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Optical coherent current control at surfaces: Theory of injection current
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We present a study of optical coherent control of injection currents at surfaces of cubic semiconductors,
predicting that this new optical effect will serve as a surface-sensitive probe of fundamentally and technologically
important crystals with both bulk inversion symmetry (such as cubic diamond 6̄m2 or 6̄) and noncentrosymmetric
systems (such as zinc-blende symmetry 4̄3̄m). In crystals with any of these symmetries, this effect vanishes in
the bulk, but it is allowed in surface regions due to the breaking of the bulk symmetry there. We present the
results of ab initio calculations for injected currents at prototypical clean and Sb-covered GaAs(110)(1 × 1)
and clean Si(111)(2 × 1) surfaces, which have well-understood and experimentally reproducible reconstructions.
The effects are shown to be essentially sensitive to surface structure, and the injected currents can be interpreted
in terms of the surface electronic structure. Calculated magnitudes indicate that the currents should be easily
observable, and the calculated spectra of all of the surfaces demonstrate interesting behavior as a function of
the energy of the incident light. Finally, layer-by-layer analysis provide detailed access to the surface properties
through explicit separation of the contributions coming from different layers.
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I. INTRODUCTION

The understanding and control of structure and chemistry
at surfaces is of fundamental and technological importance.
Optical probes are of particular interest because they do not
require a high vacuum environment, and experiments can be
performed at interfaces as well where other techniques are
impossible to use. However, because of the long wavelength of
the incident light, surface sensitivity typically only arises when
the effect under investigation is absent in the underlying bulk or
can be compensated using special experimental settings. Two
well-known and important examples are reflectance anisotropy
spectroscopy (RAS)1,2 and surface second harmonic gen-
eration (SSHG).3,4 Both have been extensively employed
as accurate and noninvasive passive probes of clean and
adsorbate-covered surfaces. However, RAS or SHG, crucial
for understanding surfaces and interfaces, are not sensitive
or cannot be applied to many important systems: RAS is
not sensitive to, e.g., optically isotropic Si(111), while SHG
signal for III–V or II–VI cubic compounds is influenced
by nonzero bulk contribution. In this article we introduce a
new surface-sensitive optical effect that offers the potential
for not only the study of surfaces and interfaces but for the
control of chemical reactions there. This is based on that part
of the optical susceptibility that demonstrates very unusual
symmetry properties compared to the above mentioned optical
techniques. It relies on the breaking of the bulk symmetry at
the surface, such as other surface-sensitive methods. However,
within the susceptibility framework of optical response this
effect is a nonlinear one since it is proportional to the product
of two incoming electric fields [see Eq. (1)]. Its amplitude,
however, scales linearly with the incident light intensity, which
is proportional to the modulus squared of the amplitude of the
fields [see Eq. (17)]. In some excitation scenarios a current can
be injected in the surface region by an incident optical field,
with a variation in time that is driven by the time dependence
of the incident intensity. In pulsed excitation the effect can
be detected through the emission of THz radiation, which is

caused by acceleration of the charges making up the injected
current.5,6 It can also be studied, in both pulsed and CW excita-
tion setup, by measuring a voltage induced along the surface.7

The simplest such phenomenon is below band-gap optical
rectification, where a polarization current is induced by an
optical field at incident frequencies below the energy gap
of a semiconductor or insulator; the polarization follows the
incident intensity in its time evolution, and its time derivative
yields a current that can drive THz radiation. This current,
which vanishes for CW radiation, is not our concern here.
Rather, we focus on light with incident frequencies above
the band gap, where not only virtual but real excitations are
present. For such incident frequencies there are, generally
speaking, two new currents that can be optically excited.8,9

The first is a shift current, Jshift, associated with the motion
of the center of charge of electrons as they are promoted
from valence to conduction bands; to good approximation it is
proportional to the pulse intensity.10 The second is an injection
current, Jinj, associated with a polar asymmetry of injected
electrons and holes in reciprocal space; to good approximation
dJinj/dt is proportional to the pulse intensity as well, and
the injection can be understood as a quantum interference
between absorption events associated with different linear
polarizations. In both effects the energy increase of the carriers
is provided by the electromagnetic field, while the increase
in momentum is provided by the crystal lattice. In the bulk
of crystals without inversion symmetry the injection and
shift currents fall into the phenomenological categories of a
circular photogalvanic effect and a linear photogalvanic effect,
respectively,11 and their description has been formulated in
the context of nonlinear optics.8,9,12,13 As shorter and shorter
pulses are considered, the distinction between these terms (and
optical rectification, which still exists above the band gap)
becomes less sharp. Nonetheless, in the CW limit the injection
current in a bulk medium is characterized by a third rank tensor
ηabc,

J̇ a
inj = 2ηabc

bulk(0; ω,−ω)Eb(ω)Ec(−ω), (1)
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where the superscripts indicate Cartesian components that
are to be summed over if repeated, and Ea(ω) indicates the
electric field along the “a” axis at the incident frequency
ω; in the independent particle approximation the coefficient
ηabc

bulk is antisymmetric in the components b and c and purely
imaginary.8,9 For slowly varying pulses the intensity-like term
Eb(ω)Ec(−ω) can be multiplied by a function describing the
time dependence of the intensity in the pulse,8 and the resulting
equation can be used to determine the injected current in the
absence of scattering and space charge effects. The tensor
ηabc

bulk gives the injected current along direction “a” induced by
two electric fields along directions “b” and “c,” respectively.
These fields must be perpendicular to each other due to the
fact that the tensor is antisymmetric on b and c indices, and, in
general, these fields are phase shifted such as that of circularly
polarized light. This phase shift allows the coherent control of
the injected current [see Eq. (17)].

