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Generation and dynamics of phononic cat states after optical excitation of a quantum dot
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We study theoretically the fluctuation properties of optical phonons generated after optical excitation of a
quantum dot. If the quantum dot exciton is optically manipulated by ultrafast laser pulses, the electronic system
and the phonon system can become entangled, which strongly influences the fluctuation properties of the phonons.
When reduced to the phonon system, such an entanglement corresponds to a mixed phonon state. We discuss
excitations with one or two ultrafast laser pulses. For a single pulse excitation, in general, a statistical mixture of
two coherent states is found. For more pulses, a statistical mixture of superpositions of coherent states builds up
in the phonon system. With the help of the Wigner function, which provides an intuitive picture of the generated
phonon states, we explain how these states are formed depending on the excitation conditions and illustrate their
time evolution. From this the fluctuation properties of the corresponding states can be well interpreted and the
conditions for obtaining phonon squeezing are identified.
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I. INTRODUCTION

Nonclassical phonon states have attracted increasing inter-
est in the past few years. In particular, the search for squeezed
phonon states has been the focus of various experimental and
theoretical investigations.1–8 Phonons are in many aspects sim-
ilar to photons, where squeezing has been extensively studied
in the past.9 However, for phonons, a direct measurement of
the fluctuation properties seems rather complicated and, thus,
only more or less indirect hints for squeezed phonons were
found. One of the indications of phonon squeezing was the
observation of an oscillation of the lattice fluctuations with
twice the phonon frequency.1–5 However, such an oscillation
turned out not to be an unambiguous proof for squeezing.8,10

Squeezing can be achieved in different ways. One way is to
deform (“squeeze”) the vacuum or a coherent state in phase-
space representation. Mathematically, this can be performed
by a squeezing operator acting on the vacuum or coherent
state.11,12 A physical realization in the case of photons is
given by the parametric downconversion in a nonlinear-optical
crystal.11 An analogous process for phonons is the anharmonic
decay of an optical phonon into a pair of acoustic phonons,
which may lead to squeezed states of acoustic phonons.7,13 A
similar squeezing mechanism is provided by a second order
Raman process which can also be described in terms of a
squeezing operator.4,6,14

An alternative way to achieve squeezing is to create
a superposition of two (or more) coherent states.11,12,15,16

Such states are generally called cat states11,12 and prominent
examples are the even and odd coherent states17 or the
Yurke-Stoler states.18 In a cat state, through the action of
quantum interference, the fluctuations can be reduced below
the value of the fluctuations of the coherent or vacuum state
and, thus, squeezing can occur. Cat states in other systems have
been extensively studied experimentally and theoretically, e.g.,
with ultracold atoms19 or photons.20 In this paper we study
the generation and dynamics of phononic cat states in a
semiconductor system, which can lead to phonon squeezing
as we have shown recently.10 The specific phonon state is not
created directly by the ultrafast optical excitation but indirectly

via the generation and manipulation of the quantum dot
exciton. This indirect generation mechanism is fundamentally
different from the generation of phonon squeezing as described
by a squeezing operator in the Raman model.4,6,7 The optical
excitation leads to an entanglement between electrons and
phonons in the quantum dot and, thus, when reduced to the
phonon degrees of freedom, to a mixed phonon state. As a
consequence, in the case of a two-pulse excitation, not a single
cat state is created; instead, a statistical mixture of two cat
states builds up, each of them consisting of a superposition of
two coherent states. It turns out that the occurrence of phonon
squeezing depends on many parameters that characterize the
semiconductor structure as well as the excitation conditions.

In this paper we present a detailed analysis of the generated
phonon states in an optically excited quantum dot structure
depending on the excitation conditions. We will show that the
Wigner representation of the phonon state provides a very
useful concept to obtain an intuitive understanding of the
light-pulse-induced phonon dynamics. While for coherent or
thermal phonon states the Wigner function is strictly positive,
quantum interference may give rise to negative values. Such
negative values are clear indications of nonclassical states.
We will show that, indeed, in a certain range of excitation
parameters these negative values in the Wigner function are
associated with phonon squeezing.

The paper is organized as follows. In Sec. II we describe
the theoretical model of the quantum dot coupled to the light
field and phonons, we define the relevant dynamical variables
for the phonon system, and we introduce the Wigner function.
Section III contains the results and detailed discussion of the
phonon states generated by a single pulse (Sec. III A) and by
a double pulse (Sec. III B) excitation. The paper finishes in
Sec. IV with some concluding remarks.

