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Valley separation in graphene by polarized light
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We show that the optical excitation of graphene with polarized light leads to pure valley current for which
carriers in the valleys counterflow. The current in each valley originates from the asymmetry of optical transitions
and electron scattering by impurities owing to the warping of the electron energy spectrum. The valley current
has strong polarization dependence; its direction is opposite for normally incident beams of orthogonal linear
polarizations. In undoped graphene on a substrate with high susceptibility, electron-electron scattering leads to
an additional contribution to the valley current that can dominate.
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I. INTRODUCTION

Graphene, a one-atom-thick layer of carbon with a hon-
eycomb crystal lattice, has been attracting rapidly growing
attention due to its unique electronic properties. Its zero band
gap and zero effective-electron and -hole masses as well as
its high mobility make it interesting for both fundamental
and applied research.1–3 The electron excitations in graphene
are similar to massless Dirac fermions with their cone points
situated at the points K and K ′ of the Brillouin zone. The
interplay of two equivalent valleys gives rise to new transport
and optical phenomena that are absent in systems with simple
electron dispersion and underlies the novel research field
called “valleytronics.”4,5 In multivalley structures, one can
independently control the carriers in different valleys6 and
construct peculiar electron distributions in which particles in
the valleys flow predominantly in different directions.7

Previous research on the valley-dependent transport in
graphene has focused on the manipulation of charge carriers
by static electric fields. It was demonstrated that the electric
field may induce valley-polarized current in a graphene point
contact with zigzag edges,5 a graphene layer with broken
inversion symmetry,8 at the boundary between monolayer and
bilayer graphene,9 and at a line defect10 as well as in the
case in which monolayer or bilayer graphene is additionally
illuminated by circularly polarized radiation.11,12 It was also
proposed in Ref. 13 that valley currents can be induced
in mesoscopic graphene rings by asymmetrical monocycle
electromagnetic pulses. Here, we show that valley separation
can be achieved in a homogeneous graphene layer by purely
optical means. We demonstrate that the interband excitation
of graphene by linearly polarized light leads to the electron
current in each valley, the direction of which is determined by
the light polarization. The partial photocurrents j (ν) (ν = ±
for the valleys K and K ′, respectively) in the ideal honeycomb
structure are directed opposite to one another so that the total
electric current j (+) + j (−) vanishes. We also briefly discuss
the optical and transport methods to reveal the pure valley
current.

Phenomenologically, the emergence of the valley pho-
tocurrent is related to the low point-group symmetry of the

individual valleys. Despite the fact that the crystal lattice
of flat graphene is centrosymmetric, the valleys K and K ′
are described by the wave-vector group D3h, lacking space
inversion (see Fig. 1). The group D3h allows for the photocur-
rent induced by normally incident, linearly polarized light.
Symmetry analysis shows that the polarization dependences
of the current components in the valley K are given by

j (+)
x = χ

(
e2
x − e2

y

)
I, j (+)

y = −2χexeyI. (1)

Here, χ is a parameter, ex and ey are components of the
(real) light-polarization unit vector e, I is the intensity of
the incident light, and the x axis is chosen along the �-K line
[see Fig. 1(a)]. The photocurrent in the valley K ′ is obtained
by the replacement x → −x on both sides of Eq. (1), giving
j (−) = − j (+). We note that the absence of a total electric
current at a normal incidence of radiation is in agreement
with the symmetry arguments allowing for a photocurrent in
noncentrosymmetric systems only. At an oblique incidence
of radiation, a net current in graphene may arise due to the
photon-drag effect caused by the transfer of phonon linear
momenta to free carriers.14,15

II. MICROSCOPIC THEORY

The microscopic model of pure-valley-current generation
is based on the trigonal warping of the energy spectrum of
carriers in the valleys. The effective Hamiltonian describing
electron and hole states in the vicinity of the K and K ′ points
has the form16

Ĥ (ν)
p =

(
0 �

(ν)
p

�
(ν)∗
p 0

)
. (2)

