G=0 
 En 
 A,B, there is generally no
sublattice polarization detectable in the low-energy LDOS but
snake states similar to Fig. 7 occur.
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VI. CONCLUSIONS

In summary, we have calculated accurate adhesion energies
for graphene–h-BN systems by means of ACFDT-RPA. A
comparison of the strain energies with the adhesion energy
differences suggests that a lattice mismatch between h-BN and
graphene persists in experiments like Refs. 14,30 and 31. This
explains the experimental observation of different stackings,
moiré patterns, and stacking disorder. Our band-structure
calculations show that the gap landscape in the moiré structure
exhibits mass terms with changing sign and a small average
gap.

The interplay of constant and spatially oscillating gap terms
is decisive for determining whether or not phenomena like
Anderson localization can occur38—particularly in experi-
ments where graphene is very close to the charge neutrality
point.31 Gaps with spatially changing sign also control the
transport properties of systems like (Hg,Cd)Te quantum well
structures,39 which can be tuned into a topological insulator.
While we find that structures like those in Refs. 14,30 and 31
are likely not in a “topological insulator regime,” where charge
transport would occur through protected edge states, it remains
to be seen whether this might be realized in structures like
externally strained graphene on free-standing h-BN, where
considerably larger moiré periodicities might be realized.
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APPENDIX: ELASTIC PROPERTIES OF h-BN SHEETS

Here, we now discuss the calculations of the elastic
constants of h-BN (the elastic properties of graphene have
been widely investigated in experiment33,40 and theory41). The
isotropic Young’s modulus and Lamé parameters of single h-
BN sheets were obtained from DFT calculations. These elastic
constants are determined by strong in-plane chemical bonds
and well described within the LDA/GGA.42 For single h-BN
sheets, the two-dimensional Young’s modulus is defined by

Y2D = 1

A0

∂2Es

∂ε2

∣∣∣
ε=0

, (A1)

where ε is the axial strain, Es the total strain energy, and
A0 is the equilibrium surface. The strain energies of a h-BN
sheet were evaluated with uniaxial strains between −8% (com-
pression) and 8% (tension). We obtain the two-dimensional
Lamé parameters and Young’s moduli of λ = 59 N/m, μ =
125 N/m, and Yh-BN,2D = 309 N/m within LDA and λ =
54 N/m, μ = 123 N/m, Yh-BN,2D = 300 N/m within GGA.
The Yh-BN,2D correspond to three-dimensional Young’s mod-
uli of Yh-BN,3D = 0.94 TPa (LDA) and Yh-BN,3D = 0.91 TPa
(GGA), assuming an interlayer separation of 3.3 Å.12 Our full
potential PAW calculations yield about 10% higher elastic
constants Yh-BN,2D and μ than calculations using Gaussian
basis sets.43 The results are in agreement with the experiment,
where Yh-BN,2D,exp ≈ 220 − 510N/m was obtained for few-
layer h-BN.44
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