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Nonlinear transport in a two-dimensional electron gas with a periodically modulated potential
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We study the nonlinear response of the current of a two-dimensional electron gas with a periodically modulated
potential in one direction in a strong DC electric field at low temperatures. The dependence of the current on
the field, the electron density, and the temperature is investigated by using a relaxation-time approximation
for inelastic scattering. Elastic scattering is treated microscopically including interband scattering. The roles of
elastic and inelastic scattering on the nonlinear current are examined. The result is applied to the Kronig-Penney
model. It is found that, for a fixed total scattering rate, the field dependence of the current is insensitive to the ratio
of the elastic and inelastic scattering rates in contrast with the recent results of the nonlinear current of similar
models of a single miniband in one dimension and three dimensions. The result from the Kronig-Penney model
is compared with the recent data from a modulated two-dimensional GaAs quantum well which show evidence
of the negative differential conductance.
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I. INTRODUCTION

An electron undergoes a periodic motion in a strong electric
field F , sweeping the Brillouin zone of a periodic lattice
with a frequency f = peF/2πh̄ ≡ ωF /2π , where ωF is the
angular speed and p is the lattice period. These so-called Bloch
oscillations1 are typically damped before the electrons sweep
through the band because of scattering, reaching a steady
state and yielding the negative differential conductance. In a
superlattice with a large period, the Bloch frequency f can fall
in a terahertz region under a moderate field. This fascinating
phenomenon has received much attention in the past for
its potential to yield terahertz generation and detection, and
also for applications to negative differential conductance.2–18

Investigations of Bloch oscillations have been carried out
in terahertz emission,19–22 electro-optic detection,22,23 and
four-wave mixing experiments.24 Past studies have mainly
been focused on one-dimensional superlattices and three-
dimensional vertical quantum-well superlattice structures for
theoretical simplicity and technical feasibility, while very few
studies have been carried out in two-dimensional (2D) systems.
Recently, 2D systems with patterned surface structures have
been studied for various advantages.18

In this paper, we study theoretically the nonlinear DC
current of a degenerate electron gas in a 2D structure, which
is modulated through surface patterning in the direction of
the field. The dependences of the current on the field, the
electron density, and the temperature are investigated. Our
model is introduced with a goal toward understanding recent
data from a 2D quantum well (QW) with a periodically
modulated potential to be introduced later.18 A relaxation-time
approximation11,16 is employed for inelastic scattering, while
impurity scattering is considered microscopically. The role
of elastic and inelastic scattering on the nonlinear current is
studied. The result is applied to the Kronig-Penney model and
is compared with our recent data from a modulated 2D GaAs
QW. It is found theoretically that, for a given total scattering
rate, the field dependence of the current is insensitive to the
ratio of the elastic and inelastic scattering rates in contrast with
the recent results of the nonlinear current of similar models of

a single miniband in one dimension and three dimensions,
where the current depends sensitively on the ratio of the two
scattering rates for a fixed total scattering rate.

The organization of the paper is as follows. A basic
formalism is presented in the next Section. In Sec. III, the
model is evaluated exactly for a single parabolic band. A
numerical evaluation of the results for the Kronig-Penney
model as well as a comparison with recent data is given in
Sec. IV. A brief summary of the results is presented in Sec. V.

II. BASIC FORMALISM

The steady-state Boltzmann equation is given, in a
relaxation-time approximation,11,16 by

−eF

h̄

∂fn(k)

∂kx

= −νin[fn(k) − f (0)(εn,k)] + 2π

h̄

∑
n′,k′

|Unk,n′k′ |2

× δ(εnk − εn′k′){fn′(k′) − fn(k)}, (1)

where νin is the inelastic scattering rate assumed to be a
constant, U denotes elastic scattering, n is the band index, k is
the wave vector, f (0)(ε) is the Fermi function, and fn(k) is the
nonequilibrium distribution function. The energy is given by

εn,k ≡ εn(kx,ky) = ε⊥(ky) + εn(kx);

εn(x) = −
∞∑

m=0

tn,m cos mx,
(2)

where ε⊥(ky) = h̄2k2
y/2m∗,m∗ is the effective mass, and

−π � x ≡ pkx � π . The band energy εn(kx) is generated by
the potential-energy modulation in the x direction which is
also the direction of the field F . The quantity tn,m is a Fourier
coefficient. Equation (1) includes interband scattering and
ignores interband tunneling.

