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Quasi-Fermi-level splitting in ideal silicon nanocrystal superlattices
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Silicon quantum dots open up the possibility for solar cells with a higher voltage than in the Si bulk but still
based on crystalline Si. An upper limit of a solar cell’s open circuit voltage is the splitting of the quasi-Fermi-levels
under illumination. To determine this splitting, the band structure and the density of states of a superlattice of
cubic silicon quantum dots is calculated. Furthermore, the absorption and the minority charge-carrier lifetime of
size-controlled Si NCs in a silicon dioxide matrix are measured. From these data the excess carrier density under
illumination with the AM1.5G solar spectrum is estimated to be about 1016 cm−3. Based on the density of states
and the carrier concentration, the quasi-Fermi-levels are calculated. Superlattices of silicon nanocrystals in SiO2,
Si3N4, and SiC are compared. It is found that under AM1.5G illumination the integrated density of states in the
first miniband is always much higher than the excess carrier density and the splitting of the quasi-Fermi-levels
follows the calculated band gap with an offset of about 0.36 eV.
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I. INTRODUCTION

Silicon nanocrystals (Si NCs) with quantum confined
carriers have a band gap which is higher than that of bulk
Si and is adjustable through the NC size.1–3 This opens up the
opportunity to create a high band-gap solar cell which can be
combined with a bulk Si solar cell to realize a crystalline Si
dual junction solar cell. According to calculations by Meillaud
et al.4 the 33% Shockley Queisser limit of a solar cell with a
1.12 eV band gap increases to 45% when combined with a
1.7 eV top solar cell.

Quantum confinement in Si NCs and its size dependence
has been investigated theoretically1,5 and proven experimen-
tally by absorption6 and photoluminescence.2,4,7 However, for
an increased efficiency compared to the single junction bulk
cyrstalline Si solar cell, it is not the band gap but the open
circuit voltage of the Si NC solar cell that is the decisive
parameter. An upper limit for the open circuit voltage is given
by the quasi-Fermi-level splitting of the solar cell absorber
layer.

In this paper, the quasi-Fermi-level splitting of Si NCs in
SiO2, Si3N4, and SiC is calculated based on experimental data
of carrier generation and recombination and a theoretical band-
structure model.

II. APPROACH

The open circuit voltage of a pn or pin solar cell having
perfect selective contacts can be approximated by the quasi-
Fermi-level splitting in the illuminated absorber. The quasi-
Fermi energy EF,n is the thermodynamic parameter describing
the electron concentration for a given density of states:

n =
∫

N (E)
1

1 + exp
(E−EF,n

kBT

)dE. (1)

N(E) is the density of states (per volume) at the energy E, n is
the total charge-carrier density of the respective carrier type,
kB denotes Boltzmann’s constant, and T is the temperature.
The temperature is taken to be 300 K throughout this paper.

In order to determine the quasi-Fermi-levels from Eq. (1),
the density of states and the charge-carrier concentration have
to be known. For the density-of-states calculation we model
the Si NC layer as an ideal cubic superlattice and use the
envelope function approach8 to obtain the dispersion relation
E(k). The excess charge-carrier concentration �n is obtained
as the product of the carrier generation rate G and the carrier
lifetime τ , �n = Gτ , which were determined by absorption
and transient photoluminescence measurements, respectively.
Assuming undoped material, n0 � �n holds and we obtain
the charge-carrier density from

n ≈ �n = Gτ ≈ 1

d

∫
A(λ)jγ (λ)dλ τ. (2)

A(λ) is the absorption of the sample with thickness d and jγ

represents the AM1.5G photon current density. The calculation
of the quasi-Fermi-level for holes EF,p is done analogously to
the way shown here for electrons.

III. THEORY AND MODELING

To calculate the band structure and the density of states, the
nanocrystal system is modeled as a superlattice of periodically
arranged cubic quantum dots embedded in a matrix of
dielectric material, as shown in Fig. 1. The band-structure
calculation follows the works of Jiang et al.9 and Lazarenkova
et al.8 Each cube in Fig. 1 represents a nanocrystal of size L,
and the space between the cubes is filled with matrix material.
The periodicity P is the same along the orthogonal spatial axes
x, y, and z so that the distance between the nearest cubes is
S = P − L.

