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Coulomb blockade conductance-peak distribution of quantum dots under generic conditions:
A system-dependent random-matrix approach
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We present an analytical formulation for the width and the conductance-peak distributions in the Coulomb
blockade regime of quantum dots with multichannel leads. The dot’s Hamiltonian is modeled by a generalized,
Gaussian, multiparametric random-matrix ensemble and is applicable to dots with arbitrary shape or disorder
strength, strong or weak two-body interactions, and a generic electron dynamics (chaotic/nonchaotic) inside dot.
Our results show that the conductance fluctuations for a wide range of dots can be described by a complexity
parameter-based common mathematical formulation.

DOI: 10.1103/PhysRevB.84.195318 PACS number(s): 73.63.Kv, 42.50.Lc, 73.23.−b

I. INTRODUCTION

Coulomb blockade conductance fluctuations, an important
characteristic of the transport phenomena in almost closed
quantum dots, have motivated intense research efforts during
the past two decades.1 Most of these studies, however, have
focused on the dots with chaotic, single-particle dynamics.
The scientific quest as well as industrial significance makes it
relevant to seek the information for dots with more generic fea-
tures (e.g., those of arbitrary shapes) with or without disorder
and electron-electron (e-e) interactions. It is also desirable,
if possible, to formulate the conductance fluctuations in a
mathematical form applicable to a wide range of almost
closed dots. We derive here the formulation in the quantum
Coulomb blockade (QCB) regime where temperature ranges
are comparable to or smaller than the mean level spacing of
the resonances. The generic conditions of the dot-lead system
are taken into account by a system-dependent random-matrix
model of the dot Hamiltonian.

The conductance fluctuations in almost closed dots orig-
inate from the spatial fluctuations of individual resonance
wave functions (i.e., the eigenfunctions of dot Hamiltonian)
at dot-lead interfaces.1 As is well known, the eigenfunction
fluctuations are sensitive to the nature of the electron dynamics.
Based on the dot shape, the dynamics (even in absence of
disorder) can be chaotic, integrable, or nonintegrable and the
randomness may arise due to scattering from the boundaries.
For chaotic shape and/or weak disorder, the quantum dynam-
ics, in a physically relevant basis, is delocalized and almost all
matrix elements of the dot Hamiltonian are effectively of the
same order. The dot Hamiltonian can then be well modeled by
the Wigner-Dyson random-matrix ensembles (WDE) which
consist of Hermitian matrices with independent, Gaussian
distributed elements, of zero mean and the same variance for
almost all of them2 (also referred to as classical or stationary or
standard random-matrix ensembles). The observed universal
statistical fluctuations1 of the energy levels and eigenfunctions
of the dot Hamiltonian can also be explained by the basis-
invariant nature of these ensembles.

Many dot properties (e.g., conductance) can be formu-
lated in terms of the eigenfunctions and eigenvalues of the
dot Hamiltonian. This suggests the Wigner-Dyson ensem-
bles as good models for the conductance fluctuations of
chaotic/weakly disordered dots.3 At low temperatures and in

the Coulomb blockade regime, however, the experimentally
observed fluctuations show deviation from the Wigner-Dyson
models; the deviation seems linked to dominance of the
nonhomogeneous particle interactions at low temperatures.4–6

The efforts to include the interactions led to various mathe-
matical models, for example, the constant interaction model,7

uniform Hamiltonian (also known as the constant interaction
and exchange model),8–10 the constant interaction plus spin-
degenerate random-matrix model, the constant interaction plus
spin-resolved random-matrix model, the random-interaction
matrix model (RIMM),11 etc. The interaction in almost all
these models (except RIMM) is taken into account by adding a
constant interaction background to Wigner-Dyson ensembles;
the models therefore fail to mimic the generic nature of e-e
interactions inside the dot. RIMM attempts to improve this
drawback by modeling the complicated particle interactions
by a random matrix; RIMM Hamiltonian is H = V + U with
V and U representing one- and two-body interactions, both
chosen from Wigner-Dyson ensembles. The choice restricts
the applicability of RIMM to chaotic or weakly disordered
dots with homogenized electron-electron interactions. To
model the cases with mixed or diffusive dynamics and/or
nonhomogeneous interactions inside the dot, a generalization
of RIMM is desirable.

In general, the single-particle dynamics inside an arbi-
trary shaped ballistic dot is classically nonintegrable and
corresponding wave function intensity is nonhomogeneous in
position as well as momentum basis (due to inhomogeneous
scattering from the dot boundaries). The matrix elements
of V can therefore be of varying strengths. A similar form
of V results for a disordered dot (inhomogeneous impurity
scattering leading to partially localized electron waves).
The theoretical treatment of the Hamiltonian in this regime
therefore requires a more generalized (i.e., system-dependent)
random-matrix approach. (Note, in this case, the Wigner-
Dyson model is not applicable even in the absence of the
e-e interactions). The dynamics is further complicated by the
presence of local particle interactions. In general, the presence
of correlated disorder and/or e-e interactions may lead to
nonzero correlations among elements of the Hamiltonian. This
motivates us to consider an ensemble of H matrices with a
multiparametric Gaussian ensemble density with independent
or correlated matrix elements.
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Our objective in this paper is to formulate the statistics
of the Coulomb blockade peak heights in terms of that
of the eigenfunctions. The required connection formula, of
the conductance-peak heights with eigenfunctions of the dot
Hamiltonian, is reviewed in Sec. II. A prior knowledge of
the eigenfunction statistics is also needed. This depends on
the choice of the ensemble for the dot Hamiltonian; Sec. III
introduces our choice (i.e., the generalized Gaussian ensemble)
where system dependence enters through the distribution
parameters.12 As shown in Ref. 13, the eigenfunction statistics
of this multiparametric ensemble is governed by a single
parameter, referred to as the complexity parameter. This
information along with the relations given in Secs. II and
III is used in Sec. IV to derive the diffusion equations for
distributions of the partial width amplitudes and the partial
widths, respectively, and subsequently for the peak heights.
Section V discusses the solution of the diffusion equation for
the peak heights. We conclude in Sec. VI with a summary of
our results and open problems.