In this paper we focus on the injection current that, being
forbidden in the bulk, becomes allowed at surfaces of crystals
or interfaces. This includes not only centrosymmetric crystals
(such as Si) but also the crystal classes 6̄m2, 6̄, and 4̄3̄m, the
last of which includes typical III–V semiconductors such as
GaAs. We note that the different effects, mentioned above,
can be distinguished from each other by their dependence on
pulse width and from phase-insensitive photovoltaic effects by
their dependence on the polarization of the incident field.8,14

We feel that current injection is the most striking of these
as-yet-uninvestigated surface processes, since it vanishes in
the bulk in many semiconductors of both fundamental and
applied interest, thus reflecting purely surface properties. Fur-
thermore, the injection current would give an experimentalist
the opportunity to “shoot” electrons and holes in one or another
direction along the surface, which is particularly exciting.

At a surface of the above semiconductors, Eq. (1) can be
replaced by a corresponding equation involving the surface
injection current J̇S

inj (here S stands for surface) and a surface
response coefficient ηS,abc. We evaluate ηS,abc for the well-
studied Si(111) 2 × 1 reconstructed surface15,16 and two of
the GaAs(110) surfaces;17 the results demonstrate that the
injection current is sensitive to the fine details of surface
structure and the type of chemical bonding. Furthermore, we
show that it can be understood in a simple way in terms of
the properties of electronic surface states, and it should be
amenable to experimental study.

The article is organized as follows. In Sec. II we present
the formalism for the surface-injected current, based on an
approach that is well suited for a surface calculation. Then, in
Sec. III we present the computational details of the ab initio
method used in our calculations, and in Sec. IV we discuss
the results for the surfaces under consideration. Finally, the
conclusions are given in Sec. V.

II. THEORY

In this section we derive the expressions for the generation
rate of the injection current suitable for surfaces and interfaces.
We model the semi-infinite crystal using a slab consisting of N

atomic layers inside a supercell of total height L and volume
� = AL, where A is the area of the surface unit cell. The
supercell includes a Lv-thick vacuum region required to use

a repeated slab scheme,18 thus, L = Ls + Lv , where Ls is
the semiconductor slab thickness. In a slab calculation, it is
often important and instructive to calculate the response from
a particular layer of the slab. A convenient way to accomplish
the separation of the response of any layer is to introduce the
so called “cut function,” F�(z), as a top-hat cut function that
selects a given layer,

F�(z) = �
(
z − z� + �b

�

)
�

(
z� − z + �

f

�

)
, (2)

where � is the Heaviside function. Here, �
f/b

� is the distance
that the �-th layer extends toward the front (f ) or back (b)
from its z� position. Thus, �

f

� + �b
� is the thickness of layer

�. Such a function was originally used by Hogan et al.19

and Castillo et al.,20 and more recently was put on a more
solid basis through a microscopic calculation of the linear
optical response of surfaces by Mendoza et al.21 The above
scheme known as a layer-by-layer formalism was successfully
used to provide deeper and optional understanding of various
surface optical responses, calculated initially for the whole
slab.19–22 For this work, however, the use of the layer-by-layer
approach is mandatory since without layer-by-layer separation
it is impossible to perform a physically relevant calculation for
the surface injection current using slab method.

To derive an expression for the rate of change of the
injection current, suitable for a surface, we follow a Fermi’s
golden rule (FGR) approach. We have to stress that for a bulk
calculation one may use the formalism of Ref. 9 based on the
usual approach for nonlinear optics. However, the FGR gives a
simpler and more insightful derivation of the surface injection
current. We use the independent particle approximation and,
as it is usually done for numerically expensive simulations,
neglect local field and excitonic effects and treat the electro-
magnetic field classically, while the electrons in semiconductor
slabs are treated quantum-mechanically. The current density
operator is written as

ĵ a(r) =
∑
mnk

ja
nm(r; k)ĉ†nkĉmk. (3)

Here ĉ
†
nk (ĉnk) creates (annihilates) an electron in a Bloch state

|nk〉, labeled by a band index n and crystal momentum k, and

ja
nm(r; k) = −ih̄

2me

[
ψ∗

nk(r)
∂

∂ra
ψmk(r) − ψmk(r)

∂

∂ra
ψ∗

nk(r)

]

(4)

are the matrix elements of the current operator, where ψnk(r) =
〈r|nk〉 is the coordinate representation of the ket |nk〉 and me is
the mass of the electron. To move into an electron-hole picture,
we introduce electron (â†,â) and hole (b̂†,b̂) operators in the
usual way through the transformations

ĉ
†
nk = â

†
ckδnc + b̂vkδnv,

and

ĉnk = âckδnc + b̂
†
vkδnv,
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where δnc (δnv) is one if n is a conduction (valence) band
c(v) and zero otherwise. In the electron-hole picture, Eq. (3)
becomes