Because of its higher band gap in comparison to silicon, the
dielectric matrix forms a potential barrier for charge carriers.
This leads to a periodic array of rectangular potential barriers
as introduced by Kronig and Penney. The barrier height V0

depends on the matrix material and is given in Table I. In
agreement with Jiang et al.,9 an effective mass of electrons
and holes of 0.4 m0 is assumed for the matrix, which is a
reasonable value for all three dielectric matrix materials. m0
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FIG. 1. (Color online) Ideal superlattice of cubic quantum dots
with size L and periodicity P along each spatial direction.

is the electron invariant mass. Within the nanocrystals, the
effective mass m∗ is set to 0.33m0 for electrons and 0.28m0

for holes, which are the geometric averages of the anisotropic
effective masses in bulk silicon.10

The charge carriers within the potential are described by
the Schrödinger equation

h̄

2m∗ ∇2ψ(r) + [E − V (r)] ψ(r) = 0, (3)

with the reduced Planck’s constant h̄, effective mass m∗, wave
function ψ , position vector r and energy E. For the potential
V, the periodic array of rectangular potential barriers has to be
inserted. With a further simplification, namely, by separating
the spatial directions,8 the Schrödinger equation is solvable
analytically.11

These solutions give a relation between the wave vector k
and the energy E, resulting in the electronic band structure
E(k). Figure 2 shows the calculated band structure above the
bulk Si band gap for a superlattice of 2 nm silicon quantum
dots with 0.5 nm spacing in a Si3N4 matrix. Si3N4 is chosen
to illustrate the energy bands because their structure is well
visible. In SiO2 the energy bands are relatively flat due to
the large potential barrier. The energy bands are denoted by
their quantum numbers and degeneracy. They range over small
energy domains separated by regions without states and are
thus called minibands.

The density of states N(E) for electrons in the superlattice
is given by an integral over the surface A:12

N (E) = 2

(2π )3

∮
S

dA

∇E(k)
, (4)

TABLE I. Barrier height V0 for electrons and holes in the modeled
superlattice for the three prominent matrix materials SiC, Si3N4, and
SiO2.9

SiC Si3N4 SiO2

Barrier height for electrons (eV) 0.5 1.9 3.2
Barrier height for holes (eV) 0.9 2.3 4.7
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FIG. 2. (Color online) Band structure calculated for 2 nm silicon
quantum dots with a distance of 0.5 nm embedded in a silicon
nitride matrix. The conduction-band edge of bulk silicon is set as
the reference point for the energy axis with E = 0.

evaluated in the first Brillouin zone. In this work, the
integral was computed by a finite element method13 dividing
the first Brillouin zone into 24 576 tetrahedrons. In each
tetrahedron a linear function was used to approximate the band
structure E(k).

IV. EXPERIMENTAL

Si NCs in SiO2 were fabricated on synthetic quartz
glass (Suprasil 1) by thermal evaporation of SiO powder
under high vacuum (SiOx=1.2) or in a controlled oxygen
ambient (SiO2). Thereby, a superlattice (SL) structure with
50 bilayers was deposited with each bilayer consisting of a
3 nm SiO2 barrier and a Si-rich oxide (SRO) layer of 2, 4,
and 6 nm for the three samples, respectively. All samples
were capped with a 10 nm SiO2 layer. The samples were
annealed for 1 h at 1100 ◦C in Ar atmosphere to induce Si NC
formation. Afterwards, the samples were annealed in forming
gas at 420 ◦C for 20 min to passivate defects at the Si NC
surface. Structural characterization including high-resolution
transmission electron micrographs can be found in Ref. 14. The
approximate crystallite sizes according to these former studies
are 2, 3.5, and 5 nm. The samples are labeled S2, S3.5, and S5
throughout this paper. Reflection R and transmission T spectra
were measured using a Varian Cary 500i spectrophotometer
equipped with an integrating sphere. The absorption A was
calculated as A = 1−R−T.

Time-resolved photoluminescence was measured at room
temperature. A pulsed nitrogen gas laser operating at 337 nm
with 3 nm pulse width and a repetition rate below 10 Hz was
used for excitation. The energy/pulse on the sample was 70 μJ
on a spot of ∼0.6 cm2. The luminescence was detected with a
prism monochromator and a silicon avalanche photodiode. The
transient was measured in a spectral window of 70 nm around
the maximum steady-state photoluminescence intensity with
a time resolution of the overall system better than 300 ns.
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FIG. 3. (Color online) Density of states calculated for 2 nm silicon
quantum dots with a distance of 0.5 nm embedded in a silicon nitride
matrix. The origin of the energy axis equals the conduction-band edge
of bulk silicon.

V. RESULTS AND DISCUSSION

A. Density of states and quasi-Fermi-level

The density of states for different superlattices and geome-
tries was calculated to investigate the influence of the dot size,
interdot distance, and matrix material.