II. MODEL SYSTEM

To be specific, we consider a spherical semiconductor
quantum dot, which we model as a two-level system consisting
of the ground state |g〉 and the lowest exciton state |x〉. This is
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a valid approximation in the strong confinement limit, where
excited exciton states are sufficiently separated from the lowest
exciton state, and in the case of excitation by circular light
pulses where the generation of biexcitons is prohibited. The
coupling to the phonons is modeled by pure dephasing-type
interactions, as described in the independent Boson model.
In the case of coupling to acoustic phonons, the independent
Boson model has been shown to quantitatively reproduce the
experimentally observed nonexponential polarization decay
behavior on short time scales.21 Here we will concentrate
on the coupling to longitudinal optical (LO) phonons, which
we assume to be dispersionless with the frequency ω0 and a
corresponding period t0 = 2π/ω0. LO phonons are spectrally
well separated from acoustic phonons and, because of their
characteristic frequency, signatures of their dynamics are typ-
ically easier to observe. The interaction between exciton and
LO phonons is described by the standard Fröhlich coupling.
The coupling of the electronic states to the electric field of the
laser is treated in dipole and rotating wave approximation. We
assume an excitation by ultrashort pulses, which we model
mathematically by δ pulses. Physically, in order to generate
coherent phonons, the pulse has to be short compared to the
phonon oscillation period t0. Indeed, experiments with pulse
lengths of few tens of fs have successfully been shown to create
coherent phonons.22–25 The present model has the big advan-
tage that it allows for an analytical solution under the excitation
by an arbitrary sequence of such ultrafast laser pulses.26,27

Within this model, the Hamiltonian of the whole system
reads

Ĥ = h̄

[
� +

∑
q

(gq b̂q + g∗
q b̂†q)

]
|x〉〈x|

+ h̄ω0

∑
q

b̂†qb̂q − P̂ · E, (1)

with the exciton energy h̄�, b̂q (b̂†q) is the annihilation
(creation) operator of a LO phonon with wave vector q,
gq is the carrier-phonon coupling matrix element, E is the
laser field, and P̂ = M0|x〉〈g| + M∗

0|g〉〈x| is the operator for
the electronic polarization with the transition dipole matrix
element M0. A suitable basis for the description of the total
system is provided by |X; ph〉, which are product states of the
electronic states |X〉 ∈ {|g〉,|x〉} and the phonon states |ph〉.

The annihilation and creation operators for the LO phonons
lead to the lattice displacement

ˆ̃u(r,t) = − iu0√
N

∑
q

q
q

(b̂qe
iq·r − b̂†qe

−iq·r), (2)

and its conjugate variable, the momentum

ˆ̃π (r,t) = − π0√
N

∑
q

q
q

(b̂qe
iq·r + b̂†qe

−iq·r), (3)

with u0 = √
h̄/(2Mrω0) and π0 = √

(h̄Mrω0)/2. Mr is the
reduced mass of the lattice ions. The quantities ˆ̃u(r,t) and
ˆ̃π (r,t) are the observables in the system. In the following we
will consider the normalized, dimensionless operators given
by

û = ˆ̃u/u0, π̂ = ˆ̃π/π0. (4)

We are interested in the fluctuations of these variables, which
are defined as

[�u(r,t)]2 = 〈û(r,t) · û(r,t)〉 − 〈û(r,t)〉2 (5)

and analogously for the momentum. Because the quantum
dot has spherical symmetry, both expectation values and
fluctuations only depend on the radial coordinate.

In the Hamiltonian of Eq. (1), the exciton is coupled to an
infinite number of phonon modes. However, for dispersionless
phonons, the Hamiltonian can be transformed to a new set of
phonon modes B̂λ and B̂

†
λ by the unitary transformation28

B̂λ =
∑

q

αλ
q b̂q, B̂

†
λ =

∑
q

αλ∗
q b̂†q. (6)

If we now choose one coupling element, say for λ = 0, to α0
q =

gq/G with G =
√∑

q |gq|2, we find that in the transformed

Hamiltonian, only B0 couples to the excitonic system with the
new coupling constant G:

Ĥ = h̄[� + G (B̂0 + B̂
†
0)]|x〉〈x| + h̄ω0

∑
λ

B̂
†
λB̂λ − P̂ · E .

(7)

All other modes λ �= 0 do not couple to the two-level system
and remain in their initial state, which in our case will be the
vacuum state.

When we consider the case without laser field and restrict
ourselves to the phonon mode B0, the Hamiltonian from Eq. (7)
can be easily diagonalized by introducing a linear shift for the
phonon mode

ˆ̃B0 = B̂0 + 	|x〉〈x| = T̂ (	)B̂0, (8)

ˆ̃B
†
0 = B̂

†
0 + 	|x〉〈x| = T̂ (	)B̂†

0, (9)

with 	 = G/ω0. Formally, this linear shift can be written as the
action of a shift operator T̂ (	). In this case, the Hamiltonian
takes the simple form

ˆ̃H = h̄�̃|x〉〈x| + h̄ω0
ˆ̃B
†
0

ˆ̃B0, (10)

with the polaron-shifted exciton energy

h̄�̃ = h̄� + G2

ω0
. (11)

Within the new phonon modes B̂λ, all quantities can be
well defined in the transformed, unshifted system described
by Eq. (7). The new variables are directly connected to the
observables from Eq. (5), namely the lattice displacement and
the momentum. Defining the new operator