II. CONDUCTANCE-PEAK HEIGHTS AND RESONANCE
EIGENFUNCTIONS

This section reviews the necessary formulas for the QCB
conductance in a two-lead dot (see Ref. 1 for details), required
later for our analysis.

An almost closed or “isolated” quantum dot can be
described as an island of electrons weakly coupled to two
leads via tunnel junctions. Under these conditions, a typical
resonance width in the dot is smaller than the average spacing
� between the resonances. As a consequence, only the
resonance � with energy E� closest to the scattering energy E

contributes significantly to the zero-temperature conductance:

G(E,T = 0) = e2

h

�
(l)
� �

(r)
�

(E−E� )2+( ��
2 )2

, where

�
(x)
� =

∑
c

|γcx |2 (1)

is the width of the resonance � to decay into the lead “x”
(x = l,r referring to left and right) with γcx as the partial
width amplitude of the resonance level � to decay into channel
c of the lead. γcx can be expressed as a scalar product of the
resonance wave function � = (ψ1,ψ2, . . . ,ψN ) and channel
wave function �(x)

c = (�(x)
1c ,�

(x)
2c , . . .):

γcx = 〈
�(x)

c

∣∣�〉
(2)

(see p. 933 of Ref. 1 for a detailed definition of γc).
The finite-temperature conductance G(E,T ) is obtained by

convoluting G(E,T = 0) with a derivative of the Fermi-Dirac
distribution (see Sec. D and Eq. (11) of1). In the experimentally
interesting regime � � T � � (with � as the average width),
the conductance occurs only by the resonant tunneling through
the corresponding energy level of the dot and G(E,T ) can be
approximated as

G(E,T ) ≈ α g�

[
cosh

(
E� − E

2kT

)]−2

, (3)

where E ≈ EF (due to main contribution to conductance from
the electrons at Fermi level EF ) and

gψ = 2

��

�
(l)
� �

(r)
�

�
(l)
� + �

(r)
�

(4)

is the single-level conductance-peak height measured in units
of α = e2

h
π��

4kT
.

The weak dot-lead coupling leads to Coulomb blockade
oscillations of the peak heights as a function of the gate
voltage. Detailed information about these oscillations can
be obtained from the distribution of peak heights and peak
spacings. At finite temperatures, in general, the thermal as well
as dynamical correlations among peaks make it necessary to
consider the joint distribution of the peak heights of many
resonances. At low temperatures T � �, the thermal correla-
tions are exponentially suppressed and only the correlations
induced by dynamical modulation dominate. The individual
peak-height distribution essentially being a local measure, it
is not strongly sensitive to the dynamical correlations (see the
results and discussion of Ref. 14). This allows us to consider
the peak-height distribution of each resonance separately. As
is clear from Eqs. (1) and (2), the distribution Pg(g�) of g� can
be derived if the statistics of the components (ψ1,ψ2, . . . ,ψN )
of the eigenfunction � is known.

III. ENSEMBLE FOR DOT HAMILTONIAN AND
EIGENFUNCTION STATISTICS

The electron dynamics inside an almost closed quantum dot
can be described by the dot Hamiltonian H = V + U where

V =
∑
mn

emn a†
m an,

(5)
U =

∑
mnrs

umnrs a†
m a†

n ar as,

with emn as the matrix elements of the single-particle Hamilto-
nian V and umnrs as the measures of the two-body interaction
U . For a clear exposition of our ideas, we now consider
the Hamiltonian cases with correlated/uncorrelated elements
separately.

A. Hamiltonian with uncorrelated matrix elements

Let us first consider the cases where e-e interaction is
negligible, resulting in H ≈ V . Assuming a white-noise
disorder 〈V (r)V (r ′)〉 = δ(r − r ′), and, choosing a fixed basis
of N single-particle states |m〉 = a

†
m|0〉, the H matrix can be

modeled by an uncorrelated Gaussian ensemble:

ρ(H,h,b) = Cexp

⎡
⎣−

N∑
k,l=1;k�l

1

2hkl

(Hkl − bkl)
2

⎤
⎦ , (6)

with h as the variance matrix with hkl = 〈H 2
kl〉 − 〈Hkl〉2 =

〈V 2
kl〉 − 〈Vkl〉2 and b as the mean value matrix with bkl =

〈Hkl〉 = 〈Vkl〉.
Based on the complexity of the system, the elements of the

parametric matrices h,b can have various functional forms
(e.g., exponential, power law, etc). For example, the limit
hkl → 0, corresponds to a nonrandom nature of Hkl , the limit
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hkl → λ(1 + δkl)/2, bkl → 0 leads to a Gaussian orthogonal
ensemble ρ(H ) = Ce−TrH 2

, etc.
In the presence of both disorders, as well as e-e interactions,

the electron dynamics is governed by the intercompetition
between them. Again assuming a white noise disorder and
by choosing now a many-particle basis, H can still be
modeled by the ensemble (6). As an example, consider
two electrons in an N -sites lattice. It is then appropriate to
represent H in a N2-dimensional basis of the two-particle
states |kl〉; for bookkeeping, we write |kl〉 ≡ |ϕ(k−1)N+l〉. With
μ = (i − 1)N + j,ν = (k − 1)N + l, Eq. (5) then gives

Hμν = 〈ϕμ|H |ϕν〉 ≡ 〈ij |V |kl〉 + 〈ij |U |kl〉, (7)

where

〈ij |V |kl〉 = Vikδjl + Vilδjk + Vjkδil + Vjlδik,
(8)

〈ij |U |kl〉 = Uijkl + Ukjil + Uilkj + Uklij .

For cases where both V,U consist of uncorrelated matrix
elements, the ensemble H can then be represented by Eq. (6)
with indices {k,l} replaced by {μ,ν} (thus Hkl → Hμν,hkl →
hμν,bkl → bμν); As is clear from Eq. (7), both the mean and
the variance now depend on disorder as well as interaction
strength.

