PHYSICAL REVIEW B 84, 195413 (2011)

Band gap in graphene induced by vacuum fluctuations
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The electrons in undoped graphene behave as massless Dirac fermions. Therefore, graphene can serve
as a unique condensed-matter laboratory for the study of various relativistic effects, including quantum
electrodynamics (QED) phenomena. Although theoretical models describing electronic properties of graphene
have been elaborated in details, the QED effects were usually neglected. In this paper, we demonstrate theoretically
that QED can drastically modify electronic properties of graphene. We predict the following QED effect: the
opening of the band gap in a graphene monolayer placed inside a planar microcavity filled with an optically
active media. We show that this phenomenon occurs due to the vacuum fluctuations of the electromagnetic field
and is similar to such a well-known phenomenon as a vacuum-induced splitting of atomic levels (the Lamb shift).
We estimate the characteristic value of the band gap and find that it can sufficiently exceed the value of the Lamb

shift.
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I. INTRODUCTION

Graphene, a monolayer of carbon atoms, possesses un-
usual physical properties that make it attractive for various
applications.'”> Usually treated as a platform for the novel
high-speed electronics,*> graphene is of great interest from the
point of view of the fundamental physics as well. Indeed, the
low-energy electron excitations in graphene are massless Dirac
fermions with the linear energy spectrum &(k) = hivy|k|.5”
That makes graphene a condensed-matter playground for the
study of various relativistic quantum phenomena such as
the Klein tunneling'®!" and the Casimir effect.'>'* Up to
now, most of graphene-related studies were focused on its
unusual transport properties, and quantum electrodynamics
(QED) effects arising from interaction of electrons in graphene
with a quantized electromagnetic field were neglected.” This
paper is aimed to fill partially this gap in the theory. We
show that, due to the giant Fermi velocity of electrons in
graphene, vy & ¢/300, QED effects are pronounced and can
lead to qualitative modifications of the spectrum of elementary
excitations.

The linear energy spectrum of electrons in graphene comes
from its specific honeycomb lattice structure, which makes
the band gap between the valence and conductivity bands to
be exactly zero.” There is the long-standing problem of the
opening of the band gap. The appearance of a controllable
band gap is required for various electronical and optical
applications of graphene.''>!¢ Aside from this, it is interesting
from the fundamental viewpoint to analyze how massless
Dirac fermions can acquire a mass. This question is relevant,
particularly, in the context of the observation of Majorana
fermions in condensed-matter systems.!” Several mechanisms
of the band-gap opening in monolayer graphene have been
proposed. Among them are breaking of the symmetry between
two sublattices of the honeycomb lattice of graphene,'®! the
spin-orbit coupling,?’ and the many-body interactions leading
to the excitonic instability.?!??

Recently, one of us put forward the proposal of opening
the band gap by illuminating graphene with a circularly
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polarized light.>? In this case, the gap in the spectrum of
elementary electron excitations appears due to the formation
of composite electron-photon states, which are similar to
polaritons in ionic crystals and quantum microcavities.?*~>’
It should be noted that, within the framework of QED, the
electron-photon interaction can be observed even if “real”
photons are absent and electrons interact only with vacuum
fluctuations of electromagnetic field due to emitting and
reabsorbing virtual photons.?® Therefore, one can expect that
the photon-induced splitting of valence and conductivity bands
in graphene®® will take place due to the vacuum fluctuations
even in the absence of an external field pumping. This QED
effect is similar to the well-known Lamb shift in the atomic
physics, i.e., the vacuum-induced splitting of the states 2s,»
and 2p, of a hydrogen atom with the characteristic splitting
energy A ~ 4 ueV. The Lamb shift, discovered experimentally
by Lamb and Retherford”® and theoretically explained by
Bethe®® more than 60 years ago, is extremely important for
understanding and verification of basic principles of QED.
That is why it attracts the undivided attention of the physics
community up to now.?!