Û = B̂0 + B̂
†
0, (12)

the expectation value and the variance of the lattice displace-
ment can be obtained from

〈u〉 = 1

	
I (r)〈U 〉, 〈u2〉 = 1

	2
I 2(r)(〈U 2〉 − 1) + 1, (13)

with

I (r) = − i√
N

∑
q

q · r
qr

g∗
q

ω0
eiq·r. (14)
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Analogously, the operator 
̂ = i(B̂0 − B̂
†
0) can be defined,

which is connected to the momentum.
The aim of this paper is to analyze the fluctuation

properties of the phonons. In particular, we are interested
in the question under which conditions the phonons exhibit
squeezing. Squeezing occurs when the fluctuations of one of
two conjugate variables are below the corresponding vacuum
fluctuations, e.g.,

(�u)2 < (�u)2
vac or (�U )2 < (�U )2

vac. (15)

This condition is also referred to as vacuum squeezing, in
contrast to thermal squeezing where only a reduction below
the fluctuations of a thermal phonon state is required. Since
here we will only consider the zero temperature limit, vacuum
squeezing and thermal squeezing agree.

In order to identify squeezing in our system we introduce
as new variables the normalized expectation value of the
displacement,

Eu = 〈u〉
|I (r)| = 〈U 〉

	
, (16)

and the excitation-induced fluctuations (EIF) of the displace-
ment,

Su = (�u)2 − (�u)2
vac

|I (r)|2 = (�U )2 − 1

	2
. (17)

Correspondingly, for the momentum π the variables Eπ and
Sπ are defined. These variables turn out to be well suited
to interpret the results, because negative values of Su or Sπ

directly indicate the presence of squeezing in the respective
variable.10

To illustrate and interpret the results we will use the Wigner
function defined by12

W (U,
) = 1

4π

∫ ∞

−∞
dXe−i 
X

2

〈
U + 1

2
X|ρ̂|U − 1

2
X

〉
. (18)

In the case of a pure state, the density operator is ρ̂ = |�〉〈�|.
Then the Wigner function can be calculated in position space
with the wave function �(U ) by the integral

W (U,
) = 1

4π

∫ ∞

−∞
dXe−i 
X

2 �

(
U + X

2

)
�∗

(
U − X

2

)
.

(19)

The Wigner function is the quantum mechanical analog to
a classical distribution function. In contrast to the latter,
however, the Wigner function can take negative values,
typically indicating genuine quantum mechanical features
like quantum interference. From the Wigner function, the
probability distributions P (U ) and P (
) are obtained by
integrating over the other variable:

P (U ) =
∫

W (U,
) d
, (20)

P (
) =
∫

W (U,
) dU. (21)

With the probability distributions P (U ) and P (
), all rele-
vant quantities 〈U 〉, 〈U 2〉, 〈
〉, 〈
2〉, the variances �U =√

〈U 2〉 − 〈U 〉2, �
 =
√

〈
2〉 − 〈
〉2, and, finally, Ei and Si ,
can be calculated in the standard way.29

(a) vacuum
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FIG. 1. (Color online) Snapshots of the Wigner function for (a)
the vacuum state W0, (b) the coherent state Wβ(t), and (c) the statistical
mixture W1pulse at time t/t0 = 1/2 for a coupling strength of 	 = 2.
The circle marks the movement of the peak position of Wβ(t) in time.

The Wigner function can also be calculated from its
characteristic function C(α) = Tr(ρ̂eαB̂

†
0−α∗B̂0 ) with α being

a complex number.11 The characteristic functions are already
contained in the generating functions, which have been
used in previous work to calculate analytically the phonon
dynamics.21,26,27 From the characteristic function, the Wigner
function is obtained by the integral

W (U,
) = 1

π2

∫
d2αeα∗(U+i
)−α(U−i
)C(α). (22)

The phonon vacuum gives the reference value for the fluc-
tuations. The vacuum state is a special type of a coherent state;
its wave function is given by �(U ) = exp(−U 2/4)/[(2π )1/4].
The corresponding Wigner function W0(U,
) is a two-
dimensional Gaussian around the mean (Ū ,
̄) = (0,0) with
variances of 1:

W0(U,
) = 1

2π
exp

[
− 1

2
(U 2 + 
2)

]
. (23)

It is shown in Fig. 1(a). Of course, in the vacuum state, the EIF
Su and Sπ are zero for all times.