ĵ a(r) =
∑
cc′k

ja
cc′ (r; k)â†

ckâc′k +
∑
vv′k

ja
vv′ (r; k)b̂vkb̂

†
v′k

+
∑
cvk

ja
cv(r; k)â†

ckb̂
†
vk +

∑
cvk

ja
vc(r; k)âckb̂vk,

from where one can show that for the ground-state
〈0|ĵ a(r)|0〉 = 0, and for an arbitrary electron-hole state, |cvk〉,

〈cvk|ĵ a(r)|cvk〉 = ja
cc(r; k) − ja

vv(r; k),

where we used the anticommutator relationships {âck,â
†
c′k} =

δcc′ and {b̂vk,b̂
†
v′k} = δvv′ , with the anticommutator of all other

combinations of operators equal to zero.
In order to calculate the expectation value of the injected

current,

〈ja(r)〉 = 〈φ(t)|ĵ a(r)|φ(t)〉, (5)

we expand the time-dependent wavefunction as

|φ(t)〉 = C0(t)|0〉 +
∑
vck

Ccvk(t)|cvk〉

and use standard quantum mechanical perturbation theory to
find that the FGR gives

d

dt
|Ccvk(t)|2 = 2π |Vcvk|2δ(ωcv(k) − ω),

with

Vcvk = − e

h̄
rcv(k) · E(ω),

where we have used −er · E(t) as perturbation with r the posi-
tion operator of the electron of charge e, with rnm(k) its matrix
elements, and E(t) the incoming monochromatic electric field
written as E(t) = E(ω)e−i(ω−iη)t + c.c. The parameter η > 0
is used to turn on the perturbation adiabatically and the limit
of η → 0 was taken at the end of the calculation. Also, we
assumed the long wavelength approximation for the incoming
field. Using Eq. (5) we get that the rate of change of the
macroscopic injection current, Jinj(r), is given by

J̇ a
inj(r) = e

d

dt
〈ja(r)〉

= 2π�

∫
d3k

8π3

×
∑
vc

|Vcvk|2e
[
ja
cc(r; k) − ja

vv(r; k)
]
δ[ωcv(k) − ω],

where we used the fact that in the continuous limit of k,
∑

k →
�

∫
dk/(8π3), with � the unit cell volume. The above equation

gives the rate of change of the injection current as a function
of r. In terms of a response function we follow Ref. 9 to write

J̇ a
inj(r) = ηabc(r|0; ω,−ω)Eb(ω)Ec(−ω)

+ ηabc(r|0; −ω,ω)Eb(−ω)Ec(ω)

= ηabc(r|0; ω,−ω)Eb(ω)Ec(−ω) + c.c.

= 2ηabc(r|0; ω,−ω)Eb(ω)Ec(−ω), (6)

where E(−ω) = E∗(ω) and

ηabc(r|0; ω, − ω) = πe3

h̄2 �

∫
d3k

8π3

∑
vc

�a
cv(r; k)rb

cv(k)rc
vc(k)

× δ[ωcv(k) − ω]. (7)

We defined

�a
cv(r; k) ≡ ja

cc(r; k) − ja
vv(r; k)

and used the hermiticity of rnm(k) = r∗
mn(k). Using time-

reversal symmetry, rnm(−k) = rmn(k) and jnm(r; −k) =
−jmn(r; k), we can rewrite Eq. (7) as

ηabc(r|0; ω, − ω) = iπe3

h̄2 �

∫
d3k

8π3

∑
vc

�a
cv(r; k)Im

× [
rb
cv(k)rc

vc(k)
]
δ[ωcv(k) − ω]

= πe3

2h̄2 �

∫
d3k

8π3

∑
vc

�a
cv(r; k)

× [
rb
cv(k),rc

vc(k)
]
δ[ωcv(k) − ω], (8)

where we obtain that the tensor ηabc(r|0; ω, − ω), which
gives the rate of injection current at observation point
r through Eq. (6), is purely imaginary and it satis-
fies, among other relations, ηabc(r|0; ω, − ω) = −ηacb(r|0; ω,

−ω) = −[ηabc(r|0; ω, − ω)]∗. These relations were used in
the derivation of Eq. (6).

In the case of surfaces, using Eq. (2) we define the
contribution to the injected current density from the �-th layer
of the slab as

J̇ a
inj(�) ≡ 1

�

∫
drF�(z)J̇ a

inj(r)

= 1

�

∫
drF�(z)ηabc(r|0; ω,−ω)Eb(ω)Ec(−ω)

≡ ηabc(�|0; ω,−ω)Eb(ω)Ec(−ω), (9)

where

ηabc(�|0; ω,−ω) = iπe3

h̄2

∫
d3k

8π3

∑
vc

�a
cv(�; k)Im

× [
rb
cv(k)rc

vc(k)
]
δ[ωcv(k) − ω], (10)

with

�a
cv(�; k) =

∫
drF�(z)�a

cv(r; k). (11)

The above integral involves the integration of ja
nm(r; k), which

from Eq. (4) gives∫
drF�(z)ja

nm(r; k)

= −ih̄

2me

∫
drF�(z)

[
ψ∗

nk(r)
∂

∂ra
ψmk(r) − ψmk(r)

∂

∂ra
ψ∗

nk(r)

]

= 1

me

∫
drψ∗

nk(r)

[F�(z)p̂a + p̂aF�(z)

2

]
ψmk(r)

= 1

me

∫
drψ∗

nk(r)P̂a
� (z)ψmk(r)