Since clockwise and counterclockwise polarized pho-
tons shift electron levels in graphene in mutually opposite
directions,” the band-gap opening needs breaking of the
symmetry between virtual photons with different circular
polarizations. This can be achieved by placing a graphene
monolayer inside a planar cavity filled with an optically active
material (see Fig. 1). As it will be shown below, in this case,
the vacuum fluctuations lead to the opening of the band gap
in graphene even in the absence of an external circularly
polarized optical pumping. It should be noted that the QED
mass renormalization in an optically active media has been
considered, but, surprisingly, the most interesting case of
massless Dirac fermions was not analyzed before.

II. THE MODEL

Let us consider the problem of interaction between a single
electron in graphene and a single photon mode of a planar
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microcavity. Generally, electron states in graphene near the
Fermi energy are described by the eight-component wave
function, which accounts for two elementary sublattices of
graphene, two electron valleys, and two orientations of electron
spin.” In what follows, intervalley scattering processes and
spin-flip effects will be beyond consideration, which reduces
the number of necessary components of wave function to two.

The single-particle Hamiltonian of electron in graphene
coupled to the cavity mode reads (see the Appendix for details
of the derivation) as

H = ﬂﬁeld + ﬂk + Hint ) ()

~ 2h 1
Pt = —
" eor GOLS ; |:‘ /W4 q

is the Hamiltonian of electron-photon interaction in the cavity.
For definiteness, we assume the graphene sheet to be placed
in the center of the cavity. In Eqgs. (2)-(4), the subscript
indices =+ correspond to the photon modes with clockwise and
counterclockwise circular polarizations, k = e, k, + ek, and
q = e,y + e,q, denote in-plane electron and photon wave
vectors, respectively, e, , are unit vectors directed along the
X,y axes, e is the electron charge, € is the vacuum permittivity,
L is the distance between two mirrors of the planar cavity
(the cavity length), S is the area of graphene sample, w4 o
are the eigenfrequencies of clockwise and counterclockwise
circularly polarized photons, and d. 4 and &Lq are photonic
annihilation and creation operators. The Pauli vector operator
¢ acts in the space of two orthogonal electron states |+), corre-
sponding to the two sublattices of graphene in accordance with
the following rules: 6,|+) = #£|+) and 6*|F) = |+£), where
6% = (6, i6y)/2. Thus, it corresponds to the pseudospin of
electron.

FIG. 1. (Color online) Sketch of the system. A graphene sam-
ple placed inside a planar cavity filled with an optically active
media. The arrows with signs + and — correspond to clock-
wise and counterclockwise circularly polarized virtual photons,
respectively, which are emitted and reabsorbed by electrons in
graphene.
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where
Hiera = Y hey,,a}  aq,. 2)
q.+
is the photonic part of the Hamiltonian written in the basis of
circularly polarized states,
Hy =hvpé -k ©)

is the electron Hamiltonian near the point where the valence
and conductivity bands of graphene touch each other (the Dirac
point), and

6al e+ a+a,qe"qf)} )
w—q

Eigenstates of the electron Hamiltonian (3) are given by the
expression’

eikr
V2§
where 6 = arctan(k,/k,) and the signs & correspond to
electron states in the conductivity and valence bands of
graphene (the upper and lower Dirac cones, respectively).
The corresponding eigenenergies are ef)k = thvp|k|. The
eigenstates of the photon Hamiltonian (2) can be written
as |Nigq), where N 4 are the photon occupation numbers
for photons with different circular polarizations (&) and
wave vectors (. Then, eigenstates of the full electron-photon
Hamiltonian (1) can be decomposed in the basis of the
orthogonal electron-photon states

(e 4) £ W2 —)), ®)