The generation of phonons and, as we will see, also the
degree of squeezing in the generated phonon states strongly
depends on the exciton-phonon coupling strength 	. In the case
of Fröhlich coupling considered here, the coupling strength
is strongly influenced by the spatial overlap of electron and
hole wave functions. For an exact overlap there would be
no coupling at all. For example, assuming equal harmonic
confinement potentials of electrons and holes, for a spherical
quantum dot of 5-nm diameter and using standard GaAs
material parameters, we obtain 	 ≈ 0.03.30 If electrons and
holes are separated, e.g., by an in-plane electric field as
discussed in Ref. 31, this value is increased by about one
order of magnitude (	 ≈ 0.3). For a core-shell quantum dot
made of II–VI materials as the one studied in Ref. 32 we
obtain 	 ≈ 0.8. In this paper we will mainly show results for a
rather strong coupling (	 = 2) because this is most instructive
to interpret the quantum dynamics and compare these with
the case of an intermediate value (	 = 0.5), which turned out
to be most favorable for squeezing.10 Nevertheless, we want
to mention that squeezing is also present for much smaller
coupling strengths.
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III. RESULTS AND DISCUSSION

A. Single pulse excitation

Let us now come to the analysis of the LO phonon dynamics
following the ultrafast optical excitation of a quantum dot.
It should be noted that the phonon generation is a two-step
process: first the excitonic system is excited; then the charge
separation associated with the exciton generation acts on the
lattice ions and drives the phonon system out of its equilibrium
state. The most simple case is the excitation with a single pulse
with pulse area A and phase φ arriving at time t = 0. Initially,
the phonon system is taken to be in its vacuum state |0〉. In
the most general case, the laser pulse excites the excitonic
system into a superposition of ground and exciton state, while
the phonon system still remains in the ground state during the
pulse. Thus, immediately after the excitation at time t = 0+,
the wave function reads

|ψ(0+)〉 = cos

(
A

2

)
|g,0〉 + i sin

(
A

2

)
eiφ|x,0〉. (24)

While the ground state does not couple to the phonon system,
the exciton generation leads to the creation of phonons. The
sudden creation of the exciton leads to an abrupt shift of
the equilibrium position of the lattice ions. In other words,
the phonon system experiences a sudden shift of the equilib-
rium position of its harmonic oscillator potential. Such a shift
leads to the creation of a coherent state.

Let us first consider the case when the exciton is fully
excited, which holds for a pulse area of A = (2n + 1)π . Then
the Hamiltonian in the shifted system can be diagonalized as
shown in Eq. (10) and the phonons are in a coherent state
|−β̃(t)〉 = |−	e−iω0t 〉. This coherent state is an eigenstate of
the annihilation operator in the shifted system

ˆ̃B|β̃(t)〉 = β̃(t)|β̃(t)〉. (25)

Formally, it is created by the application of the displacement
operator,

D̂[β̃(t)] = eβ̃ ˆ̃B
†
0−β̃∗ ˆ̃B0 , (26)

acting on the shifted ground state |0̃〉,
|β̃(t)〉 = D[β̃(t)]|0̃〉. (27)

In this system the amplitude of the coherent state |β̃| is
determined by the coupling constant 	. The initial state
immediately after the pulse, i.e., the ground state in the
unshifted system, is given by |−β̃(0)〉 = |−	〉. By using the
shift operator T̂ (	), the coherent state is transformed back into
the unshifted system:

|β(t)〉 = T̂ (	)D̂[−β̃(t)]|0̃〉
= e−i	2 sin(ω0t)D̂[	 − β̃(t)]|0〉. (28)

The Wigner function for the coherent state is a two-
dimensional Gaussian:29

Wβ(t)(U,
) = 1

2π
exp

{
− 1

2

[
U − 2	(1 − cos(ω0t))

]2}

× exp

{
− 1

2

[

 − 2	 sin(ω0t)

]2}
. (29)

Its peak position, which corresponds to the mean values of
position and momentum, moves in phase space on a circle
(〈U 〉,〈
〉) = {2	[1 − cos(ω0t)],2	 sin(ω0t)} around the cen-
ter (Ū ,
̄) = (2	,0). A snapshot of the Wigner function at the
time t/t0 = 1/2 is shown in Fig. 1(b) for 	 = 2. The peak
position of the Wigner function moves on the indicated circle
with the center (4,0). However, the shape of the Gaussian
agrees with the vacuum Wigner function at any time and thus
its variances are 1 for all times. Accordingly, the EIF Su and
Sπ are zero for all times, as it is expected for a coherent
state.

Now we consider the time evolution of the system for an
arbitrary pulse area A. In this case the state |ψ(t)〉 reads

|ψ(t)〉 = cos

(
A

2

)
|g,0〉 + i sin

(
A

2

)
ei(φ−�̃t)|x,β(t)〉, (30)

with �̃ = � + ω0	
2 denoting the exciton energy renormalized

by the electron-phonon interaction. Obviously, as a result of
the excitation the electronic and the phononic system have
become entangled. Here we are only interested in the phonon
dynamics, thus, we can introduce the reduced phonon density
matrix obtained by tracing the full density matrix over the
electronic degrees of freedom:

ρ̂ph(t) = TrX(|ψ〉〈ψ |)

= cos2

(
A

2

)
|0〉〈0| + sin2

(
A

2

)
|β(t)〉〈β(t)|. (31)

Because of the entanglement, in the phononic system a
statistical mixture of the phonon ground state |0〉 and the
coherent state |β(t)〉 shows up. In this case the Wigner function
W1pulse(U,
) is the sum of the Wigner functions for the ground
state W0 and for the coherent state Wβ(t):

W1pulse = cos2

(
A

2

)
W0 + sin2

(
A

2

)
Wβ(t). (32)

For a pulse area of A = π/2 the two parts of the Wigner
function have equal weights with cos2(A

2 ) = sin2(A
2 ) = 1/2.