Here, p is the momentum counted from the valley center,

�(ν)
p = νv0(px − ipy) − μ(px + ipy)2, (3)

where v0 is the electron velocity and μ is the parameter of the
warping that reflects the trigonal symmetry of the valleys (D3h

wave-vector group). In the framework of the tight-binding
model, μ = v0a/(4

√
3h̄) with a being the lattice constant.2

We assume that the warping is small and, therefore, calculate
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FIG. 1. (Color online) (a) Brillouin zone of graphene. The circles
indicate the neighborhood of the K and K ′ points in which the
electron states have trigonal symmetry allowing for the photocurrent.
(b) Mechanisms of photocurrent formation in the K valley. Solid,
dashed, and dotted arrows of different thicknesses indicate anisotropy
of velocity, optical generation, and scattering rate, respectively, in p
space.

the current to the first order in μ. The energy spectrum of
the carriers in the conduction c and valence v bands is given
by

ε(ν)
c p ≈ v0p − νμp2 cos 3ϕ p, ε(ν)

v p = −ε(ν)
c p , (4)

where ϕ p is the polar angle of the momentum p.
Figure 1(b) shows the energy spectrum in the K valley with

the warping included. The inequality of ε
(+)
c p and ε

(+)
c,− p (as well

as that of ε
(+)
v p and ε

(+)
v,− p) gives rise to an electric current in the

valley if electrons are optically excited from the valence to the
conduction band by linearly polarized light. In the valley K ′,
the warping of the energy spectrum is opposite [Eq. (4)], and
the photocurrent direction is reversed.

In the framework of kinetic theory, the photocurrent
densities in the valleys are given by

j (ν) = 2e
∑

p

(
v(ν)

c pf
(ν)
c p + v(ν)

v pf
(ν)
v p

)
, (5)

where e is the electron charge, the factor 2 accounts for the
spin degeneracy, v(ν)

c,v = ∇ pε
(ν)
c,v are the velocities, and f

(ν)
c p

and f
(ν)
v p are the nonequilibrium corrections to the distribution

functions in the conduction and valence bands linear in the light
intensity, respectively. f

(+)
c p = f

(−)
c,− p and f

(+)
v p = f

(−)
v,− p due

to space inversion symmetry. We consider interband optical
transitions in undoped graphene at low temperatures. Owing
to electron-hole symmetry, f (ν)

c p = −f
(ν)
v p , and the photocurrent

[Eq. (5)] assumes the form j (ν) = 4e
∑

p v
(ν)
c p f

(ν)
c p .

The steady-state correction to the distribution function can
be found from the kinetic equation∑

p′

(
W

(ν)
p p′f

(ν)
c p′ − W

(ν)
p′ pf

(ν)
c p

) + St(ee) + g(ν)
c p = 0, (6)

where W
(ν)
p p′ is the rate of intravalley electron scattering by

static defects or impurities, the weak intervalley processes are
neglected, g(ν)

c p is the optical generation rate, and St(ee) describes
electron-electron collisions.

First, we consider the valley current in the presence
of intensive electron scattering by impurities and neglect

electron-electron collisions. We focus on the photocurrent in
the K valley and omit index ν = +. In the Born approximation,
the rate of elastic electron scattering by impurities W p p′ =
W p′ p is given by

W p p′ = π

2h̄

∣∣∣∣1 + � p�
∗
p′

|� p� p′ |
∣∣∣∣
2

K(| p′ − p|)δ(εc p − εc p′), (7)

where K(q) is the Fourier component of the impurity-potential
correlator. The specific angular dependence of W p p′ follows
from the Hamiltonian of Eq. (2). The generation rate in the
conduction band gc p is determined by the interband matrix
elements of the velocity operator ∇ pĤ p. In the regime linear
in the radiation intensity, it has the form

gc p = 2π

h̄

(
eA

c

)2 ∣∣∣∣Im
(

�∗
p

|� p| e · ∇ p� p

)∣∣∣∣
2

δ(h̄ω − 2εc p). (8)

Here, ω is the light frequency, A/2 is the amplitude of the
vector potential of the electromagnetic wave, related to the
intensity of the incident light by I = A2ω2/(2πct2

0 ), and t0
is the amplitude-transmission coefficient; t0 = 2/(n + 1) for
graphene on a substrate with the refractive index n.