Figure 3 shows the calculated density of states above the
band gap for 2 nm silicon quantum dots with 0.5 nm spacing
in a Si3N4 matrix. The dashed lines represent the contribution
of the single energy bands whereas the full lines and filled
areas stand for the complete minibands. The dot size mainly
affects the position of the minibands in the energy diagram,
depicted in Fig. 4(a) for a SiO2 matrix. The variation of the
Si quantum dot size with a distance of 0.5 nm shows a strong
shift in position of the first miniband toward higher energies

FIG. 4. Calculated density of states in the first miniband above
the Si band gap for a superlattice of Si quantum dots in SiO2,
Si3N4, and SiC. (a) Size variation for 0.5 nm separated Si quantum
dots in SiO2. (b) Distance variation for 2 nm Si quantum dots in
SiO2. (c) 2 nm Si quantum dots with 0.5 nm spacing in various
matrices.

for smaller quantum dots. The quantum dot size also affects
the width of the miniband. However, this feature is much
more strongly influenced by the interdot distance. As shown in
Fig. 4(b), a reduction of the interdot distance from 1 to 0.25 nm
successively changes the shape of the first miniband from a
narrow needle to wider distribution. Additionally, the position
of the miniband is slightly shifted toward lower energies.

The band gap of the matrix material influences both the
position and the width of the minibands. Figure 4(c) shows
the situation for the three technologically relevant matrices
SiC, Si3N4, and SiO2. A high barrier for charge carriers, like
that in a SiO2 matrix (see Table I), results in strong quantum
confinement. The first miniband is far away from the bulk
silicon conduction-band edge, and is narrow in comparison
with silicon quantum dots in matrices with lower barriers.
A different matrix material [Fig. 4(c)] changes the miniband
shape (width and height) and position but leaves the area
under it constant because the total number of electronic states
remains the same.

In summary, the density of states in the modeled superlattice
can be controlled by a set of three parameters, namely, the size
of the quantum dots, the interdot distance, and the matrix
material. The kind of matrix material has no influence on
the integrated density of states in the respective miniband.
However, the dot size and the interdot distance do have such
an influence, as the number of states per unit volume depends
on the Si NC volume concentration. For reasonable dot sizes
between 1.5 and 5 nm and distances between 0.5 and 4 nm, the
integrated density of states of the first miniband N1 is between
1018 and 1021 cm−3 (see Fig. 5).

FIG. 5. (Color online) Calculated density of states in the first
mini N1 band above the band gap for silicon quantum dots in SiO2.
(a) Variation of the quantum dot size. (b) Variation of the quantum
dot distance.
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FIG. 6. Relation between the carrier concentration n and the
quasi-Fermi-level for electrons EF,n for 2 nm silicon quantum dots
with 2 nm spacing in SiO2. When the first miniband is full (n = N1),
the quasi-Fermi-level rises towards the second miniband. The thin
lines indicate the quasi-Fermi-level for a carrier density of 1016 cm−3.

The presented calculation of the density of states was done
in order to obtain a relation between the concentration n and
the quasi-Fermi-level of one charge-carrier type, given by
Eq. (1). Figure 6 illustrates this relation for electrons in the
case of 2 nm quantum dots with 0.5 nm spacing in SiO2.
For n much smaller than the density of states in the first
miniband N1, n rises logarithmically with EF,n because the
Fermi-Dirac distribution shifts to higher energies, Eq. (1).
Once the first miniband is filled and the second miniband starts
to be populated, EF,n jumps toward the latter. The effects
for holes and the corresponding quasi-Fermi-level EF,p are
analogous and not discussed here.

B. Excess carrier density

In order to get a realistic value for the excess carrier
concentration �n, the spectrally resolved optical absorption A
and the luminescent lifetime was measured for a set of samples
with silicon nanocrystals in a SiO2 matrix with approximate
crystallite sizes of 2, 3.5, and 5 nm. The experimental data
reported in this paper, carried out to determine the excess
carrier density in Si NC, are exclusively related to a matrix of
SiO2, which is known to present the best properties. Figure 7
shows the absorption data and the AM1.5G solar spectrum. For
simplicity, optical effects such as multiple reflections were
neglected. We assumed that every absorbed photon with a

FIG. 7. (Color online) Spectral absorption of three samples each
containing 50 bilayers of silicon nanocrystals (different sizes: 2, 3.5,
and 5 nm) in a SiO2 matrix (lines with symbols) and the AM1.5G
solar spectrum (continuous line).