Figure 1(c) shows a snapshot of the Wigner function
W1pulse(U,
) at time t/t0 = 1/2 for 	 = 2. We clearly see
the two Gaussians: W0 in the coordinate center, representing
the ground state, and Wβ(t) moving on the indicated circle,
representing the coherent state.

From the Wigner function, the probability distributions
P (U ) and P (
) are extracted and shown in Fig. 2(a) as
functions of time. At t = 0 both the vacuum state and the
coherent state are located at the origin, thus, the distri-
bution function exhibits a single peak around U = 0. As
the vacuum state stays in the origin, a peak at U = 0 is
observed for all times. The coherent state starts oscillating
in time and correspondingly the peak in the distribution
function exhibits a sinusoidal time dependence. At t/t0 = 1/2,
both peaks have their largest distance with respect to each
other.

The probability distribution leads directly to the EIF shown
in Fig. 2(b). The EIF of the lattice displacement Su are
oscillating in time. At t = 0 the peaks in the probability
distribution coincide and thus Su = Svac = 0. When the peak
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FIG. 2. (Color online) (a) Contour plot of the probability distributions P (U ) and P (
) as functions of time. (b) EIF Su and Sπ as functions
of time. The coupling strength is 	 = 2.

of the coherent state moves away from the vacuum peak we
see that the EIF increase reaching its maximum at t/t0 = 1/2.
The temporal behavior of the probability distributions shows
that indeed for all times the EIF are positive with

(Su)1pulse = [cos(ω0t) − 1]2 � 0.

The behavior of the momentum can be understood in the
same way. At t/t0 = 0,1/2, and 1 the probability distributions
for vacuum and coherent state coincide, thus, the excitation-
induced fluctuations are zero. At t/t0 = 1/4,3/4, the distance
between the Gaussians and, thus, the fluctuations are maximal.
In summary, also EIF of the momentum are always positive
with

(Sπ )1pulse = [sin(ω0t)]
2 � 0.

As pointed out in previous studies,10,29 the fluctuations of
the phonon state oscillate with both the single and dou-
ble phonon frequency though showing no squeezing. Thus,
while neither the vacuum nor the coherent state showed
a time-dependent fluctuation, in the statistical mixture of
the vacuum state and a coherent state, the EIF are time-
dependent and oscillating with the single and double phonon
frequency.

B. Two-pulse excitation

In the next step we will study the case of excitation with two
ultrafast laser pulses, the first one arriving at t = −τ with pulse
area A1 and phase φ1 and the second one at t = 0 with pulse
area A2 and phase φ2. Immediately after the second pulse, at

time t = 0+, the system is in the state

|ψ(0+)〉 = K1(K2|g〉 + iS2e
iφ2 |x〉)|0〉

+ iS1e
iφ1 (K2|x〉 + iS2e

−iφ2 |g〉)|β(τ )〉, (33)

where we have introduced the abbreviations Ki = cos(Ai/2)
and Si = sin(Ai/2). The first term ∼K1K2 describes the part
of the excitonic system, which remains in the ground state |g〉
during both pulses. Accordingly, the corresponding phonon
state also stays in its vacuum state |0〉. The second term ∼K1S2

refers to the process, where the excitonic system is unaffected
by the first pulse, but the second pulse excites the exciton.
Due to the creation of an exciton, a coherent phonon state
|β(t)〉 is generated. This process equals the one-pulse case.
The third term, ∼S1K2, describes the same situation, but now
the first pulse excites the exciton and the second pulse does
not affect the system. Thus, a coherent phonon |β(t + τ )〉
is created at time t = −τ . Finally, the forth term, ∼S1S2,
describes the state when both laser pulses change the electronic
system. Therein, the first pulse excites the exciton and creates
a coherent phonon |β(t + τ )〉. At time t = 0, when the second
pulse acts, the exciton is de-excited back to the ground state
|g〉. This de-excitation can again be seen as a sudden shift of the
equilibrium position of the harmonic oscillator potential back
to the origin. However, when the second shift happens, the
phonon state is in general not in its old equilibrium position,
thus, its time dependence, but not its shape, is changed. In
terms of displacement operators, the state |α(t)〉 is created by

|α(t)〉 = T̂ (	)D̂[β̃(t)]D̂[−β̃(t + τ )]|0̃〉
= e−i	2 sin(ω0τ )|	(e−iω0t − e−iω0(t+τ ))〉, (34)
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which is again a coherent state. The corresponding Wigner
function Wα(t),

Wα(t)(U,
)

= 1

2π
exp

{
− 1

2
[U − 2	 (cos(ω0t) − cos(ω0(t + τ )))]2

}

× exp

{
− 1

2
[
 − 2	 (sin(ω0(t + τ )) − sin(ω0t))]

2

}
,

(35)

is a two-dimensional Gaussian which moves on the circle
(〈U 〉,〈
〉) = (2	(cos(ω0t) − cos(ω0(t + τ ))),2	(sin(ω0(t +
τ )) − sin(ω0t)). The circle center is the origin (Ū ,
̄) = (0,0).