As follows from Eqs. (5) and (6), the valley current arises
due to warping-induced asymmetry in the electron velocity
vc p, the scattering rate W p p′ , and the generation rate gc p.
Accordingly, to the first order in μ, one can distinguish three
contributions to the current Eq. (1), χ = χ (vel) + χ (gen) + χ (sc).
The corresponding mechanisms of the current formation are
sketched in Fig. 1(b).

To calculate the valley current caused by the velocity
correction, one neglects the warping in the optical-generation
and scattering rates. In this mechanism, the absorption of
linearly polarized light leads to the alignment of electron
momenta described by the second angular harmonic of the
distribution function.17 Owing to the μ-linear correction to the
velocity, such a distribution of carriers in p space implies an
electric current [Eq. (1)] with

χ (vel) = 5eμητ2(εω)t2
0

8v0
. (9)

Here, εω = h̄ω/2 is the kinetic energy of photoelectrons, τn

(n = 1,2, . . .) are the relaxation times of the nth angular
harmonics of the distribution function, τ−1

n = ∑
p′ W p p′(1 −

cos nθ ), θ is the angle between p and p′, and η = πe2/h̄c is
the absorbance3 for normally incident light.

Another contribution to the valley current comes from the
asymmetry of photoexcitation. Indeed, to the first order in
μ, the optical-generation rate gc p contains the first angular
harmonic, which gives rise to a photocurrent

χ (gen) = −eμηt2
0

8v0

[
9τ1(εω) + εω

dτ1(εω)

dεω

]
. (10)

The third mechanism of the current generation originates
from the asymmetry of photoelectron scattering. The solution
fc p of kinetic Eq. (6) contains the first angular harmonic
even if the warping is neglected in the optical-generation
rate of Eq. (8) but taken into account in the scattering
rate of Eq. (7). Such a contribution to the valley current is
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given by

χ (sc) = eμητ2t
2
0

8v0

{
20 − 6

τ1

τ2
− 4

τ1

τ3

+ εω

2

[(
9

τ1
− 2

τ2

)
dτ1

dεω

+ τ1
d

dεω

(
1

τ2
+ 1

τ3

)]}
,

(11)

where the relaxation times are taken at the energy εω.
Equations (9)–(11) demonstrate that both the magnitude

and excitation spectrum of the pure valley current are
determined by the mechanisms of scattering. For electron
scattering by unscreened Coulomb impurities in graphene, one
obtains τ1 ∝ ε, τ2 = 3τ1, and τ3 = 5τ1. Such relations yield
χ ∝ ω. In the case of scattering by short-range static defects,
one has τ1 ∝ 1/ε, τ2 = τ3 = τ1/2, and therefore χ ∝ 1/ω.
Estimation shows the valley currents in suspended graphene
j (±) ∼ 10−4 A/cm at the light intensity I = 1 W/cm2, τ1 =
10−12 s,3 μ = 3.6 × 1026 g−1, and v0 = 108 cm/s.

III. EFFECT OF ELECTRON-ELECTRON SCATTERING

Now, we analyze the effect of electron-electron interaction
on the pure valley current. It is well known that in systems
with parabolic energy spectra, the interparticle collisions
partially suppress the anisotropy of the distribution functions.
Therefore, one can expect that electron-electron scattering
(between carriers from the same valley and, in particular,
between carriers from different valleys) can only decrease the
pure valley current. We demonstrate below that the interpar-
ticle collisions in graphene may give rise to an additional
contribution to the valley photocurrent.