Ik, = N N_) =k, %) ® |[N1 q) ® [N_q) (6)
with the energies

Eikn, . = Hvplk| +ho  Neg+ho_gN_g. ()
In order to find eigenstates and eigenenergies of the full Hamil-
tonian (1), we will use the perturbation theory, considering the
interaction Hamiltonian (4) as a perturbation. To calculate the
energy corrections in the lowest order of the perturbation, one
needs to find the eigenvalues of the 2 x 2 matrix H" having
matrix elements 7' (k) = (k,s,0,0/Hn k,s",0,0). However,
itis easy to see that all matrix elements of this type are zero, and
one needs to use the second order of the perturbation theory.
Physically, we need to account for the following processes:
the electron with a wave vector k emits a virtual photon with
a momentum q and then reabsorbs it. Note that, in such a
process, the momentum of the electron in the initial state k
should be equal to its momentum in the final state, but the
value of the index s can be changed: the electron can remain in
the same Dirac cone or move from one Dirac cone to another
one. The last process becomes efficient around the k = 0 point,
where the energies of the Dirac cones are close to each other,
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which can lead to the lifting of the degeneracy as we show
below. Therefore, to calculate the spectrum of the Hamiltonian
(1), we need to use the perturbation theory for degenerate
states.

Let us briefly remind how the second-order corrections can
be accounted for within the framework of perturbation theory
for degenerate states (the details can be found, e.g., in Ref. 33).
Imagine that we have a set of states {m} that are close in
energy to each other (this means that the energy distances
|8f,?) — ef,?,) | between them are comparable or smaller relative
to a characteristic energy of the perturbation). The perturbation
does not couple any states m and m’ directly (otherwise,
the standard first-order perturbation theory is applicable), but
couples them to a set of the states {/}, the energies of which
lie far from energies of the states {m} (this means that the
energy distances |¢¥ — 81(0) | are large as compared with the
characteristic energy of the perturbation). In our case, the set
{m} consists of the two states {|k, +,0,0), |k, —,0,0)}, and
the set {/} corresponds to the states |k', &= ,Ny , q.N—nq)
with Ni , q + N_, q # 0. Then, energies of the perturbed
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Hamiltonian

H=HO +H®, ()

where H© is the matrix of unperturbed Hamiltonian (3)
written in the subspace of states {m}, and the matrix elements
of the Hamiltonian H® can be found as

~ 1 1 1
H(Z) ;= =
mm 2213 8%—£?+89n,—8?
x (| Finel) (1| FHinem”) )

where the summation goes over all set of the states {/}. In the
case we consider, the Hamiltonian Hl((z) for a given electron
wave vector K can be written as the 2 x 2 matrix

H(z) thk +ﬁ:+ ﬁk_ (10)
Hit —hvpk +Hy )

where the vacuum-fluctuation corrections Hlf +, H,~, and

= _ Ty ;
{m} states can be obtained by diagonalization of the matrix Hy~ = (Hy")" are given by
|
ﬁ++_ eUF Z/ C())\’q—UF|k| (11)
k dreoL L oral@rg — v KD? — V7 1k — qP]
2.2
~ v v k
= FZ/d2q w"ﬁf"z . (12)
dreol = w;, gql(@5,q + vFIK])* — Vi K —q]7]
o~ e*v? o7 o — vi(kP* + [k — q?)
o =——" ZA/qu 2 /\2,q Fz 2_ .2 2]’ 13)
AmegL — [(@.q + vrlkD? — vilk — qI?] - [(@5q — vFKD? — vilk — qI?]
[
and the symbol A = = corresponds to the two different circular written as
polarizations of virtual photons. The physical meaning of . _
the terms in the Hamlltonlan (10) is the following. The eE(0) = ’H(J{ t4 |'HJ . (15)

matrix element H corresponds to the process: an electron
in the upper Dlrac cone emits a virtual photon and then
reabsorbs this photon while returning to the same cone. The
matrix element H, ~ corresponds to the same process for the
electron in the lower Dirac cone. The off-diagonal matrix
elements HJr H correspond to the processes in which
the electron after reabsorption of the photon changes the Dirac
cone. Diagrammatic representation of these terms is shown in
Fig. 2. Diagonalization of the Hamiltonian (10) gives the
renormalized energy spectrum of the elementary excitations in
graphene,

eX(k) = Hi T2+ H )2

+ O /2= F 12+ hop K2 + (L
(14)

Taking into account that at k = 0 we have ﬁl'f T = ﬁ; ~, the
renormalized electron energy (14) at the Dirac point can be