With these ingredients we can write the full state of the
system as

|ψ(t)〉 = K1K2|g,0〉 + iK1S2e
i(φ2−�̃t)|x,β(t)〉

+ iS1K2e
i(φ1−�̃(t+τ ))|x,β(t + τ )〉

− S1S2e
i(φ1−φ2−�̃τ )|g,α(t)〉. (36)

In the following we assume the case of an excitation with two
π/2 laser pulses, such that Si = Ki = 1/

√
2 and introduce the

phase � = φ2 − φ1 + �̃τ to simplify the equations.
When we trace over the electronic variables in order to

reduce the system to the phonon degrees of freedom we again
obtain a statistical mixture for the reduced density matrix
ρ̂ph(t) of the phonon system

ρ̂ph(t) = 1
4 (|0〉 − e−i�|α(t)〉)(〈0| − ei�〈α(t)|)
+ 1

4 (|β(t)〉+ e−i�|β(t + τ )〉)(〈β(t)| + ei�〈β(t+τ )|).
(37)

We see that here a mixed state of two superposition states
|0〉 + e−i�|α(t)〉 and |β(t)〉 + e−i�|β(t + τ )〉 is formed. Each
superposition is formed by two coherent states. Such a
superposition is called cat state.11

To illustrate this phonon state we again look at the corre-
sponding Wigner function W2pulse(U,
). Again, the Wigner
function is a sum of the two parts of the statistical mixture

W2pulse = 1
2W0,α(t) + 1

2Wβ(t),β(t+τ ). (38)

Each part is the Wigner function of a cat state,

W0,α(t) = 1
2

{
W0 + Wα(t) − WI

[0,α(t)]

}
, (39)

which consists of the Wigner functions of the coherent states
W0 and Wα(t) and an interference term WI

[0,α(t)]. While the
Wigner functions of the coherent states are two-dimensional
Gaussians, the interference term has a different structure

WI
[0,α(t)](U,
)

= 1

π
exp

{
− 1

2
[U − 	 (cos(ω0t) − cos(ω0(t + τ )))]2

}

× exp

{
− 1

2
[
 − 	 (sin(ω0(t + τ )) − sin(ω0t))]

2

}
× cos{	 U [sin(ω0t) − sin(ω0(t + τ ))]

+	
[cos(ω0t) − cos(ω0(t + τ ))] + 	2 sin(ω0τ ) − �}.
(40)

Still the first two exponential factors resemble a two-
dimensional Gaussian, which moves concentrically to Wα(t)

around (0,0) but with half the radius. This Gaussian is
multiplied by a cosine-function, which changes the structure of
this term qualitatively. As the cosine function oscillates around
zero, it takes positive and negative values. Negative parts of
the Wigner function are typically an indicator for quantum
interferences, here associated with the quantum mechanical
superposition.

Similarly, the second half of the two-pulse Wigner function
can be decomposed into

Wβ(t),β(t+τ ) = 1
2

{
Wβ(t) + Wβ(t+τ ) + WI

[β(t),β(t+τ )]

}
, (41)

where the Wigner functions of the coherent states |β(t)〉 and
|β(t + τ )〉 are given by Eq. (29). The interference term reads

WI
[β(t),β(t+τ )](U,
)

= 1

π
exp

{
− 1

2
[U − 	

(
2 − cos(ω0(t + τ )) − cos(ω0t)

)
]2

}

× exp

{
− 1

2
[
 − 	(sin(ω0t) + sin(ω0(t + τ )))]2

}
× cos{	 U [sin(ω0t) − sin(ω0(t + τ ))]

+	 
[cos(ω0t) − cos(ω0(t + τ ))]

+	2[2 sin(ω0(t + τ )) − 2 sin(ω0t) − sin(ω0τ )] − �}.
(42)

Its structure is similar to the other interference term as it is
composed of two Gaussian multiplied by a cosine function.