The variation of system conditions (e.g., gate voltage,
disorder strength, particle density, etc.) results in a variation
of the distribution parameters {h,b}. This leads to an evolution
of the H ensemble which, however, is governed by the
rescaled complexity parameter � [a function of all distribution
parameters; see Eqs. (10) and (11) given below].12 This, in turn,
also results in a �-governed diffusion of the eigenfunctions of
H . As discussed in Ref. 13, the diffusion of the joint probability
distribution PN1(�) ≡ PN1(ψ1, . . . ,ψN ) of the components
ψj , j = 1 → N of a resonance eigenfunction � of H can be
given as

∂PN1

∂��

=
N∑

n=1

∂

∂ψn

(
(N − 1)ψn +

N∑
m=1

∂

∂ψm

(δmn − ψn ψm)

)

×PN1, (9)

where �� = (χ/2) � with � as the rescaled complexity
parameter:

� = Y − Y0

�2
ξ

, (10)

with �ξ (E) as the local mean level spacing of the dot at
energy E, χ related to the average localization length ξ of the
eigenfunction �, and Y and Y0 as the complexity parameters
for the ensemble and its initial state.13 Here,

Y = − 1

4N2λ
ln

[ ′∏
k�l

|1 − (2 − δkl)hkl/λ| |bkl|2
]

+ Cy.

(11)

Here
∏′ implies a product over nonzero bkl , λ is an arbitrary

parameter, giving the variance of the matrix elements at the
end of the evolution (which can be scaled out without loss of
generality), and Cy is an arbitrary constant of integration.

For later reference, it must be mentioned that the steady-
state limit ∂PN1

∂��
= 0 (or �� → ∞) of Eq. (9) corresponds to

hkl → λ(1 + δkl)/2, bkl → 0. The latter in turn corresponds
to the Wigner-Dyson limit of the ensemble (6).

For clarification, we consider two specific models, consid-
ered in the past to study interaction effects in quantum dots.

Example (i): Anderson model with Coulomb interaction.5

This corresponds to V in Eq. (5) as a one-body Anderson
Hamiltonian with onsite disorder and nonrandom, isotropic,
nearest-neighbor hopping t , and U as the two-body Coulomb
interaction between the spinless electron, that is,

emn = εm δmn + tfmn,
(12)

umnrs = umn δmr δns = U0

〈
1

|rm − rn|
〉
,

with fmn = 1 for the sites (m,n) as nearest neighbors, fmn = 0
otherwise.

The elements Hμν = Vμν + Uμν are now [with μ = (i −
1)N + j , ν = (k − 1)N + l] as follows:

Vμν = εi(δikδjl + δilδjk) + εj (δjkδil + δjlδik)

+ t(fikδjl + filδjk + fjkδil + fjlδik), (13)

Uμν = uij (δikδjl + δilδjk)(1 − δij ). (14)

Assuming onsite energies εm to be Gaussian distributed
with mean zero and variance σ 2, we get

bμ,ν = t(1 + δij )fxy if x = i or j, and y = k or l,

= 2uij (1 − δij ) if (k = i, l = j ) or (k = j, l = i),

= 0 for other (μ,ν) pairs. (15)

Further as U is nonrandom, the contribution to hμν comes only
from V :

hμ,ν = 2σ 2(8δij + (1 − δij )) if ν = μ = (i − 1)N + j,

= 2σ 2(1 − δij ) if ν = (j − 1)N + i,

= 0 for other (μ,ν) pairs. (16)

Substitution of Eqs. (15) and (16) in Eq. (11) gives

Y = 1

2N
ln[|1 − 16σ 2| |1 − 4σ 2|2(2)4z (t)4z

× (2〈uij 〉)2(N−1)] + Cy, (17)

with z as the number of nearest neighbors to each site.
Example (ii): Anderson model with coulomb interaction

and on-site spin-interaction.6 To consider spin effects, this
model includes, in addition to the long-range Coulomb inter-
action among electrons at different sites, an onsite interaction
between the electrons of opposite spins.6 Thus, again we have
H = V + U with U = U1 + U2 where

U1 = −
∑

m
=n,s,s ′
umn a†

ms ams a
†
ns ′ ans ′ , (18)

U2 = κ
∑
m,s

a†
ms ams a†

ms ams. (19)

Note V is similar to the previous case but with electron spin
included:

V =
∑
m,s

εm a†
msams + t

∑
m,n;s

fmn a†
ms ans. (20)
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Confining to the case of two electrons in an N -sites lattice,
the matrix elements of H can again be represented by a two-
particle basis |ks; ls ′〉:

〈is1; js2|H |ks1; ls2〉
= Vik δjl + Vjl δik + (

2uij + κ δjk

(
1 − δs1s2

))
δik δjl,

(21)

〈is1; js2|H |ks2; ls1〉
= Vjk δil + Vil δjk + (

2uij + κ δjl

(
1 − δs1s2

))
δil δjk.

(22)

It is easy to check that, except for the above two types, all other
matrix elements of H are zero.

For notational ease, we again write

|is1; js2〉 ≡ ϕμ, with μ = Ns((i − 1)N + j) + I (s1,s2),

|ks3; ls4〉 ≡ ϕν, with ν = Ns((k − 1)N + l) + I (s3,s4),

(23)

with Ns as the size of the two-particle spin space
(Ns = 4 for the two-electron case). Here I (s,s ′) is
an integer dependent on (s,s ′): I = 0 → Ns − 1 for
(s,s ′) = (−1/2,−1/2),(−1/2,1/2),(1/2,−1/2),(1/2,1/2),
respectively. The matrix elements of H can again be written
as Hμν with bμν as the mean and hμν as the variance. For
nonrandom hopping t and Gaussian distributed εk (with
〈εk〉 = 0 and variance σ 2), Eq. (22) gives

bμν = t(fikδjl + fjlδik) + (
2uij + κδjk

(
1 − δs1s2

))
δikδjl

if ϕν ≡ |ks1; ls2〉,
= t(fjkδil + filδjk) + (

2uij + κδjl

(
1 − δs1s2

))
δilδjk

if ϕν ≡ |ks2; ls1〉,
= 0 for other (μ,ν) pairs. (24)

Again both U1 and U2 being nonrandom, the contribution to
hμν comes only from V :

hμ,ν = 2σ 2 (1 + δkj )δikδjl if ϕν ≡ |ks1; ls2〉,
= 2σ 2 (1 + δlj )δilδjk if ϕν ≡ |ks2; ls1〉,
= 0 for other (μ,ν) pairs. (25)

Substitution of Eqs. (15) and (16) in Eq. (11) gives

Y = 4N2

Np

ln
[
(t)4z α

1
N (2〈ukl〉) |1 − 4σ 2| |1 − 2σ 2|] + Cy,

(26)

with Np = N(Ns(N − 1)/2 + 1).