≡ 1

me

Pa
nm(�k),

195326-3



CABELLOS, MENDOZA, AND SHKREBTII PHYSICAL REVIEW B 84, 195326 (2011)

where we integrated by parts the second term in the right-hand
side of the above equation, wrote p̂a for −ih̄∂/∂ra , and defined

P̂a
� (z) = 1

2 [F�(z)p̂a + p̂aF�(z)],

which is the momentum operator suitable for a “layer-
by-layer” calculation.21 If we take F�(z) = 1 throughout
the supercell, Pa

nm(�; k) → pa
nm(k), and Eq. (11) leads

to �a
cv(�; k) → �a

cv(k) = va
cc(k) − va

vv(k), with va
nn(k) =

pa
nn(k)/me the electron’s velocity for band n. In turn,

ηabc(�|0; ω, − ω) → ηabc
bulk(0; ω,−ω), which from the second

line of Eq. (8) leads to the same result as that of Eq. (55)
of Ref. 9 derived for a bulk system from a nonlinear optics
approach. Finally, Eq. (11) reduces to

�a
cv(�; k) = Va

cc(�; k) − Va
vv(�; k), (12)

where Va
nn(�; k) = Pa

nn(�; k)/me is the electron’s velocity
along the Cartesian direction “a” for the n-th energy band
and the �-th layer. With Eq. (12), ηabc(�|0; ω,−ω) of Eq. (10)
can be readily calculated. An explicit expression for Va

nn(�; k)
in terms of plane waves is given in Ref. 21.

Before we proceed, some words of caution are required.
The electric field of Eq. (6) is implicitly taken as uniform in
the region of interest, i.e., Eq. (9). Clearly this is inappropriate
for the normal to the surface z component of the electric field,
which for semiconductors can change by orders of magnitude
as one moves from vacuum to within the semiconductor. Thus,
all aspects of the optical response at an interface due to this
component of the electric field would require a self-consistent
calculation of the variation of Ez across the surface region.23

Although the calculation of this variation is an important issue,
we do not address it here. Instead, we focus on the commonly
used experimental geometry of normal incidence. Then the
electric field vectors are in the plane of the interface xy, and
they can be taken as uniform through the interface region, by
neglecting the local field corrections that is typically done even
in many less numerically consuming bulk calculations. Also,
any calculation of the z component of the injection current
density, regardless of what fields are involved, would have to
be handeled with care, since injection current in the z direction
would at a real surface correspond to a directed photoionization
effect, and that of course cannot be dealt with correctly in a
supercell calculation such as ours.

To perform the integral over the Brillouin zone (BZ), as
required by Eq. (10), we follow Ref. 24 and use only k points
in an irreducible “wedge” of the BZ. At any k point outside
a specified irreducible wedge, the matrix elements ra

nm(k) and
Va

nm(�,k) can be determined from the matrix elements at an
equivalent point inside the irreducible wedge via the point
group operation relating the two k points. Indeed, for each
point group symmetry operation, characterized by a 3 × 3
matrix αs , the following relations are satisfied: ra

nm(αk) =
αabrb

nm(k), Va
nm(�,αk) = αabVb

nm(�,k), and ωn(αk) = ωn(k).
To calculate any given tensor component of Eq. (10), we
use a scalar representation and thus the integrand transforms
throughout reciprocal space as a scalar, and so the integral
over any irreducible wedge gives the same result. Each

tensor component is invariant under the point group symmetry
operations, and the scalar representation gives

ηijk(�|0; ω,−ω) = 1

Nsym

Nsym∑
s=1

αia
s αjb

s αkc
s ηabc(�|0; ω,−ω),

(13)

which more accurately reflects how we compute the response,
with Nsym the number of point group operations in the BZ.
From Eq. (10) this gives

ηijk(�|0; ω,−ω) = iπe3

h̄2Nsym

∫
w

d3k

8π3

∑
vc

Nsym∑
s=1

αia
s αjb

s αkc
s �a

cv

× (�; k)Im
[
rb
cv(k)rc

vc(k)
]
δ(ωcv(k) − ω),

(14)

where the subscript w on the integral symbol indicates that the
integral should be done over an irreducible wedge.

The above expression for ηijk(�|0; ω,−ω) is such that for
a centrosymmetric system (such as, e.g., Si bulk or a slab
with a center of symmetry) it is identically zero, since for
such a system the matrix elements ra

nm are real and then the
imaginary part term in Eq. (14) would vanish, regardless
of the point group symmetry operation αs . However, for
noncentrosymmetric systems, such as GaAs and GaAs-based
slabs, Im[rb

cv(k)rc
cv(k)] is in general different from zero, and

ηabc(�|0; ω,−ω) from Eq. (10) is finite, which is spurious. For
these systems the vanishing of ηijk(�|0; ω,−ω) is through their
point group symmetry operations as given by Eq. (13). Indeed,
as we have mentioned, for noncentrosymmetric bulk GaAs is
its crystal class 4̄3̄m that has the corresponding point group
symmetry operations αs that render η

ijk

bulk(0; ω,−ω) ≡ 0.