Coming back now to the full two-pulse Wigner function, we
can decompose it into six terms, namely four two-dimensional
Gaussians describing coherent states and two interference
terms:

W2pulse = 1
4

{
W0 + Wα(t) + Wβ(t) + Wβ(t+τ )

−WI
[0,α(t)] + WI

[β(t),β(t+τ )]

}
(43)

One representative example for such a Wigner function
is given in Fig. 3 for a time delay of τ = t0/2, a coupling
constant of 	 = 2, and a phase of � = 0. Having in mind
that the Wigner function can be decomposed into six parts,
we can easily understand its behavior. At t = 0 we see two
Gaussians that were formed due to the first laser pulse. For
t > 0 the two Gaussians each split into two Gaussians, such
that four Gaussians are formed. The peaks of the Gaussians
move on the sketched circles. Moreover, we can identify the
two interference terms, which are structured by positive and
negative stripes. They are found only on the axis between
the pairs of Gaussians forming the cat states. The modulation
with the cosine lies perpendicular to the connecting axis. When
we look at the temporal behavior we see that the interference
terms move corresponding to their attached Gaussians. WI

[0,α(t)]

moves concentrically to α(t). WI
[β(t),β(t+τ )] lies on the center of

the circle where both Wβ(t) and Wβ(t+τ ) are moving. There it
rotates in time.

The corresponding probability distributions for the dis-
placement P (U ) and momentum P (
) are shown in Fig. 4(a)
as functions of time. Because the distributions are obtained
from the Wigner function by integration, their behavior can be
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FIG. 3. (Color online) Series of snapshots of the two-pulse
Wigner function W2pulse(U,
) for a coupling constant 	 = 2. The
circles depict the movement of the Gaussians corresponding to the
coherent states.

easily understood by looking at the Wigner function. At t = 0
the distribution for the displacement P (U ) exhibits two peaks
corresponding to the two Gaussians in the Wigner functions.
Then the Gaussians move together, and at t/t0 = 1/4 many
peaks appear in P (U ), as now the integral over two Gaussians
and one interference term is performed. When for certain
U the interference terms have negative values (at the blue

areas), the integral over the Gaussian is canceled by the
integral over the interference term and thus P (U ) is zero.
If the interference term is positive, P (U ) is increased. At
t/t0 = 1/2, three peaks are observed, with the strength of
the middle peak being twice as high as the strength of the
outer peaks. The middle peak is formed by integrating over
two Gaussians, namely W0 and Wβ(t+τ ), while the outer peaks
are the results of the integral over one Gaussian each. The
integrals over the interference terms are zero as positive and
negative values cancel each other and, thus, in between the
peaks the probability distribution is zero. The distribution
P (U ) at t/t0 = 3/4 looks the same as at t/t0 = 1/4, but
now minima and maxima are inverted, in agreement with the
Wigner function. The mean value 〈U 〉 can be easily deduced
to oscillate in time. In the same way we can understand the
behavior of P (
).

Let us now turn to the question of whether, in this case,
the phonon system exhibits squeezing. For this purpose we
look at the EIF Su and Sπ , which are depicted in Fig. 4(b).
In agreement with the probability distributions, we find that
the EIF are oscillating in time. For t/t0 = 0,1/2,1, Su is large
as the Wigner function is spread out along the displacement
axis, while at t/t0 = 1/4,3/4, Su is small because the Wigner
function is outspread along the momentum axis. The EIF of
the momentum Sπ exhibit the reverse behavior. Still, for all
times, the EIF are above or equal to zero, thus, no squeezing
occurs.

From quantum optics it is known that a single cat state
can exhibit squeezing for certain parameters,11 because the
interference term can lead to a reduced variance, i.e., to
a squeezed state. This only holds when the amplitudes of
the involved coherent states are small enough such that the

probability distribution P(U)(a)
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FIG. 4. (Color online) (a) Contour plot of the probability distributions P (U ) and P (
) as function of times. (b) EIF Su and Sπ . The coupling
constant is 	 = 2.
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FIG. 5. (Color online) Series of snapshots of the two-pulse
Wigner function W2pulse(U,
) for a coupling constant 	 = 0.5.

interference term overlaps with the Gaussians, which is not the
case in Fig. 3. Furthermore, the relative phase of the cat state,
here given by �, determines whether squeezing occurs or not.
In a previous work10 we found most pronounced squeezing
for a phase � = π/2. The coupling constant 	 = 0.5 has been
found to be optimal in terms of very low variances.

Snapshots of the Wigner function obtained for the same
excitation conditions as above but for a coupling constant

	 = 0.5 and a phase � = π/2 are shown in Fig. 5. A decrease
of the coupling constant leads to a reduction of the radii of the
circles as well as to a movement of the center of the β circle
closer to the origin. However, the widths of the Gaussians
and interference terms remain the same. Therefore, in Fig. 5
the constituents of the Wigner function cannot be resolved
anymore. While most of the time the Wigner function is only
positive, at certain times, e.g., at t/t0 = 3/4, clearly negative
parts of the Wigner function can be seen. Indeed, at this time
the Wigner function looks narrower than the typical Gaussian.
If we look at the probability distributions P (U ) and P (
)
shown in Fig. 6(a) and compare them to the Wigner function,
their time behavior can be easily understood. At t/t0 = 1/4 we
see two bumps in the Wigner function, which correspond to the
two broad peaks in P (U ). In contrast at t/t0 = 3/4, the Wigner
function is elongated along the 
 axis and correspondingly
P (U ) is narrow.