Consider the collision of a photoelectron with momentum
p from the valley ν of the conduction band with an electron
with momentum k from the valley ν ′ of the valence band.
After the collision, both electrons reside in the conduction
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k

ε

px

py

j ( )

E

hω
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FIG. 2. (Color online) Dependence F (γ ) that determines the
magnitude of the valley current caused by electron-electron scattering
[Eq. (17)]. The left inset sketches the scattering of electrons with
momenta p and k into states with momenta p′ and k′, respectively.
The right inset shows the momentum space in the K valley. Sectors
where the Auger-like electron relaxation is allowed are colored, and
the ellipses depict the alignment of the photoelectron momenta by
linearly polarized light.

band with momenta p′ and k′, respectively (see the left inset
of Fig. 2). Processes of other kinds are negligible in undoped
graphene at low temperatures and weak excitation levels. The
Coulomb interaction between carriers leads to the transfer
of momentum q ∼ ω/v0 	 π/a, therefore, both electrons
remain in the valleys where they were before the collision
although the valleys ν and ν ′ may be different. The momentum
and energy conservation laws read

p + k = p′ + k′, ε(ν)
c p + ε

(ν ′)
vk = ε

(ν)
c p′ + ε

(ν ′)
ck′ . (12)

In the conic approximation, Eq. (12) implies that k < p,
p′ + k′ < p, and k should be antiparallel while p′ and k′ are
parallel to p.18 The possibility of the collisions is determined
by corrections to the linear dispersion. Interaction-induced
renormalization of the energy spectrum makes it concave,19,20

forbidding such Auger-like processes. On the other hand,
the spectrum warping does allow for these processes. In
graphene on a substrate with high susceptibility, the interaction
effects are suppressed, and the warping becomes prevailing.
An estimation shows that for an electron with energy ε =
0.3 eV, this regime occurs at the effective dielectric constant
ε∗ > 300. Besides, interaction effects can be suppressed by a
metallic gate or by increasing the temperature. Neglecting the
interaction-induced renormalization of the energy spectrum,
we obtain from Eq. (12) to the first order in μ:

v0(pkα2 + p′k′β2)

= −2μν(p−p′)(p′+k′)[p+p′+νν ′(k−k′)] cos 3ϕ p, (13)

where α = ϕ p − π − ϕk 	 1 and β = ϕk′ − ϕ p′ 	 1. Equa-
tion (13) has solutions only for sectors of ϕ p where the
second line is positive, i.e., for μν cos 3ϕ p < 0, meaning that
Auger-like processes for electrons with momentum p are
allowed or forbidden depending on the sign of cos 3ϕ p (see
the right inset of Fig. 2).

The angular dependence of the electron-electron collision
rate in graphene gives rise to a pure valley current if the sample
is illuminated by linearly polarized light. The mechanism of the
current generation is sketched in the right inset of Fig. 2. The
absorption of linearly polarized light leads to the alignment of
electron momenta described by the second angular harmonic
of the distribution function. The photoexcited electrons are
scattered by resident electrons from the valence band and
lose their energies. Since the scattering rate is anisotropic, the
energy relaxation leads to the formation of the first harmonic
of the distribution function and to an electric current if the
momentum relaxation time depends on energy. In the case of
weak electron-electron scattering (τee 
 τ1, where τee is the
electron-electron scattering time), the mechanism efficiency
can be estimated as χ (ee) ∼ ev0ητ 2

1 /(εωτee).
To calculate the pure valley current caused by electron-

electron scattering, we solve the kinetic Eq. (6) with the
linearized collision integral:

St(ee) = 4π

h̄

∑
k,k′, p′,ν ′

|u p− p′ |2δ p+k, p′+k′
{[

f
(ν)
c p′ δ

(
ε(ν)
c p + ε

(ν ′)
ck

− ε
(ν)
c p′ − ε

(ν ′)
vk′

) − ( p ↔ p′)
] + [

f
(ν ′)
ck′ δ

(
ε(ν)
c p + ε

(ν ′)
ck

− ε
(ν)
v p′ − ε

(ν ′)
ck′

) + (k ↔ k′)
]}

, (14)
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where uq = 2πh̄e2/(ε∗q) is the Fourier component of the
Coulomb potential and the factor 4 accounts for the spin
degeneracy. In Eq. (14), we assume that the warping is small
and take it into account only in the arguments of δ functions.
The consequent simplification of St(ee) consists in summing
over the almost collinear momenta. Kinetic Eq. (6) with the
simplified electron-impurity-collision term −f