It follows from Eq. (15) that the vacuum fluctuations of
electromagnetic field in the cavity can open the band gap
between the conductivity and valence bands of graphene at

Aq A q
j—:[a_++ //\\ j?__ //\\
k k
+,k s, k-g +,k -,k s, k-q =,k
A q Asd
ﬁ‘*“ //\\ ‘7.-_7__*‘ ‘//\\J
k k
+,k s, k-q -k -,k s, k-q +, k

FIG. 2. Diagrammatic representation of the terms entering in the
Hamiltonian (10). The solid lines correspond to the electrons and the
dashed lines correspond to the virtual photons. Index A = =+ denotes
the two different circular polarizations of the photons, and the index
s = = denotes the two different Dirac cones. Summation should be
performed over both the indices A and s.
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the Dirac point, which is
e, = 2|HII. (16)

It should be stressed that, in the absence of an optically active
media, the eigenfrequencies of clockwise and counterclock-
wise circularly polarized photons are equal, wy 4 = w_ 4.
According to Eq. (13), in this case, the term ﬁar ~ is zero
and the band gap (16) vanishes. Therefore, for the band-gap
opening, one needs to fill the cavity by an optically active
media, which splits modes of virtual photons with different
circular polarizations. In this case, the photonic dispersions

read as
wiq=cty/q*+q2, a7

where g, = mn/L is the quantized z component of photon
wave vector in the cavity, n is the number of photon
mode, cx = c/ny are the speeds of light with clockwise
and counterclockwise circular polarizations, and ny are
the refractive indices for clockwise and counterclockwise
polarized light, which are different in the optically active
median, #n_.

In the discussion above, we restricted our analysis to
the single-mode approximation, accounting for the coupling
of the electron in graphene with only one photon mode.
Going beyond this approximation, one needs to perform the
summation over all modes n in Eqs. (11)-(13). Keeping in
mind that photon modes with even numbers n correspond to
the zero-field intensity in the center of the cavity and, thus, do
not interact with the graphene sheet, one gets the following
expression for the band gap:

ZZI_%/%In[I—i-

n=0 A=%

3

g L*(1 — B})
72(2n + 1)2

2

e
fs = 2mwegL
(13)

where Bi = vp/cy, qo ~ 1/ap is the cutoff parameter of
integration in Eq. (13) with ag being the lattice constant of
graphene.

III. RESULTS AND DISCUSSION

It is seen that Eq. (18) contains the summation over
photon polarizations A = =£. As expected, the contributions of
clockwise and counterclockwise polarized photons in the band
gap (18) have opposite signs, and the band gap vanishes for
B+ = B_ and appears only in the presence of an optically active
media with 8, # B_. For instance, the cavity can be filled with
a magnetogyrotropic media based on ferrite garnets, which
possess the giant difference between the velocities of light
with different circular polarizations.>* The effect becomes
even more pronounced if the cavity is filled with an active
media with the circular dichroism.?® In this case, one of
the two circularly polarized photon modes in the cavity is
suppressed and its contribution to the band gap (18) can be
neglected. As a result, the summation over A in Eq. (18) can
be omitted, which leads to the drastic increasing of the band
gap.

Figure 3(a) shows the dependence of the band gap &, on
the cavity length L for the cavity filled by such a media with
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FIG. 3. (Color online) (a) The band gap in graphene induced by
vacuum fluctuations, calculated by accounting different numbers of
cavity modes n. (b) Energy spectrum of free electrons in graphene
(dashed lines) and electrons dressed by virtual photons (solid lines).
The calculation is performed for the cavity length L = 300 nm, and
the number of accounted cavity modes is n = 100.