In order to simplify the problem at this point, we assume
that D̃ = h̄/π |Unk,n′k′ |2 is a constant, relevant to a short-range
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potential, and rewrite Eq. (1) as

−eF

h̄

∂fn(k)

∂kx

= −νin(fn(k) − f (0)(εn,k))

− 2

D̃

∑
n′,k′

[fn(k) − fn′(k′)]

× δ(εn,k − εn′,k′). (3)

We mention here that a different assumption D̃ = D(εn,k)/νe,
namely, |Unk,n′k′ |2 = h̄νe/πD(εn,k) with a constant elastic
scattering rate νe was introduced in an earlier treatment
by Gerhardts for a three-dimensional system with a single
tight-binding band in the direction of the potential modulation
to make the problem more tractable.11 Here, D(ε) is the density
of states (DOS).

We define

ν(ε) = νin + νel(ε), νel(ε) = D(ε)/D̃, (4)

h(ε) = 2

D̃

∑
n′,k′

fn′ (k′)δ(ε − εn′,k′ ), (5)

and recast Eq. (3) into11

−peF

h̄

∂fn(k)

∂x
= −ν(εn,k)fn(k) + νinf

(0)(εn,k) + h(εn,k).

(6)

Note that Eq. (6) conserves the number of particles. Following
Gerhardts,11 we introduce a quantity φn(k) by

fn(k) = φn(k) exp

[
h̄

peF

∫ x

0
ν(εn(k′

x,ky))dx ′
]

. (7)

Defining γin = peF/h̄νin, and inserting in Eq. (6), we find

φn(k) =
∫ ∞

x

G̃(εn(k′
x,ky))

× exp

[
− h̄

peF

∫ x ′

0
ν(εn(k′′

x ,ky))dx ′′
]
dx ′, (8)

where x ′ = pk′
x , etc., and

G̃(ε) = γ −1
in f (0)(ε) + h̄

peF
h(ε). (9)

The quantity fn(k) is then given by

fn(k) =
∫ ∞

0
G̃(εn(kx + k′

x,ky))

× exp

[
− h̄

peF

∫ x ′

0
ν(εn(kx + k′′

x ,ky))dx ′′
]
dx ′.

(10)

Inserting Eq. (10) in Eq. (9), we find in view of Eq. (5)

G̃(ε) = f (0)(ε)

γin

+ 2

γeμD(μ)

∑
n,k

δ(ε − εn,k)

×
∫ ∞

0
G̃(εn(kx + k′

x,ky))

× exp

[
− h̄

peF

∫ x ′

0
ν(εn(kx + k′′

x ,ky))dx ′′
]
dx ′,

(11)

where D̃ = D(μ)/νel(μ) from Eq. (4), μ is the chemical
potential, γeμ = peF/h̄νeμ, and νeμ = νel(μ). The current
density is given by

j2D = −2ep

h̄S

∑
n,m,k

tn,mm sin(x)fn(k), (12)

where S is the area of the sample.

III. SINGLE PARABOLIC BAND

Here, we show that the present model can be evaluated
exactly for a single parabolic band in the x direction εn(kx) =
h̄2k2

x/2m∗ in Eq. (2) and yields the result of the linear response
theory for a general field. In this case, the length p in Eq. (6) is
an arbitrary constant and will be chosen to be the inverse Fermi
wave number p = 1/kF . Also, the scattering rate ν = νin + νel

in Eq. (4) is a constant due to the flat DOS, yielding for Eq. (10)

f (k) =
∫ ∞

0
exp(−x ′/γ )G̃[εF (y2 + (x + x ′)2)]dx ′, (13)

where εF is the Fermi energy, x = kx/kF ,y = ky/kF ,γ =
eF/kFh̄ν,γin = eF/kFh̄νin,γel = eF/kFh̄νel . It follows from
Eqs. (5) and (9) that∑

k

G̃(εk) = γ −1
∑

k

fk. (14)

The current density is given by

j2D = −2e

S

∑
k

h̄kx

m∗ fk = −2eh̄kF

m∗S

∑
k

x

∫ ∞

0

× exp(−x ′/γ )G̃[εF (y2 + (x + x ′)2)]dx ′, (15)

which yields, in view of Eq. (14), a well-known expression of
the linear response theory:

j2D = N2De2Fτ

m∗ , τ = 1/ν. (16)

IV. NUMERICAL EVALUATION AND DISCUSSIONS

In this Section, we evaluate the current and study possibly
different effects of elastic and inelastic scattering. The result
will be compared with the recent exact result of a one-
dimensional model16 and with the result of a three-dimensional
model.11 Also, a comparison will be made with the data from
a 2D GaAs QW with a patterned potential-energy structure.18

A. Iterative solution

The quantity G̃(ε) in Eq. (11) can be solved by iteration
starting from the zeroth-order solution

G̃(ε) = f (0)(ε)/γin.