B. Hamiltonian with pairwise correlated elements

Under generic conditions, the impurity distribution inside
the dot may lead to pairwise correlations among V -matrix
elements: 〈VklVij 〉 
= 0. The e-e interaction may also result
in pair correlations among U - elements i.e 〈UijklUklmn〉 
= 0.
H then turns out to be a matrix with a varying degree of
correlations among its elements and can be represented by an

ensemble density,

ρ(H,a,b) = Cexp

⎡
⎣−

∑
i,j,k,l

bijklHijHkl −
∑
k,l

aklHkl

⎤
⎦ ,

(27)

with C as a normalization constant. As discussed in Ref. 13,
the evolution of PN1 in this case can again be described by
Eq. (9) with � given by Eq. (10), however, now

Y =
∑
kl

∫
dakl

vkl

Akl

+
∑
klrmn

∫
dbklmn

wklmn

Bklmn

+ Cy, (28)

where vkl and wklmn are arbitrary constants. Furthermore,

Akl = γ akl −
∑
mn

(1 + δmn) amn bklmn fklmn,

Bklmn = γ bklmn − (1/2)
∑
ij

(1 + δij ) bklij bmnij fklij fijmn.

(29)

Here fklkl = 2 and fklmn = 1 [for (kl) 
= (mn)].

IV. SINGLE-PARAMETRIC DIFFUSION OF
CONDUCTANCE DISTRIBUTION

Equation (4) describes the conductance in terms of the
partial widths which in turn can be expressed in terms of the
partial-width amplitudes. Prior to derivation of the diffusion
equation for the conductance distribution, we therefore need to
obtain the diffusion equations for the partial-width amplitudes
and subsequently the partial widths.

A. Diffusion equation for the partial-width amplitudes

For a dot connected with two leads, the distribu-
tion Pγ (γ

l
,γ

r
) of the partial-width amplitudes (γ

l
,γ

r
) ≡

(γ1l
, . . . ,γ

Nl l
,γ1r

, . . . ,γ
Nr r

) for a resonance ψ is given by

Pγ (γ
l
,γ

r
) =

∫
D� fl fr PN1(�), (30)

where D� = ∏N
j=1 dψj .

fl =
Nl∏

c=1

δ(γcl − Xcl), fr =
Nr∏
c=1

δ(γcr − Xcr ). (31)

Here subscripts l,r refer to left and right leads, with Nl and Nr

as the total number of channels in them, respectively. Further
Xcx = ∑

j �
(x)∗
cj ψj = ∑

j �
(x)
cj ψj are the partial-width ampli-

tudes to decay into channel c in the lead x (x = l,r). Note,
due to time-reversal symmetry of the dot-lead Hamiltonian,
the components ψj and �cj can be chosen real.

The effect of the varying system condition on Pγ can now
be obtained from Eq. (9),

∂Pγ

∂�ψ

= I1 + I2 + I3, (32)
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where

I1 = (N − 1)
∫

D� fl fr

N∑
n=1

∂

∂ψn

(ψnPN1), (33)

I2 =
∫

D� fl fr

N∑
n=1

∂2PN1

∂ψ2
n

, (34)

I3 =
∫

D� fl fr

N∑
m,n=1

∂2

∂ψn∂ψm

(ψnψmPN1). (35)

The next step is to rewrite the integrals in Eqs. (33)–(35)
in terms of the γ derivatives. Using partial integration and the
relations,

∂(fl fr )

∂ψk

= −
∑

x=(l,r)

∑
p

∂(fl fr )

∂γpx

∂Xpx

∂ψk

, (36)

and ∂Xpx

∂ψk
= �

(x)∗
kp , I1 can be reduced as

I1 = (N − 1)
∑

x=(l,r)

∑
p

∂

∂γpx

(γpxPγ ). (37)

Here
∑

p refers to the sum over all channels in the lead “x”.
Similarly a repeated partial integration and the relation

∂2Xpx

∂ψ2
k

= 0 (for all p,k), simplifies I2:

I2 = 2
∑
p,q

∑
x,y=l,r

∂2
(
M

(xy)
pq Pγ

)
∂γpx∂γqy

. (38)

Here M
(xy)
pq is the correlation between the q th and pth channels

of the leads “x” and “y,” respectively:

M (xy)
pq =

∑
n

φ(x)
np φ(y)

nq = 〈
�(x)

p

∣∣�(y)
q

〉
. (39)

Furthermore, I3 can be expressed as a second-order
derivative,

I3 = −
∑

x,y=l,r

∑
p,q

∂2(γpxγqyPγ )

∂γpx∂γqy

. (40)

Substitutions of Eqs. (37), (38), and (40) in Eq. (32) gives
the �ψ -governed diffusion equation of the partial-width
amplitudes:

∂Pγ

∂�ψ

=
∑
x=l,r

∑
p

∂

∂γpx

(
γpxPγ +

∑
y=l,r

∑
q

∂

∂γqy

× (
M (xy)

pq + γpxγqy

)
Pγ

)
. (41)

Equation (41) describes the �-governed diffusion of the
joint probability distribution of Nl and Nr partial widths in the
left and right lead, respectively. This can now be used to derive
the joint distribution of the left and right resonance widths.