Cavity length, L (um)

the circular dichroism. In the physically relevant region of
the cavity lengths [the white area in Fig. 3(a)], the band gap
calculated in the single-mode approximation (n = 1) is of
several eV, which is comparable with the Lamb shift.?” The
summation over higher modes increases this value by one to
two orders of magnitude: for 100 modes, the value of the band
gap increases to 50-100 peV, while the summation over all
modes gives value of about 200 ueV. However, the summation
over infinite number of modes overestimates the band gap.
Indeed, if the characteristic photon wavelength 27 /g, = 2L /n
is comparable to the interatomic distance, the macroscopic
description of an optically active media becomes irrelevant.
Therefore, the band gap can be reasonably estimated to be
about tens of eV, which is one order of magnitude bigger
than the Lamb shift.”

The energy spectrum of massive Dirac fermions in graphene
is plotted in Fig. 3(b). The renormalized dispersion relation can
be approximated by the analytical expression

e (k) = i\/(th|k|)2 + (m*v2)?, (19)

where the effective mass of electron dressed by virtual photons
ism* = g,/2v%.

It should be noted that the considered single-electron
problem can be easily generalized for the realistic situation
when the valence band is filled by the Fermi sea of electrons.
In this case, the Pauli principle forbids virtual transitions into
the lower Dirac cone filled with electrons, which reduces both
the matrix elements (11)—(13) and the band gap (18) by the
factor of 1/2.

IV. CONCLUSIONS

We predicted the quantum electrodynamical effect in
graphene placed inside a planar cavity filled by an optically ac-
tive media. Due to the vacuum fluctuations of electromagnetic
field in the cavity, the spectrum of elementary excitations in
graphene undergoes qualitative changes. Namely, the valence
and conductivity bands of graphene are split at the Dirac points.
The value of the vacuum-induced band gap can be one order
of magnitude bigger then the famous Lamb shift in hydrogen
atom.
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APPENDIX: DERIVATION OF INTERACTION
HAMILTONIAN

The introduction of the electron-photon interaction in
graphene can be done by the conventional replacement ik —
hk — eA, where A is the operator of the vector potential
of electromagnetic field. Then, the full Hamiltonian of the
electron-photon system reads as

H =vrd - (ik — eA) + Ede(eoE*@E+ 1oB'27'B),
(AD)

where E, B are the operators of electric and magnetic fields,
and €, [i are the tensors of electric and magnetic permittivity
of the media, respectively. The integration in the last term,
giving the energy of free electromagnetic field, goes over all
space where the field is present. In this paper, we consider a
graphene sheet placed in a planar microcavity. In this case, it
is convenient to represent the operators of the fields in terms
of the eigenmodes of the cavity as

Am =) Aiq0), (A2)
An,q

Er) =) Einq), (A3)
An,q

B =) B,.q0), (A4)
An,q

wheren = 1,2,3, ... is the number of field modes in the cavity.
Using the Coulomb gauge, we can write the field operators
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(A2)-(A4) as

" h
Rna® =[5l nqWina® + al U (™),
n,q
h

(AS5)

A . Wi,n,q -t % ~
E) q@) =i e [a)hnyqll)h’”’q(l‘) — Q) p,qWs,n,q(0)],
0

(A6)
~ h .
B}L,I‘l,q(r) = m[d}t’n!qv X U)L’n‘q(r)
+&i,n,qv X u:,n,q(r)] k] (A7)

where u, , 4 are the cavity eigenmodes. If the cavity is filled
with an optically active media, the eigenmodes are circularly
polarized and can be found as

2 . (mnz\ .
uiﬁn,q(zsr) = €4 E sin <T>€ ar (A8)
where
/ 2
. 5 n
Wi pq = Cty/q° + (T) (A9)

are the photon eigenfrequencies. Therefore, the Hamiltonian
of the interaction between the graphene sheet and the electro-
magnetic field in the cavity can be written as

Hine = —evpé - Ar)
=evpV2 ) (e:67 +e61) A, (AlD)
A==%,n,q

Since the graphene sheet is placed in the center of the cavity (at
z = L/2), it is coupled only with modes (A8) corresponding
to odd numbers n. This means that the summation index » in
Eq.(A10)isodd: n = 1,3,5,7, .... Then, using the expression
(AS) for the vector potential operator A,\,n,q(r), the interaction
Hamiltonian (A10) can be rewritten in the form (4).
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