We rewrite Eq. (11) as

G̃(ε) = f (0)(ε)

γin

+ 2

γeμD(μ)

∑
n,k

δ(ε − εn,k)

×
∫ ∞

0
G̃(ε + εn(kx + k′

x) − εn(kx))
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× exp

[
− x ′

γin

− 1

γeμ�(μ)

∫ x ′

0
�(ε + εn(kx + k′′

x )

− εn(kx))dx ′′
]
dx ′, (17)

where �(ε) is related to the DOS through the relationship

D(ε) = S
√

2m∗

π2h̄p
�(ε) : �(ε) ≡

∑
n

∫ π

0

θ (ε − εn(x))√
ε − εn(x)

dx.

(18)

Here, θ (ε) is a unit step function.
The electric field is represented as a dimensionless quantity

F = F/F ∗, where

F ∗ = h̄νμ

ep
, νμ = νin + νeμ, (19)

yielding

γin = F(1 + R−1), γeμ = F(1 + R), (20)

where R = νin/νeμ. The quantities νμ and R will be employed
as variables which determine F ∗,γin, and γeμ for a given
field. Note that F = F ∗ corresponds to a special field where
ωF /νμ = ωF τμ = 1 and is therefore roughly the threshold
field where the Bloch oscillation completes 1/2π of a cycle
before the electrons are scattered. It can rigorously be shown
from Eqs. (10) to (12) that the current density vanishes
asymptotically as j2D ∝ 1/F in the limit F 	 1 as also will
be demonstrated numerically later.

It is convenient to split the sum over the band index in
Eq. (17) into the sum

∑
n=high over the extended states with

large energy dispersion and the sum
∑

n=low over the low-
lying-energy states (e.g., bound states below the barrier) with
negligible dispersion. For the latter contribution, the x ′,x ′′
integrations in Eq. (17) can immediately be carried out yielding

G̃(ε) = F (ε)−1

⎡
⎣f (0)(ε)

γin

+ 1

2γeμ�(μ)

∑
n=high

∫ π

−π

dx
θ (ε − εn(x))√

ε − εn(x)

∫ ∞

0
dx ′

× G̃(ε + εn(x + x ′) − εn(x)) exp

(
−

[
x ′

γin

+ 1

γeμ�(μ)

∫ x ′

0
dx ′′ �(ε + εn(x + x ′′) − εn(x))

]) ⎤
⎦ , (21)

where

F (ε) = γeμ/γin + [�(ε) − �low(ε)]/�(μ)

γeμ/γin + �(ε)/�(μ)
(22)

and

�low(ε) = π
∑

n=low

θ (ε − εn(x))√
ε − εn(x)

. (23)

It is seen that 0 < F (ε) < 1. Also, we rewrite Eq. (10) as

fn(k) =
∫ ∞

0
G̃(εn(kx + k′

x,ky)) exp

(
−

[
x ′

γin

+ 1

γeμ�(μ)

∫ x ′

0
�(εn(kx + k′′

x ,ky))dx ′′
])

dx ′. (24)

B. Numerical results and comparison with data

In the following, we apply our result to a 2D GaAs QW
which has a modulated potential along the direction of the
field according to the Kronig-Penney model with a valley width
a = 200 nm, a barrier width b = 150 nm, a superlattice period
p = a + b, a barrier height V0 = 1 meV, and an effective
mass m∗ = 0.067m0. Here, m0 is the free-electron mass.
In this case, we find F ∗ 
 1.88νμ × 10−11 Vsec/cm from
Eq. (15). The role of the total scattering rate νμ is to set
the scale of the field through F ∗. For the low-lying energy
states n = low in Eq. (23), we include the two bound states
at ε = 0.1418 meV, and ε = 0.54268 meV below the barrier.
The coefficients tn,m in Eq. (12) are obtained by a Fourier
expansion for each band. It was found that only a few cosine
components are necessary to fit the numerical data for energy
dispersion.