B. Diffusion equation for the resonance widths

Following Eq. (1), the peak width distribution for the
resonance ψ can be given as

P�(�l,�r ) =
∫ ∏

x=l,r

δ

(
�x −

∑
i

γ ∗
ixγix

)
Pγ (γl,γr ) Dγ

l
Dγ

r
,

(42)

with Dγx = ∏
j γjx . Henceforth the subscript � on �x will be

suppressed unless necessary for discussion.
As discussed in Ref. 16, the Wigner-Dyson limit of P�

depends on the channel correlation matrix M . For the case of
uncorrelated and equivalent channels (�l = �r = �), M has
all degenerate eigenvalues which results in a χ2

ν distribution
of P� (with ν = βNc as the degrees of freedom):11

P�(�) ∝ �ν/2−1 exp[−ν�/2�]. (43)

Under generic conditions, however, the channels are correlated
(nonorthogonal) and nonequivalent (i.e., different average
partial widths). The determination of P�(�l,�r ), in general,
by the integration route [given by Eq. (42)] is technically
complicated even in the Wigner-Dyson limit of Pγ [i.e.,
Porter-Thomas distribution for PN1; see Eqs. (126) and (127)
of Ref. 1]. For the multiparametric Gaussian ensemble case,
we therefore proceed by an alternative route, based on the
complexity parameter-governed evolution of P� .

Differentiating Eq. (42) with respect to �ψ we get

∂P�

∂�ψ

=
∫

∂Pγ

∂�ψ

δl δr dγ (l)dγ (r), (44)

where δx = δ(�x − ∑
i γ

∗
ixγix). Substitution of Eq. (41) in

Eq. (44) results in

∂P�

∂�ψ

= (J1 + J2 + J3), (45)

where

J1 = (N − 1)
∫

δl δr

∑
x=l,r

∑
p

[
∂

∂γpx

(γpxPγ )

]
Dγ, (46)

J2 =
∫

δl δr

∑
x,y

∑
p,q

[
∂2

∂γpx∂γqy

(
M (xy)

pq Pγ

)]
Dγ, (47)

J3 =
∫

δl δr

∑
x,y

∑
p,q

[
∂2

∂γpx∂γqy

(γpxγqyPγ )

]
Dγ. (48)

Using the relation,

∂

∂γpx

(δl δr ) = −
∑

t

∂(δl δr )

∂�x

∂

∂γpx

(
γ 2

tx

)
, (49)

and partially integrating, we can reduce J1,J2,J3 as

J1 = 2(N − 1)
∑
x=l,r

∂

∂�x

(�xP�), (50)

J2 = 4
∑
x=l,r

⎡
⎣∑

y=l,r

∂2Fxy

∂�x�y

− 2Nxαx

∂P�

∂�x

⎤
⎦ , (51)
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J3 = −4
∑

x,y=l,r

[
∂2

∂�x∂�y

(�x�yP�)

]
+ 2

∑
x=l,r

[
∂

∂�x

(�xP�)

]
,

(52)

where αx is the average diagonal element of the channel matrix
of lead “x”:

αx = 〈
�x

p

∣∣�x
p

〉 = 1

Nx

∑
p

M (xx)
pp = 1

Nx

TrMxx = Mxx
pp, (53)

with “ap” implying average of ap over p, and

Fxy = Fyx =
∫

δl δr χxy Pγ Dγ, (54)

with χxy = ∑
p,q M

(xy)
pq γpxγqy .

In general, the correlations between different channels on
the same lead are expected to be weaker as compared to self-
correlations, that is, M (xx)

pp 
 M (xx)
pq . Further approximating

each diagonal M (xx)
pp by the average diagonal αx , one can

approximate χxx ≈ αx

∑
p γ 2

px . On substitution in Eq. (54),
these approximations lead to

Fxx ≈ αx �x P�. (55)

For x 
= y, χxy is a measure of the correlation between
the left and right lead with Mxy as Nl × Nr as the left-right
(lr) channel matrix. Assuming negligible correlations among
matrix elements of M lr, one can approximate:

χ2
lr ≈

∑
p,q

(
M lr

pq

)2
γ 2

pl γ 2
qr ≈ α2

c

∑
p,q

γ 2
pl γ 2

qr , (56)

with

αc = 〈
M lr

pq

〉
p,q

(57)

is the average matrix element of the left-right (lr) channel
matrix. Equation (54), then gives

Flr = Frl ≈ αc (�l �r )1/2 P�. (58)

Substitution of J1,J2,J3 along with approximations
[Eqs. (55) and (58)] in Eq. (45) leads to diffusion equation
for P�:

1

4

∂P�

∂�ψ

=
∑
x=l,r

∂

∂�x

[
∂

∂�x

[�x(αx − �x)P�]

+ 1

2
(N�x − Nx αx)P�

]

+ 2
∂2

∂�l∂�r

[αc

√
�l�r − �l�r ]P�. (59)

Equation (59) describes the diffusion of the joint distribution
of the left and right resonance widths due to varying dot
conditions. It can now be used to derive the diffusion equation
for the peak-height distribution.

C. Diffusion equations for the peak heights

Following Eq. (4), the distribution P (g) of the conductance-
peak height g = (�/2) gψ for a single resonance level � can
be expressed as

Pg(g) =
∫

δ

(
g − �l�r

�l + �r

)
P� d�l d�r . (60)

This gives

∂Pg

∂�g

=
∫

δ

(
g − �l�r

�l + �r

)
∂P�

∂�ψ

d�l d�r, (61)

where �g = 4�ψ .
Using Eq. (59) and integrating partially as in the previous

cases, we get

∂Pg

∂�g

= ∂2

∂g2
{g(s − g) Pg + Q2}

+ 1

2

∂

∂g
{(Ng − θ )Pg + 2Q1}, (62)

where

θ = 1
2 (Nlαl + Nrαr ), φ = 1

2 (Nlαl − Nrαr ),
(63)

s = 1
2 (αl + αr ), r = 1

2 (αl − αr ),

with α′s defined by Eqs. (53) and (57) and

Qn(g) = g2n

∫
δ

(
g − �l�r

�l + �r

) (
1

�l�r

)3

× vn(�l,�r ) P� d�l d�r, (64)

with n = 1,2 and

v1(x,y) = (θ + 2s)x2y2 − xy(x + y)−1(2xy�+ 2r(y3 − x3))

− (φ + 4r)(y2 − x2)xy/2, (65)

v2(x,y) = xy(� − 3s(x + y)) + r(y3 − x3),

with � = 2αc

√
xy.