A. Surface injection current

In order to define the injection current suitable for a surface
calculation, we take into account the following observations.
As it was mentioned before, the slab that we use to represent
the surface of the system consists of N layers. Such slab
must be noncentrosymmetric; otherwise, as explained above
ηijk(�|0; ω,−ω) = 0. As the point group symmetry operations
of the slab is different from that of the bulk of the system in
question, we should expect a nonvanishing ηijk(�|0; ω,−ω)
for every layer of the slab, which is a spurious effect
that has to be excluded from the surface-originated signal.
To tackle this problem, let us introduce Nc, the minimum
number of layers inside the slab at which we can neglect
changes of ηijk(�|0; ω,−ω) for different �. If �B , is the
layer number at the middle of the slab, it is reasonable
to expect that for layers, �̃, close to �Bηijk(�̃|0; ω,−ω) �
ηijk(�B |0; ω,−ω). When approaching the layers, close to
the surface, deviation of ηijk(�|0; ω,−ω) from its value at
�B is only due to the surface effects. Therefore, we can
use (1/A)

∑�B

�=1 �[ηijk(�|0; ω,−ω) − ηijk(�B |0; ω,−ω)] as a
surface response. The validity of such an assumption will
be proven when presenting the results of the calculation for
GaAs surfaces. The value of Ls should be chosen such that
the calculated response converges with respect to the slab
thickness and the value of Lv should be large enough to
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avoid the interference of the slabs in adjacent unit supercells.25

Ls includes all the layers of the slab, but those layers close
to the center of the slab have to yield zero response, as
discussed before. To finally get the expression for the injection
current, we introduce an effective thickness Leff of the layers
that adds to the surface contribution. If �eff is the last layer
(counting from the surface) that contributes, we define the
surface response as

ηS,ijk(0; ω,−ω)

≡ Leff

�eff∑
�=1

[ηijk(�|0; ω,−ω) − ηijk(�B |0; ω,−ω)]

=
�eff∑
�=1

[η̃ijk(�|0; ω,−ω) − η̃ijk(�B |0; ω,−ω)], (15)

with η̃ijk(�|0; ω,−ω) = Leffη
ijk(�|0; ω,−ω). The next layers

that follow �eff till �B can be neglected compared to the total
sum. Thus, only the surface layer and the layers close to it will
contribute to ηS,ijk(0; ω,−ω). Finally, from Eq. (9) we write

J̇
S,i
inj = ηS,ijk(0; ω,−ω)Ei(ω)Ek(−ω), (16)

as the surface injection current, where both J̇
S,i
inj and

ηS,ijk(0; ω,−ω) have the units of their bulk counterparts times
that of length as they should for a surface response.

III. COMPUTATIONAL DETAILS

The numerical part of our layer-by-layer analysis is
performed with the ABINIT plane-wave code based on the
density functional theory (DFT) within the local density
approximation (LDA).26 A self-consistent calculation is car-
ried out first to determine the Kohn-Sham potential for the
relaxed surface structures. We use the separable Hartwigsen-
Goedecker-Hutter (HGH) pseudopotentials27 within the LDA
as parametrized by Goedecker et al.28 In our calculations
for Si and GaAs surfaces, we exclude the semicore states,
as it is usually done, though they can be included with
more computational effort. For optics in Si and GaAs, the
core state contribution is negligible. Once the Kohn-Sham
potential is determined, we find the wavefunctions, and then
the matrix elements are calculated for k-points on a specially
determined tetrahedral grid. This grid is used in the integrals
of Eq. (14), which are conveniently done by a linear analytic
tetrahedral integration method.24 A set of 802 k-points in
the irreducible surface Brillouin zone (SBZ) and a cut-off
energy of 10 Hartree produces converged results for each
of the surfaces. The required matrix elements are calculated
as proposed in Ref. 21. To correct the DFT LDA energy
gap underestimation with respect to the experimental value,
the quasiparticle (QP) corrections, such as in Refs. 29–31,
have to be included. However, for the very large slabs used
in this study it is computationally prohibitive to apply such
approaches. On the other hand, the QP corrections could
accurately be incorporated at the scissors operator level with
great success.32,33 Therefore, we use such a correction, which
for the calculated response only implies the rigid shift of the
optical spectra by the scissors correction.8,34 The interaction
term of the Hamiltonian −er · E is in the so-called length

gauge. In such a case, care should be taken in order to properly
incorporate the scissors correction in systems with periodic
boundary conditions such as the supercell used in here. Indeed,
one has to properly decompose the position operator r into
interband and intraband contributions in order to include the
scissors operator. This is now a well-defined approach, as in
Ref. 8, from where we follow the same procedure. Finally, we
have neglected local field and excitonic effects; including any
of these is a numerical challenge for the very big slabs that we
are using.

As we mentioned above, a noncentrosymmetric slab is
required for the calculation; one of its surfaces (“front surface”)
represents the surface under investigation and has its other
surface (“back surface”) terminated differently. The “middle”
of the slab consists of planes of atoms at their ideal bulk
positions. It is common to terminate the back surface with
hydrogen, since H atoms can simply saturate the dangling
bonds, thus producing a “bulk-like” termination to the slab.35

However, as the response of the front surface should not
depend on the response of the back surface, it is also possible
and instructive to terminate the back surface with a different
reconstruction. Indeed, for GaAs(110) the front surface of the
slab can represent the clean surface, while the back surface can
represent the Sb-covered surface. Such a slab not only ensures
the absence of centrosymmetric symmetry but also could be
used to prove the validity of the layer-by-layer approach for
the calculation of the surface injection current.