To see whether this state exhibits squeezing, the fluctuations
are plotted in Fig. 6(b). Indeed, at times around t/t0 = 3/4,
we find that Su is negative. In agreement with the probability
distribution P (U ), the fluctuations are large at t/t0 = 1/2. The
fluctuations of the momentum Sπ also fall below zero around
the times t/t0 = 1/2 and t/t0 = 1. Thus, the phonons exhibit
squeezing for these parameters.

We have found that by reducing the coupling constant,
the Gaussians and interference terms of the Wigner function
overlap and, thus, by the negative parts of the interference
terms the Wigner function can become narrower. This results
in a narrower probability density and reduced fluctuations
compared to the vacuum state. If we reduce the coupling
constant further, this still holds as we have shown in previous
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FIG. 7. (Color online) Snapshots of the Wigner function at time t/t0 = 3/4 for different phases � = 0,π/2,π at a coupling constant of (a)
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studies10 for 	 = 0.03. We have also found that the squeezing
is most pronounced for a phase � = π/2 and that no squeezing
occurs when � = 0. To understand the influence of the phase,
we analyze the influence of the phase on the Wigner function
and the resulting probability distributions in more detail.
For this purpose, in Fig. 7(a) we have plotted snapshots at
t/t0 = 3/4 of the Wigner function for a coupling constant
of 	 = 2 and for different phases � = 0,π/2, and π . The
only terms that depend on the phase � are the interference
terms WI , as can be seen from Eqs. (40) and (42). When we
compare the three different phases, we find that the maxima
and minima of the cosine function shift according to the phase.
Let us, for example, look at the interference part at U = 0: for
� = 0 there is a minimum at U = 0, while for � = π/2 there
is a node and for � = π there is a maximum. The situation
is reversed at U = 2	 = 4: in this case for � = 0 there is
a maximum at U = 4, for � = π/2, there is a node and for
� = π there is a minimum. We have seen that the probability
distribution P (U ) strongly depends on the interference terms
and can be either narrower or broadened, depending on the
precise position of their negative parts.

When we look at the coupling constant 	 = 0.5 [Fig. 7(b)],
where squeezing is possible, the influence of the phase
becomes clear. For � = π/2, the Wigner function is elongated
along the 
 axis while interference minima on both sides lead
to a narrowing in the U direction. Consequently, squeezing
in the displacement is found. For � = 0 and � = π , on the
other hand, a minimum due to the interference terms is seen
only on one side. It does not lead to a narrowing of the Wigner
function. For these phases, no squeezing occurs.10

In our study we have so far not considered dephasing or
relaxation processes induced, e.g., by the coupling of the
exciton or the LO phonons to acoustic phonons. Let us,
therefore, briefly comment on these phenomena. LO phonons
have a finite lifetime, which is typically limited by the
anharmonic decay into acoustic or lower lying optical phonons.
For typical zincblende-type materials the LO phonon lifetime
is typically in the range of 5–10 ps.33–35 LO phonon energies
in the range of 20–40 meV imply phonon oscillation periods
in the range of 100–200 fs. Thus, at least 25 oscillations
can take place before the LO phonons will decay. The pure
dephasing of the exciton, on the other hand, typically leads
to an initial decay of the interband coherence on a time
scale of about 500–1000 fs.21 However, this process only
limits the maximal time between the two laser pulses, which
in our case is less than a single LO phonon period and,
thus, much shorter than the characteristic pure dephasing
time.

IV. CONCLUSIONS

In conclusion, we have studied the phonon dynamics
and fluctuations of lattice displacement and momentum of
a quantum dot after excitation with ultrafast laser pulses.
The quantum states of the generated phonons have been
represented with the help of the Wigner function. After the
excitation with a single laser pulse, the electronic and phononic
system become entangled. The Wigner function of the phonons
is the sum of two Gaussians, one corresponding to the vacuum
state and one to the coherent phonon state, which is generated
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during the excitation. Accordingly the fluctuations of the
phonon variables show an oscillatory behavior; however, no
squeezing occurs. For the excitation with two laser pulses,
the entanglement between electronic and phononic system
leads to a more complicated structure of the Wigner function,
where four Gaussians corresponding to four different coherent
states as well as two interference terms appear. Because the
interference terms can take negative values, the probability
distributions for the displacement and the momentum can

become narrower than the vacuum distributions and squeezing
is found. The dependence on the phase is crucial as it
determines the position of the negative parts of the interference
terms. When the coupling becomes too strong, squeezing
cannot occur as the interference terms do not overlap with
the Gaussians any more. The Wigner function thus provides a
very intuitive picture to understand the phonon dynamics and
the origin of squeezing for certain excitation conditions and
material parameters.
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