The relation δ(z − xy

x+y
) = y2

z2 δ(y − zx
x−z

) simplifies Qn:

Qn(g) = gn−1
∫

wn(g,�l)
�2

l

(�l − g)2
P�

(
�l,

g�l

�l − g

)
d�l,

(66)

with

w1(g,x) = (θ + 2s)g
(x − g)

x2
− 2g�

(x − g)2

x4

− 2r
(g3 − (x − g)3)

x3
− (φ + 4r)

(g2 − (x − g)2)
2x2

,

(67)

w2(g,x) = (x − g)2

x4
g� − 3sg

(x − g)

x2
+ r

(g3 − (x − g)3)
x3

.

(68)

Equation (62) describes the �g-governed diffusion of the
conductance distribution for dots under generic conditions,
with a nonzero correlation between left and right leads. The
correlations between different channels in the lead, however,
are assumed to be weaker than the self-correlation. The
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presence of wn makes it difficult to express Un as functions
of g only; it can, however, be achieved by system-specific
approximations.

Linear relation between left and right resonance widths.
For example, here we consider the case with �r ∼ q�l . At
�r = q�l , g = q

q+1�l with q as a system-dependent constant.
Taylor series expansion of wn(g,�l) in the neighborhood of
�l = ηg with η = (q + 1)/q leads to wn(g,�l) = wn(g,ηg) +∑∞

k=1
∂kwn(g,�l )

∂�k
l

(�l − ηg)k . For the case �r ∼ q�l , the domi-

nant contribution comes from the first term, which results in

Qn(g) ≈ gn−1 wn(g,ηg) P (g), (69)

where the relation Pg(g) = ∫ �2
l

(�l−g)2 P�(�l,
g�l

�l−g
) d�l is used.

Equation (62) can now be rewritten as

∂Pg

∂�g

= ∂2

∂g2
[g (t2 − g)]Pg + 1

2

∂

∂g
[Ng − t1]Pg, (70)

where

t1 = θ − 2(θ + 2s)
(η − 1)

η2
+ 8αc

(η − 1)3/2

η3

+ 4r
(1 − (η − 1)3)

η3
+ 2(φ/2 + 2r)

(2 − η)

η
, (71)

t2 = 2αc

(η − 1)3/2

η3
+ s

(
1 − 3

(η − 1)

η2

)
+ r

(1 − (η − 1)3)
η3

,

where θ,φ,s,r are given by Eq. (63). Equation (70) de-
scribes the diffusion of peak-height distribution of a Coulomb
blockade dot under varying conditions. Here �g contains the
information about dot conditions (e.g., shape, disorder, and
interaction strength) while t1,t2 depend only on the lead details.
Our next step is to solve Eq. (70) to obtain the peak-height
distribution.

V. PEAK-HEIGHT DISTRIBUTION: SOLUTION OF EQ. (70)

Changing the variable g → t2 z, followed by a substitution
of Pz(z,�g) = ϒ(z)e−E�g and a rearrangement of terms,
reduces Eq. (70) in the well-known form of a hypergeometric
differential equation:

z(1 − z)
d2ϒ

dz2
+ {c − (1 + a + b)z}dϒ

dz
− abϒ = 0, (72)

where

a = 1

4
[6 − N +

√
(N − 2)2 + 16E], (73)

b = 1

4
[6 − N −

√
(N − 2)2 + 16E], (74)

c = 2 − t1

2t2
. (75)

The general solution of Eq. (72) depends on whether c is
an integer or not. As Eq. (75) along with Eq. (71) implies, c is
in general a fraction. Thus we have for |z| < 1,

ϒ(z) = AF (a,b; c; z) + Bz1−cF

× (1 + a − c,1 + b − c; 2 − c; z), (76)

with A,B as arbitrary constants and the hypergeometric
function F (a,b; c; z) defined as

F (a,b,c; z) ≡ 2F1(a,b; c; z) = 1 +
∞∑

k=1

(a)k (b)k
(c)k

zk

k!
, (77)

with (q)k = q(q + 1) . . . (q + k − 1). The arbitrary constants
A,B can easily be determined if F can be expressed as an
orthogonal polynomial. This can be achieved, without loss of
generality, by taking b = −n which gives a = n + 3 − N

2 and
E = 1

2 (n + 1)(2n + 4 − N ).
The finiteness of P (z,�g) for large �g requires E = 1

2 (1 −
b)(4 − N − 2b) � 0 or b � 2 − N/2. Taking b = 2 − m −
N/2 gives a = m + 1 [see Eqs. (73) and (74)]. The general
form of P (z,�g) then becomes

P (z,�g) =
∞∑

m=0

e− 1
2 (N+2m−2)m�g ϒm(z), (78)

where

ϒm(z) = Am f1(m,z) + Bm z1−c f2(m,z), (79)

with

f1 = F (m + 1,2 − m − N/2; c,z), (80)

f2 = F (m + 2 − c,3 − m − N/2 − c; 2 − c; z). (81)

Using the identity,

F (a,b; c; z) = (1 − x)c−a−bF (c − a,c − b; c; z), (82)

f1 and f2 can be rewritten as

f1(m,z) = (1 − z)c − 3 + N/2

×F (c − m − 1,c − 2 + m + N/2; c; z) (83)

≈ (1 − z)c−3+N/2�(c − m − 1; c,Nz/2), (84)

f2(m,z) = (1 − z)c−3+N/2F (−m,(N/2 + m − 1); 2 − c,z)

(85)

≈ (1 − z)c−3+N/2�(−m,2 − c; Nz/2) (86)

= �(m + 1)�(2 − c)

�(m + 2 − c)
e−(c−3+N/2)z L1−c

m (Nz/2),

(87)

where Eqs. (84) and (87) follow under large N approximation
and La

m(z) refers to the associated Laguerre polynomial of mth

order.
For large N and c noninteger, f1 diverges for z � 1.