IV. RESULTS

In this section we present our results using the full-
band electronic scheme developed in Sec. II. The chosen
examples are the clean and Sb-covered GaAs(110)(1 × 1)
relaxed surfaces and the clean Si(111)(2 × 1) reconstructed
surface (see Fig. 1). We have considered these surfaces since
their structures are well understood and are easy to reproduce
experimentally. The nonzero (symmetry allowed) components
of ηS,abc(0; ω,−ω) for all the surfaces under consideration are
the yyx, xzx, and yzy components. The last two components
include the electric field perpendicular to the surface, and as
discussed above, it requires a detailed calculation of Ez.23

Therefore, although the injection current should exist for
all three components, here we only present results for the
first yyx component. The ηS,yyx(0; ω,−ω) tensor component
requires a field circularly polarized and parallel to the surface,
which corresponds to normal incidence, a setup mostly used in
optical experiments. For instance, taking Ex(ω) = E0(ω) and
Ey(ω) = E0(ω)eiφ , shifted with respect to the x component
by a phase φ, one gets from Eq. (16) that

J̇
S,y

inj = 2iηS,yyx(0; ω,−ω)|E0(ω)|2 sin φ, (17)

from where it follows that the rate of injected current along y

is proportional to the phase difference of the field through a
sine dependence.

A. GaAs(110) surfaces

The GaAs surfaces considered here are the clean (110) and
Sb-covered (110) surfaces, both (1 × 1) relaxed. The clean
surface contains a zigzag chain of alternating Ga and As atoms
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FIG. 1. (Color online) Top and side views of the (a) clean
GaAs(110)(1 × 1) surface, (b) Sb-covered GaAs(110)(1 × 1) sur-
face, and (c) clean Si(111)(2 × 1) surface. The coordinate axes for the
GaAs(110)(1 × 1) surfaces are x = [001], y = [110], and z = [110],
and for the Si(111)(2 × 1) are x = [21 1], y = [011], and z = [111].
The shaded area is the surface unit cell.

along the y direction [110], which are replaced by Sb atoms in
the Sb-covered surface. To better describe the surface states for
the clean36 and Sb-covered37 surfaces, the scissors shift used
is 1 eV for the clean surface and 0.8 eV for the Sb-terminated
one.

Figure 2 demonstrates the photon energy dependence of
η̃yyx(� = 1|0; ω,−ω) for the clean GaAs(110) surface, as
calculated for two slabs, both of them have the upper part
terminated by the structure of the clean GaAs(110). The first
slab has a Sb-terminated back surface, while the second slab

FIG. 2. (Color online) η̃yyx(� = 1|0; ω,−ω) vs. the photon energy
for the clean GaAs(110)(1 × 1) surface. The solid line is for an slab
with back-surface Sb-terminated, whereas the dotted line is for an slab
with back-surface H-terminated. Here the number of layers Nc = 25.

FIG. 3. (Color online) η̃yyx(� = 1|0; ω,−ω) vs. the photon energy
for the clean GaAs(110)(1 × 1) surface and for different values of the
number of layers N . The slab has its back-surface Sb terminated.

has H-terminated back surface. We have to stress that both
results are very similar, clearly indicating that the layer-by-
layer approach is able to correctly provide the same results
for the front surface regardless of what the back-surface
termination is. In Fig. 3 we show η̃yyx(� = 1|0; ω,−ω) vs.
the photon energy for the clean GaAs(110) surface obtained
from a slab with Sb-terminated back surface for N = 13, 25,
and 33 layers. We notice that the injection current curves for
25 and 33 layers are rather similar and that the difference
is more pronounced for the slab with 13 layers. This can be
understood simply from the fact that a slab with 13 layers is
not sufficiently thick to completely decouple the front surface
from the back surface of the slab. Still, the slab with 13 layers
produces reasonable results and it might be used to estimate
the injection current if a bigger surface unit cell is required. We
take Nc = 33 for the slab that represents both the clean and the
Sb-covered GaAs(110) surfaces. We found that for both clean
and adsorbate covered surfaces �eff = 5 with is corresponding
value of Leff properly included in η̃yyx(�|0; ω,−ω).

Figure 4 shows ηyyx(�B |0; ω,−ω) for the layer at the
middle, �B = 17, for the GaAs(110) slab with Nc = 33 and
the back surface terminated with Sb, and η

yyx

bulk(0; ω,−ω) using
only the two αs obtained for this surface that belongs to
the space group Pm.26,38 We remark that η

yyx

bulk(0; ω,−ω) was
calculated for a bulk unit cell without using the full set of αs

that correspond to the 4̄3̄m (zincblende) symmetry of GaAs.
The resemblance of both results is striking and proves the
validity of the layer-by-layer approach also for the “bulk”
layers of an slab. We have checked that the three layers next
to �B in either direction toward the front or back surface are
rather similar and, thus, Eq. (15) is a reasonable definition for
the surface response.