Figure 1 displays the current density as a function of the
reduced fieldF for several values of R = 0.1 (thick black solid
curve), R = 1 (red dashed curve), and R = 100 (thin green
solid curve) at 4 K for N2D = 2.2 × 1011/cm2 (upper curves)
and N2D = 1011/cm2 (lower curves). For νμ = 1011/sec at
4 K, for example, corresponding to the sample mobility
∼ 0.3 × 106 cm2/Vsec, we estimate F ∗

4K 
 1.88 V/cm. This
field is much smaller than that in the previously studied
regular superlattices mainly due to the large superlattice period
in Eq. (19) in our structure. In superlattices with a short
period, conduction occurs in the minibands below the barrier,
while electrons flow in the bands above the barrier in our
structure with a wide barrier. The magnitude of the field at
the peak current remained approximately at F 
 F ∗ when the
energy gaps between the above-barrier bands are increased
by changing the well depth from V0 = 1 to V0 = 3 meV. The
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FIG. 1. (Color online) Current density vs reduced field F =
F/F ∗ for several values of R = νin/νel = 0.1 (thick black solid
curve), R = 1 (red dashed curve), and R = 100 (thin green solid
curve) for a fixed total scattering rate at 4 K for N2D = 2.2 × 1011/cm
2 (upper curves) and N2D = 1011/cm2 (lower curves). The scale factor
F ∗

4K can be different for the two densities. The blue dashed-dotted
curves show the asymptotic behavior of the current ∝ 1/F . Other
parameters are given in the text.

blue dashed-dotted curves show the asymptotic behavior of
the current ∝ 1/F . The peak current occurs near F 
 F ∗, i.e.,
ωF τμ 
 1 in all cases. As expected, the current rises slowly in
Fig. 1 with increasing R because inelastic scattering is not
as efficient as elastic scattering for momentum relaxation.
However, the field dependence of the current is not very
sensitive to the ratio R in a striking contrast to the results of
single-band models of a one-dimensional superlattice16,25 and
three-dimensional system11 based on the similar relaxation-
time approximation, where it is very sensitive to R.

In order to see how the current evolves with the tem-
perature T starting from a low temperature T0 = 4 K, we
assume that the low-temperature elastic scattering rate νel

is insensitive to the temperature, while the electron-phonon
scattering rate νin(T ) ∝ T is proportional to the temperature.
The latter is due to the fact that momentum relaxation
through acoustic-phonon scattering arises from scattering in
the thermal layer of the Fermi surface by phonons with a
maximum energy kBTB−G corresponding to the wavelength
∼2kF . In the current system with N2D = 2.2 × 1011/cm2,
the Fermi wave numbers kF is small, yielding a small
Bloch-Grüneisen temperature TB−G ∼ 5 K.26 The scattering
rate becomes linear above this temperature, while showing
a rapid Bloch-Grüneisen decrease (increase) of the scatter-
ing rate (mobility) below this temperature as observed by
Stormer et al.26 We therefore estimate RT 
 (T/T0)RT0 , and
F ∗

T = F ∗
T0

[(T/T0)RT0 + 1]/(RT0 + 1), yielding, for example,
R20K 
 5R4K, and F ∗

20K = F ∗
4K (5R4K + 1)/(R4K + 1). Here,

FIG. 2. (Color online) Field dependence of the current at two
temperatures: at T = 4 K for R4K = νin/νel = 0.1 (thick black solid
curve), and R4K = 1 (thick black dotted curve) with a fixed total
scattering rate; and at T = 20 K for R20K = 0.5 (thin red dashed
curve), and R20K = 5 (thin red dashed-dotted curve), assuming that
νel is insensitive to T and νin is linear in T (e.g., R20K = 5R4K ). The
current decays as ∝ 1/F asymptotically. Other parameters are given
in the text.

R4K is the ratio of the inelastic and elastic scattering rates
at 4 K employed in Fig. 1. Another contribution to the
temperature dependence of the current enters through the
chemical potential and Fermi function in Eq. (17). In Fig. 2,
we compare the current vs F shown in Fig. 1 at 4 K with the
field dependence of the current at 20 K. The thick black solid
(thin red dashed) curve represents the current at 4 K (20 K)
for the case R4K = 0.1 (R20K = 5R4K = 0.5), while the thick
black dotted (thin red dashed-dotted) curve displays the current
at 4 K (20 K) for the case R4K = 1 (R20K = 5R4K = 5).
The field is in units of F ∗

4K 
 1.88 V/cm. It is seen that
while the peak current decreases very slowly with T , the
peak shifts to a higher field at T = 20 K and the width
of the peak broadens significantly. It should be pointed out
here that the field dependence of the current at T = 20 K
looks very different for R = 0.5 and R = 5 because the total
scattering rates are different for these two cases. For a fixed
total scattering rate, the two concomitant curves will look
similar to those shown for T = 4 K in Fig. 2 with somewhat
reduced peaks. The asymptotic behavior of the current density
j2D ∝ 1/F is obtained at higher fields.