The finiteness of P (z,�) therefore requires Am = 0. The
initial condition P (z,0) along with orthogonality of Laguerre
polynomials gives Bm as follows:

Bm =
(

N

2

)2−c 1

�(2 − c)

∫
L1−c

m (Nz/2) P (z,0) dz. (88)

With substitution of Am,Bm in Eq. (79), followed by the
transformations g = t2z and P (g) = (1/t2)P (z), Eq. (78)
leads to

P (g,�g) = t−1
2

∞∑
m=0

Bm dm e− 1
2 (N+2m−2)m�g

× e−Ng/2t2 (g/t2)1−c L1−c
m (Ng/2t2), (89)

where dm = �(m+1)�(2−c)
�(m+2−c) .
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Equation (89) describes the conditional peak-height dis-
tribution P (g,�) of a dot for an arbitrary initial condition
P (g,0) and under generic system conditions. In the limit
� → ∞ [which corresponds to the Wigner-Dyson limit of
the dot Hamiltonian, see the discussion below Eq. (11)], the
distribution evolves to (as only the m = 0 term contributing)

P (g,∞) = N

2 �(2 − c) t2

(
N g

2 t2

)1−c

e− N g

2 t2 . (90)

The presence of lead parameters c and t2 in Eq. (90) indicates
that, even for chaotic dots with weak disorder (the regime
where the dot Hamiltonian is well modeled by a Wigner-Dyson
ensemble), the peak-height statistics is sensitive to the dot-lead
interactions.

The solution for a finite �g depends on the choice of
P (g,0). A suitable initial condition is P (g,0) = δ(g) which
corresponds to the quantum dot in an insulator regime. For this
condition, Eq. (88) gives Bm = (N

2 )2−c 1
dm�(2−c) . Using the re-

lation �(m + 1) La
m(z) = z−a/2ez

∫
ym+a/2 e−y Ja(2

√
zy) dy

in Eq. (89), we get

P (g,�g) = N

2 �(2 − c) t2

(
Ng

2 t2

) (1−c)
2

×
∫ ∞

0
y

(1−c)
2 e−yτ J1−c

(√
2Ngy

t2

)
dy (91)

= N

2 �(2 − c) t2τ

(
Ng

2 t2τ

)1−c

e−Ng/2t2τ

(for c < 2), (92)

with τ = 1 − e−N�g/2 as a function of dot parameters c,t2 as
lead parameters.

For c > 2, P (g,�g) can be expressed in the form of a series,

P (g,�g) = N

2 �(2 − c) t2τ

(
2Ng

t2

) (1−c)
2

×
∞∑

k=0

(−1)k

�(2 − c + k)

(
Ng

t2τ

)k

. (93)

Equations (89), (92), and (93) indicate that the dot informa-
tion affects the conductance distribution only through a single
parameter, namely, τ/2N . The lead information also enters in
the formulation only through two parameters (i.e., t1,t2). The
dot-lead systems with different conditions may correspond to
the same �,t1,t2 and thus same peak-height statistics. Note the
distribution has a weak dependence on �g and therefore on
the dot conditions; this can be visualized from Fig. 1 which
depicts the behavior of P (ln g) for a given pair of leads but
for varying dot conditions (measured by b = τ/2N ). Figure 2
depicts the measure for the same dot but for a different pair of
leads. The suggested weak sensitivity to dot conditions in our
formulation is in agreement with numerically observed almost
similar peak-height fluctuations for ballistic dots with various
shape deformations.22 The appearance of the term g1−c in
Eqs. (89) (92), and (93), however, suggests a strong influence
on the lead conditions. This can be visualized from Fig. 3,
depicting Pg(ln g) for a given dot attached to different leads.

The influence of the dot-lead conditions can be more clearly
seen by a rescaling of g in Eq. (92) by 2t2τ/N . This leads to a

0

 0.05

 0.1

 0.15

 0.2

 0.25

-12 -10 -8 -6 -4 -2 0 2 4

P
(ln

 g
)

ln g

b=0.1
b=0.3
b=0.6
b=0.9

FIG. 1. (Color online) Distribution P (lng) [Eq. (92)] for a given
pair of leads at different dot parameters b = (1 − e−N�)/2N . The
lead parameters are fixed at c = 1.5, t2 = 0.5.

form, independent of the dot conditions and a single parametric
dependence on the leads:

P (gs,�g) = 1

�(2 − c)
g1−c

s e−gs , (94)

with gs = Ng/2t2τ = N�g�/4t2τ . Note the removal of N

dependence by a rescaling of g indicates an almost in-
dependence of the peak-height statistics from the number
of interacting electrons. This is in accordance with the
experimental observations.1

As examples, we consider two limiting cases of the lead
conditions:

(i) Almost symmetric dots. In this case, left and right
resonance widths are almost equal (i.e., �l = �r ), which gives
η = 2. Further assuming αl = αr = αc and Nl = Nr ≡ Nc,
which implies r = 0, θ = sNc, φ = 0 [see Eq. (63)], we get
from Eq. (71),

t1 = sNc

2
, t2 = s

2
, (95)

0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

-5 -4 -3 -2 -1 0 1 2 3 4

P
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 g
)

ln g

b=0.1
b=0.3
b=0.6
b=0.9

FIG. 2. (Color online) As in Fig. 1 but with a different pair of
leads with lead parameter fixed at c = 0.05, t2 = 0.5.
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FIG. 3. (Color online) Distribution P (lngs) [Eq. (94)] for a given
dot under different lead conditions (different c).

and, therefore, from Eq. (75), c = 2 − Nc/2. For almost
symmetric chaotic dots (i.e., � → ∞), Eq. (92) then gives
a χ2 distribution in Nc degrees of freedom:

P (g,∞) ∝ g( Nc
2 −1) e−Ng/2s . (96)

The result is in agreement with Eq. (31) of Ref. 17 for the case
of chaotic dots attached to symmetric leads with equivalent
and uncorrelated channels (Note the λ = 0 case depicted in
Fig. 4 of Ref. 17 is a χ2 distribution in � degrees of freedom
with � as the number of channels in this study).