In Fig. 5 we show the total surface response ηS,yyx(0; ω,−ω)
and its layer-by-layer components η̃yyx(�|0; ω,−ω) for the
first three layers of both the clean and the Sb-covered
GaAs(110)(1 × 1) surfaces. Notice a substantial sensitivity
of the signal to the surface termination type as the spectra
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FIG. 4. (Color online) ηyyx(�B |0; ω,−ω) and η
yyx

bulk(0; ω,−ω) vs.
the photon energy, see text for details.

are different in both cases, especially below 5 eV, the energy
range that is easily accessible experimentally. The injection
current for both surfaces are of the same order of magnitude
and demonstrate distinctive spectral features. For instance, the
strong dip at ∼4.3 eV for the clean surface originates from
the well-known E2 critical point (CP) of GaAs electronic band
structure, and the small dip ∼3.1 eV can be associated to the E1

CP. Of course these resonances are modified by the presence
of the surface and adsorbate. Indeed, the Sb-covered surface
demonstrates richer spectral features due to the surface- and
bulk-surface-modified electronic states. For this Sb-modified
GaAs(110), a dip-peak feature around 3 eV is related to the
surface modified E1 CP, and a dip around 4.6 eV can again
be related to the surface modified E2 CP. Likewise, the other
structures could also be related to different CP (for instance, E′

1
for the Sb-covered surface at ∼5.5 eV) or to the interference
of several of these CP in combination with surface resonances.
The layer-by-layer decomposition of the injection current
signal also allows us to see how these resonances depend on the
atomic layer of the surface. For the clean surface we see that the
first layer of Ga and As atoms dominates the E1 dip, whereas
for the E2 dip, there is also a contribution from the second
layer and a smaller one from the third. For the Sb-covered
GaAs(110), we see that the top Sb layer contribution to the
injection current dominates, in particular, in the E1 and E2

spectral features, while only a small contribution comes from
the first and second layer of Ga and As atoms. From Eq. (17)
it follows that the injected current flows along the y direction;
that is, excited electrons move along the zigzag chains of
atoms. By changing the phase difference between two light
polarizations we can efficiently control the current direction
along the surface. As explained above, it is interesting to see
how different spectral features of ηS,yyx(0; ω,−ω) could be
assigned to different layers. For instance, the negative peak at
∼3 eV in the clean surface essentially comes from the first
layer of atoms, whereas the peak at ∼4.3 eV mainly comes
from the first three atomic layers, with a larger contribution

FIG. 5. (Color online) ηS,yyx(0; ω,−ω) and η̃yyx(�|0; ω,−ω) for
the clean (top panel) and one-monolayer Sb-covered (bottom panel)
GaAs(110)(1 × 1) surfaces. � = 1 in the clean (Sb-covered) surface
corresponds to the zigzag chains of Ga and As (Sb) atoms, and � = 2,3
corresponds to the second and third layer of Ga and As atoms for both
surfaces.

from the first layer, though. For the Sb-covered surface, the
negative peak at ∼2.7 eV is dominated by the current along Sb
zigzag chains that correspond to � = 1 in Fig. 5, and then the
positive peak at 3.15 eV has contributions mainly from the first
three layers. It is interesting that the antimony layer and second
GaAs layer (� = 3) produce a current in the same negative y
direction, whereas the contribution from the first GaAs layer
(� = 2) points in the opposite direction. Above the 3.1 eV peak,
the spectrum is partially dominated by the Sb layer, although
there are clear contributions to the current from the first two
GaAs layers. Finally, the layer-by-layer contribution for � = 3
is different for the clean and antimony-terminated surfaces
despite similar neighboring layers (� = 2 and � = 4). It again
demonstrates essential sensitivity of the surface injection
current to even minor modification in the atomic positions.
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B. Si(111) surfaces

Now we show the results for a clean cleaved Si(111) surface.
This surface demonstrates a 2 × 1 Pandey reconstruction
and is characterized by buckled zigzag chains along the y
([011]) direction.15,39 The upper atoms, labeled 2 in Fig. 1,
show sp3-like electron configuration with one dangling bond
predominantly filled, while the lower atoms labeled 1 exhibit
sp2-like bonding with their pz dangling bond predominantly
empty. As for the GaAs(110)(1 × 1) surfaces, the current
moves along the zigzag chains of Si atoms along y. In Fig. 6,
we show ηS,yyx(0; ω,−ω) and η̃yyx(�|0; ω,−ω) vs. the photon
energy for the clean Si(111) 2 × 1. The different values of �

correspond to the topmost atomic layer (� = 1) composed by
the Si buckled chains, and the next two atomic layers (� = 2,3)
of Si atoms. For this surface we used a slab that is H-terminated
on its back with Nc = 19 layers, and a scissors shift of
0.43 eV was applied.40 We see that the surface response, which
dominates in the injection current, starts rising sharply around
0.5 eV, which corresponds to the transitions between the
surface states, reaching its maximum at 0.75 eV and followed
with a sharp decline. Above 4 eV the signal is basically zero.
The calculated layer-by-layer responses, η̃yyx(�|0; ω,−ω),
convincingly demonstrates that the surface signal is dominated
by a contribution from the first two atomic layers and that
after the third layer η̃yyx(� � 4|0; ω,−ω) ≈ 0 (not shown in
the figure). Therefore, Leff would correspond to the total
thickness of the first 3 layers and �eff = 3. Surprisingly, very
few atomic layers beneath the Si(111)2 × 1 surface behave
as noncentrosymmetric. After the fourth layer, the system
can be treated as centrosymmetric as far as this response is
concerned. As can be seen from Fig. 6, the corresponding
surface injection current occurs below the direct bulk band
gap of Si (approximately around 3 eV), this is because the
prominent surface energy levels appear within the gap of the
projected-bulk band structure. This was experimentally shown
in Ref. 40 for the surface optical response of the Si(111)2 × 1
surface. In contrast to the GaAs(110) surfaces, we see that
for Si(111)2 × 1, the surface electronic transitions dominate
the injection current with almost no contribution from the
surface-modified bulk transitions. Indeed, in Fig. 6 we see a
very small spectral feature above 3 eV that is related to the E1

CP of Si compared to transitions between the surface states
due to the surface chains.