(ν)
c p /τ takes the

form

gc p = − πe4

h̄3v0ε∗2p

[ ∫ ∞

p

dk(
√

k − √
p)2(f (+)

ck + f
(−)
ck )

+ θ (−ν cos 3ϕ p)

( ∫ ∞

p

dk

√
kp

2
f

(ν)
ck − p2

3
f (ν)

c p

)]

+ f
(ν)
c p

τ
, (15)

where ϕk = ϕ p and θ (x) is the Heaviside step function. In the
case of 1/τ (ε) = 2π2e4Ni/(h̄ε∗2ε), which corresponds to the
momentum relaxation time of electrons due to scattering by
Coulomb impurities with surface density Ni , Eq. (15) can be
transformed into the differential equation

γ u(u4 + 6γ )J ′′′′(u) + γ (5u4 − 16γ )J ′′′(u)

+ 2u2(u4 + 12γ )J ′(u) + 12u(u4 − 2γ )J (u) = 0 (16)

for the function

J (u) = ε2
ω

∫ 2π

0 f
(+)
c p θ (cos 3ϕ p) cos ϕ pdϕ p

2π2v2
0τ (εω)

∑
p gc pθ (cos 3ϕ p) cos ϕ p

− δ(u − 1).

Here, u = √
v0p/εω, J ′(u) = dJ (u)/du, and the parameter

γ = πNih̄
2v2

0/ε
2
ω characterizes the rate of electron scattering

by impurities with respect to the electron-electron scattering
rate. J (u) satisfies the boundary conditions J (1) = J ′(1) =
0, J ′′(1) = 2(1 + 12γ )/[γ (1 + 6γ )], and J ′′′(1) = −36/(1 +
6γ )2. Finally, the contribution to the valley current induced by
electron-electron scattering is given by Eq. (1) with

χ (ee) = −ev0ητ (εω)t2
0

4πεω

F (γ ), (17)

where F (γ ) = ∫ 1
0 J (u)u3du − γ J (0)/2 + 1. The function

F (γ ) also determines the excitation spectrum of the valley

current since γ ∝ 1/ω2. F (γ ) calculated numerically from
Eq. (16) is shown in Fig. 2. The estimation for h̄ω = 1 eV and
Ni = 1012 cm−2 yields γ ∼ 10−2 and χ (ee) being two orders of
magnitude larger than χ (vel). Thus, for graphene on a substrate
with high susceptibility, the mechanism of valley-current
formation caused by electron-electron scattering dominates.

IV. SUMMARY

To summarize, we have shown that the homogeneous
excitation of graphene with linearly polarized light results
in a pure valley current. We have developed a microscopic
theory of this effect and demonstrated that the valley current
has specific polarization dependence. Pure valley current is
not accompanied by any net-charge current but leads to the
accumulation of valley-polarized carriers at edges of the
sample. The valley polarization breaks the time-inversion
symmetry and also implies the local lowering of the space
symmetry to the D3h group of a single valley, which lacks
space inversion. Such a lowering of the space symmetry can
be detected by optical means, e.g., by a second-harmonic
generation of the probe beam.

Another possibility to register the valley current is to
convert it into an electric current. It can be realized, e.g., in
curved graphene. The curvature of the graphene sheet pro-
duces effective out-of-plane magnetic fields that are directed
oppositely for electrons in the valleys K and K ′.21 Owing to
the Lorentz force, the magnetic fields change the directions of
the partial currents in the valleys, giving rise to a measurable
net electric current. Straightforward estimation shows that the
net electric current j (+) + j (−) ∼ [ j (+) × ω∗

c ]τ , provided the
cyclotron frequency of the effective field ω∗

c is smaller than
the momentum-scattering rate.
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