The present numerical study based on the Kronig-Penney
model was initiated with a goal toward understanding our
recent high-field data from a 2D GaAs QW structure with
a periodically modulated surface potential.18 In this system,
a 2D periodic metal grid was fabricated on a surface above
a high-mobility (>106 cm2/Vsec) GaAs QW with a regular
square array of holes of diameter a = 150 nm with a period
a + b = 350 nm in x and y directions. The depression of
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FIG. 3. (Color online) Total current I vs source-drain voltage
Vsd for R = 0.2 (thick red dashed-dotted curve), R = 100 (thick
black solid curve), and the data (thick black dashed curve) at 4 K
for N2D = 2.2 × 1011/cm 2. The thin blue dotted and solid curves
are plotted for R = 1 and include the effect of field-induced νin for
A(F ) = 1 and A(F ) given in Eq. (29), respectively. Other parameters
are given in the text.

the potential energy under the holes is about V0 = 1 meV.
The sample mobility is reduced after patterning. We apply
the Kronig-Penney model to this structure with the applied
field in the x direction, ignoring the potential modulation in
the perpendicular direction. This periodic modulation of the
potential opens small gaps of a fraction of an meV. The above
parameters as well as the total scattering rate at 4 K and the
density N2D = 2.2 × 1011 cm−2 to be used for the numerical fit
below are the same as those employed for the studies presented
in Figs. 1 and 2 above. The plot of the current Isd vs the
source-drain voltage Vsd for the field F is obtained according to

Isd = ⊥j2D(F), Vsd = RcIsd + ‖FF ∗, (25)

where ⊥ = 0.2 mm is the cross section of the sample (smaller
than ⊥ = 0.7 mm estimated for sample B in Ref. 18), Rc =
1.16 k� is the contact resistance, and ‖ = 1.5 mm is the length
of the sample along the current direction18 for τ = 0.029 ×
10−10 s (or, alternatively, ‖ = 5.2 mm for τ = 10−11 s). In
Fig. 3, we compare the data (thick black dashed curve) for
the current as a function of the source-drain voltage with the
curves generated for R = 100 (thick black solid curve) and
R = 0.2 (thick red dashed-dotted curve). The thin blue solid
curve shows the effect of including the field-induced electron-
phonon scattering rate for R = 1 to be discussed below.

The field-free νin = ν
(0)
in arises from electron-phonon scat-

tering inside the thermal layer of the Fermi surface. An
additional contribution to νin arises when the field-induced
displacement of the Fermi surface creates empty phase
space into which electrons can fall through electron-phonon
interaction, increasing νin with F and thereby the scaling factor

F ∗. According to the results presented in Figs. 1 and 2, the
net effect is to increase the scale of F on the horizontal axis
through F ∗ and stretch the curves to the right and flatten them
when the current density is plotted against F .27 This effect is
clearly seen by the thin blue dotted curve in Fig. 3 which brings
the theoretical curve closer to the data. It may be possible that
higher-order effects of F to νin above the threshold field of
the negative conductance regime can make the current flatter
as shown by the data beyond 4 V and the thin blue solid curve
to be discussed below.

In order to quantify the above discussion, we estimate
the total scattering rate ν = 1/τ = νin + νeμ that includes
the effect of the field-induced relaxation rate for νin in the
following. As mentioned above, the additional field-induced
contribution to νin arises from the field-induced displacement
∝ Fτ of the Fermi surface and is given by

τ 0
inνin = τ 0

in

τin

= 1 + A(F )
F

F0

τ

τ0
, (26)

where νin = 1/τin, ν
(0)
in = 1/τ 0

in, ν0 = 1/τ0 = ν
(0)
in + νeμ, and

F0 is a field constant to be determined microscopically from
electron-phonon scattering. The indices “0” signify field-free
quantities. The field-enhanced νeμ will not be considered
here. The second term in Eq. (26) is proportional to the
total displacement of the Fermi surface during the effective
scattering time τ . The quantity A(F ) = 1 for a small field F

in the linear regime but can become larger A(F ) > 1 at large
fields due to higher-order effects, whereby all electrons inside
the original Fermi surface can relax through rapid phonon
emission. Equation (26) yields

1

τ
= 1

2τ0

(
1 +

√
1 + 4A(F )F

αRF0

)
, (27)

where αR = (1 + R)/R and R = ν
(0)
in /νeμ as defined earlier.