C. Surface vs. bulk experimental detection estimate

The detection of injection current usually requires measure-
ments of voltage induced along the surface7 or terahertz radia-
tion generated by an incident optical pulse.5,6 To demonstrate
that the surface injection current effect is strong enough to be
observed experimentally, we refer to the study of bulk injection
current in hexagonal CdSe bulk by Laman et al.7 There the
current injection generation was restricted to the penetration
depth l ≈ 1.8 μm of the incident radiation; therefore, the signal
can be associated with an effective surface injection coefficient
ηS = lηB , where ηB is the bulk coefficient. The injection
current was studied in the presence of carrier momentum
relaxation time, τ ≈ 40 fs, resulting in Jinj ∝ 4τηB |E0|2 [see
Eq. (17)], where an effective surface current J S

inj = lJinj of

FIG. 6. (Color online) ηS,yyx(0; ω,−ω) and η̃yyx(�|0; ω,−ω) for
the clean reconstructed Si(111)(2 × 1) surface. � = 1 corresponds to
the buckled zigzag chains of Si atoms.

magnitude 5.4 nA/cm was detected,7 corresponding to an
effective surface injection coefficient ηS = 90 mC3/(J2s2).
This experimental value is larger than our calculated values by
less than two orders of magnitude. However, the measurements
of injection current in Ref. 7 were done at very low incident
light intensity of only 0.06 W/cm2. As seen from Eq. (17),
the signal from these effects scales linearly with the incident
intensity; thus, an easily observable signal from surface
injection current should be possible at intensities low enough
to avoid surface damage. Finally, the injection current periodic
dependence on the phase shift between two perpendicular light
polarizations provides a straightforward way to discriminate
the injection current from various surface photovoltaic effects.

V. CONCLUSIONS

We have developed a layer-by-layer formalism for the
coherent control of the surface injection current. An efficient
numerical approach to calculate the current at the surfaces
of semiconductor crystals was proposed. The strong surface
sensitivity of the injection current was clearly demonstrated:
since the injection current is zero for crystals with bulk inver-
sion symmetry or 6̄m2, 6̄, and 4̄3̄m (zincblende) symmetry, the
experimental measurements of such a current present a valu-
able tool for noninvasive characterization of semiconductor
surfaces. Following the layer-by-layer approach, we derived
the macroscopic response tensor that describes the surface
injection current. We performed ab initio calculations of the
current to evaluate the response for a few prototypical sur-
faces such as the clean and Sb-terminated GaAs(110)(1 × 1)
surfaces and the clean Si(111)(2 × 1) surface. The surface
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injection current is found to be very sensitive to such
important semiconductor surface parameters as reconstruction,
adsorbates type, and bonding, which modify the electronic
band structure. At all surfaces considered, contributions of the
surface states are clearly present in the calculated spectra of
the surface injection coefficients. The layer-by-layer analysis
proved to be crucial in order to extract the response of each
atomic layer of any given system and, thus, allows us to explain
the surface behavior as the sum of the contributions of the
different atomic planes.

Like other conventional optical techniques, injection cur-
rent measurements requires a comparatively simple experi-
mental setup. An attractive feature of the proposed effect
is that the surface injection current involves real transitions
rather than virtual transitions between electron bands where
the system is left in the final excited state. This is in contrast, for
instance, to SSHG, which is a parametric process and typically
only probes virtual excitation to excited states. Since the nature
of these initial and final excited states can be understood in
terms of the symmetry and the structure of the surface, it
is possible to interpret the injection current in a much more
straightforward way than the signal due to SSHG. Comparing
to RAS, which is not sensitive to highly symmetric surfaces,
such as Si(111)(1 × 1)As or Si(111)7 × 7, the injection current
exists for such or similar surfaces.41 Another attractive feature
of the effect is that the injection current is linear in the incident
optical intensity, unlike the quadratic dependence of SSHG.

Although detection by terahertz radiation requires short pulses,
we note that electrode detection of the injection current has
been shown to be possible even with CW radiation.6

Finally, numerical estimates indicate that the surface in-
jection current should be readily measurable, thus, offering
the possibility of using optical coherent control to manipulate
the actual motion of the electron at the surface. This leads to
the exciting possibility of catalyzing and controlling growth
and chemical reactions at surfaces by optically controlling
directed electron motion. Experiments to investigate the
surface injection current are clearly warranted.
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de Investigaciones en Óptica for support during a partial
sabbatical visit.

1P. Weightman, D. Martin, R. Cole, and T. Farrell, Rep. Prog. Phys.
68, 075318 (2005).

2W. Richter, Reflectance Anisotropy Spectroscopy and other
Anisotropy based Spectroscopies in Highlights of Light Spec-
troscopy on Semiconductors, edited by A. D’Andrea, L. G.
Quagliano, and S. Selci, (World Scientific, Singapore, 1996),
p. 81.

3M. Downer, B. S. Mendoza, and V. Gavrilenko, Surf. Interface
Anal. 31, 966 (2001).

4D. Lim, M. C. Downer, J. G. Ekerdt, N. Arzate, B. S. Mendoza,
V. I. Gavrilenko, and R. Q. Wu, Phys. Rev. Lett. 84, 3406
(2000).
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