(ii) Asymmetric dots. Contrary to the previous case, �l and
�r in this case are very different. Consider q = �r

�l
� 1, which

gives η 
 1 and therefore from Eq. (71),

t1 = θ − φ − 8r = (Nr + 4)αr − 4αl, t2 = s − r = αr,

(97)

and c = 2 αl

αr
− Nr

2 [see Eq. (75)]. For asymmetric chaotic dots
(i.e., � → ∞), then Eq. (92) gives

P (g,∞) ∝ g(1+ Nr
2 −2 αl

αr
) e−Ng/2αr . (98)

For the leads with αl ≈ αr , Eq. (98) then gives a χ2

distribution, which is consistent with the semiclassical study
of14 on the chaotic dots with asymmetric leads [see Eq. (49)
of Ref. 14]. For cases αr � αl , Eq. (98) implies a higher
probability of nearly zero conductance in the asymmetric case
as compared to the symmetric case.

The reverse limit of q 
 1 gives η = 1, which in turn leads
to c = 2αr

αl
− Nl

2 [as in this case t1 = (Nl + 4)αl − 4αr, t2 =
αl]. Thus, following an interchange of the subscripts l → r ,
Eq. (98) describes the distribution in this case, too.

For comparisons with previous studies and for future
applications, it is important to summarize the approximations
used in our derivation:

(i) The assumption of the dominance of diagonal elements
of the channels correlation matrix over off-diagonals (required
to obtain the closed form diffusion equation for the partial
widths from that of the partial-width amplitudes) and replacing
each diagonal by the average diagonal αx to approximate Fxx

[see Eq. (55)];

(ii) The replacement of the left-right channel matrix element
M lr by its average αc [see Eq. (58)];

(iii) The assumption of the linearized relation between left
and right partial widths to obtain Eq. (70) from Eq. (62);

(iv) The conductance peaks due to different resonance levels
are also assumed to be uncorrelated; the assumption is justified
at temperatures � < T < � only.

Although valid for generic dot conditions, the above
approximations restrict the applicability of our results to the
leads with weakly correlated channels. Note an analytical
expression for Pg(g) for the irregularly shaped dots with
multichannel leads (for any number of nonequivalent and
correlated channels) was derived in Refs. 16 and 17 (for
other related studies see Refs. 18–21). This study assumes
the statistical properties of the resonance eigenfunction to be
that of a Wigner-Dyson ensemble and is therefore applicable
only in the chaotic regime and/or weak-disordered limit. These
studies correspond to the � → ∞ limit of our formulation.

The approximations used in our analysis make it desirable
to compare our results with numerical/experimental studies
of generic QCB dots. Unfortunately almost all such previous
studies focus on the peak-spacing distribution, with very few
results available for the peak-heights distribution. A proper
numerical verification of our results is a time-consuming
process; it requires the simulations of large random-matrix
ensembles of thousands of matrices for many combinations of
the dot-lead conditions. We intend to report these results in the
near future.

VI. CONCLUSION

Using a complexity parameter-governed diffusion equation
[Eq. (9)] for the components of a resonance eigenfunction, we
analytically derive the single-level conductance-peak height
distribution in the QCB regime of a quantum dot under generic
conditions. The essence of our formulation is the maximum
entropy hypothesis, which permits the representation of the dot
Hamiltonian by a multiparametric Gaussian ensemble. This is
because the existing dot conditions (e.g., shape, disorder, two-
body interaction strength) subject matrix elements to varying
constraints; the entropy maximization under these constraints
leads to their different distribution parameters. The statistical
behavior of the ensemble, however, is mainly governed by
the complexity parameter �,12 which is essentially the mean-
square off-diagonal matrix element measured in units of the
square of the local mean level spacing.

The � formulation reveals insensitivity of the peak-height
distribution to microscopic details of the dot’s conditions: The
distribution is the same for different dots if they share the same
� and belong to same global constraint class (e.g., antiunitary
symmetry). (A calculation of � requires a knowledge of some
past state of dot and same global conditions for different dots
allow use of a common initial condition; see Ref. 15 for
details). The formulation helps one to quantify the robustness
of fluctuations to varying dot conditions as well as in seeking
analogous behavior in seemingly different dots.

Some studies in the past have claimed the observations
of the fractal nature of peak heights.23,24 These observations
intuitively seem to be in accordance with our �-based
formulation. The eigenfunction statistics being multifractal at
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the critical value �∗ of the complexity parameter (see Ref. 13),
it is expected to influence peak-height statistics. However, our
prediction that the fractal peak heights will occur at �∗ is yet
to be verified.

The peak-height distribution obtained here is applica-
ble only for the temperature regimes T � �. For T ∼ �,
thermal fluctuations of the electron energy in the leads
allow conductance to occur through several resonances. The
experimentally observed correlations among peaks at higher
temperatures require a knowledge of the joint distribution of
the conductance-peak heights P (g1,g2, . . . ,gN ) and therefore
the joint distribution function of many resonance eigenfunc-
tions. Using Eq. (25) of Ref. 13 instead of Eq. (9) and
proceeding essentially in the same way as given in Sec. III,
the diffusion equation for P (g1,g2, . . . ,gN ) can be derived;
the increased number of variables in this case makes the
derivation messy. It would also be interesting to apply the
system-dependent random-matrix approach to other energy
scales (e.g., where co-tunneling exists). Another important

regime is where exchange interaction plays a dominant role
leading to an experimentally observed spin pairing. Although
the dot’s spin is experimentally reported not to significantly
influence the peak-height distribution, it leaves its imprints
on the peak-to-peak correlations and the peak-spacing distri-
bution. Intuitively, the spin pairing in our model will lead to
inhomogeneous interactions, and, consequently change in �

and a different level statistics; we intend to pursue the question
in the near future.

The present study deals with the dots with time-reversal
symmetry. Similar information is required for the dots in a
slowly varying magnetic field or the dots with/without other
unitary/antiunitary symmetries. We hope to report some of
these studies in the near future.
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