The constant F0 is determined from the low-field numerical
estimate

νin = ν0
in + sF × 1010 s−1, (28)

where F is in units of V/cm, and s 
 0.32 for appropriate
phonon parameters for GaAs.28 Comparing Eqs. (27) and (28)
for small F , we find F0 = 1/[sαRτ0 × 1010] Vs/cm. The field-
dependent ν = 1/τ in Eq. (27) with A = 1 is then employed
for the field scale factor F ∗ for the thin blue dotted curve
in Fig. 3 using R = 1. The thin blue solid curve therein is
obtained by employing a simple function

A(F ) = 1 + 1.5θ (F − 1.7F ∗). (29)

The fit to the data can be made smoother by using a more
gradual transition for the step function in the second term in
Eq. (29). This term may arise from multi-phonon emission.

V. CONCLUSIONS

We studied the nonlinear response of the current of a 2D
electron gas with a periodically modulated potential in the
direction of a strong DC electric field at low temperatures
employing the Kronig-Penney model. The dependence of the
current on the field, the electron density, and the temperature
was investigated by using a relaxation-time approximation

195320-5



S. K. LYO AND W. PAN PHYSICAL REVIEW B 84, 195320 (2011)

for inelastic scattering, while considering impurity scattering
microscopically. The roles of elastic and inelastic scattering
on the nonlinear current were examined. It is found that
the current depends roughly only on the total scattering rate
in contrast with the recent results of the nonlinear current
of single-band models based on a similar relaxation-time
approximation in one dimension16 and three dimensions.11 We
believe this behavior is due to the two dimensionality of the
present system with multiple bands arising from unidirectional
modulation of the potential energy in the field direction
combined with free motion in the transverse direction. A
similar relaxation-time model with a single tight-binding band
in the field direction and free motion in the transverse direction
is under study. A preliminary result indicates that the reduced
field at the peak current depends sensitively on the ratio of
the inelastic and elastic scattering rates in contrast with the
behavior shown in Fig. 1. The theoretical result of this paper
is favorably compared with our recent data. We demonstrated
that agreement with the data improves when the effect of the
field on the relaxation rate is included.

We have studied transport in a two-dimensional gas,
while past studies deal with an electron gas in one or three
dimensions. A more important distinction is that previously
studied structures have a short lattice period and deep quantum
wells, where conduction occurs in the minibands below the
barrier. In contrast, our sample has a large period with wide
barriers and shallow wells. The electrons flow in the bands
above the barrier. As a result, the peak current and thus the
negative differential conductance occur at a much smaller field
in our sample compared to the regular superlattices due to a
larger lattice period. In our sample, the levels below the barrier
are localized and do not carry current. However, they can still

affect the current owing to the fact that electrons are scattered
into and out of these states in our model in the transverse
direction, where free electron motion is assumed.

A key approximation employed for our model is the
relaxation-time approximation for inelastic scattering. This
approximation is known to yield qualitative agreement with
the results from microscopic theories in one dimension16,17 and
three dimensions.9,11 A second important assumption made in
our model is the neglect of interband (i.e., Zener) tunneling.
This assumption is valid only when the tunneling probability is
small at the band edges. A rough estimate of this probability is
given by29 P = exp(−Q), where Q 
 ε2

gap/(4εpepF ), εp =
h̄2/2m∗p2, and εgap is the gap energy. Defining εgap ≡ ε0 for
Q = 1, interband tunneling will be negligible in the limit
Q 	 1, namely, εgap 	 ε0. We estimate ε0 = 0.077 meV for
our sample parameters for F = 1 V/cm. The numerical gaps
generated for our sample for the small modulation amplitude
V0 = 1 meV are of this order of magnitude or somewhat larger
and do not satisfy P  1. The gap sizes increase by a factor
of 2 to 3 for V0 = 3 meV. In a stringent sense, the current
model will be applicable to a system with a larger modulation
amplitude V0 	 1 meV. However, the data in Fig. 3 clearly
show high-field negative conductance behavior indicative of
Bloch oscillations.
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