FIG. 8. (Color online) Photoluminescence decay of Si NC in SiO2

with approximate sizes of 2, 3.5, and 5 nm. The lifetime was obtained
from a single-exponential fit to the data (continuous lines).

wavelength λ smaller than 600 nm creates one electron-hole
pair and calculated the excess carrier concentration �n from
Eq. (2). Other effects like the generation of multiple excitons
per absorbed photon are neglected here.

Time-resolved photoluminescence for the same Si NC sizes
(2, 3.5, and 5 nm) is shown in Fig. 8. The luminescence lifetime
was obtained by a single-exponential fit (continuous line in
Fig. 8). The origin of Si NC photoluminescence has been
intensively discussed in recent years. In his comprehensive
review, Sa’ar15 elucidated the effects of surface chemistry
and quantum confinement. Godefroo et al.2 demonstrated
how the origin of the photoluminescence (PL) from Si NC
in SiO2 can be switched from defect related to quantum
confined by a hydrogen treatment. In order to record band-band
luminescence but not that of trapped carriers at surface states,
the Si NC samples used in this work were passivated in forming
gas after the high-temperature annealing step (see Sec. IV).
The dependence of the lifetime on Si NC size (Fig. 8) supports
the hypothesis that the luminescence stems from quantum
confined carriers rather than from localized surface states.
Lifetime values between 66 and 118 μs were measured, which
is in very good agreement with other measurements.6 The
resulting excess charge-carrier density lies between 0.15 ×
1016 cm−3 for the S2 sample and 1.66 × 1016 cm−3 for the
S5 sample (see Table II). The excess carrier concentration
correlates with the size of the nanocrystals. The bigger the
nanocrystals, the stronger their absorption is, especially in the
visible range, in which the solar photon flux is increasingly
intense. Apart from that, �n is always significantly smaller
than the integral density of states in the first miniband (cf.
Fig. 5). Hence, it is clear that the quasi-Fermi-levels lie
between the first miniband above and the first miniband below
the band gap.

TABLE II. Estimated excess carrier concentration �n in different
NC samples under illumination with the AM1.5G solar spectrum.
Approximate NC sizes are 2, 3.5, and 5 nm.

S2 S3.5 S5

�n (cm−3) 0.15 × 1016 0.65 × 1016 1.66 × 1016
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C. Quasi-Fermi-level splitting

This work aims at obtaining a conservative estimate for
the quasi-Fermi-level splitting within Si NC superlattices. As
can be seen in Fig. 6, the quasi-Fermi-level depends roughly
logarithmically on �n. Because the dependence on the position
of the first miniband and its density of states [overlap integral
in Eq. (1)] is much more prominent, we neglect effects of the
charge-carrier density for further discussion and set it to a fixed
value of 1016 cm−3.

For 2 nm NCs in SiO2 with 2 nm spacing, Eq. (1) with
n ≈ �n = 1016 cm−3 yields a quasi-Fermi-level for electrons
EF,n of about 0.375 eV above the conduction-band edge of
bulk silicon. This is also illustrated in Fig. 6 (thin black lines).
EF,p is determined in the same way (not shown here) and lies
in this case about 0.495 eV below the valence-band edge of
bulk silicon. The splitting of the quasi-Fermi-levels �EF then
results in

�EF = EF,n − EF,p = EG,Si + 0.375 eV + 0.495 eV, (5)

with the band gap of bulk silicon EG,Si = 1.12 eV.
The density of states was calculated for different super-

lattices with varying size and distance of the quantum dots

FIG. 9. (Color online) Calculated band gap (black) and splitting
of the quasi-Fermi levels �EF for silicon quantum dots in a SiO2 (a),
Si3N4 (b), and SiC (c) matrix, all with an interdot distance of 2 nm.
Illumination with one sun corresponds to �n = 1016 cm−3.

FIG. 10. (Color online) Experimental values of the photolumi-
nescence maximum EPL and the optical gap E03 of Si NCs in SiO2 in
comparison with the calculated quasi-Fermi-level splitting.

in SiC, Si3N4, and SiO2 matrices. Subsequently, the splitting
of the quasi-Fermi-levels was calculated for every considered
NC size with �n = 1016 cm−3, and for 1014 and 1018 cm−3

as a simple parameter variation. Figure 9 shows the results.
For all three matrices, the band gap strongly depends on
the quantum dot size. The smaller the dots, the stronger the
quantum confinement, and therefore the larger is the band gap.
This effect is especially pronounced for very small quantum
dots. The offset between �EF and the band gap depends
only slightly on the dot size, the interdot distance, and the
matrix material. The offset increases from 0.33 eV for 5 nm
dots to 0.44 eV for 1.5 nm dots for one sun illumination.
The observation that �EF mainly follows the band gap can
be explained with the integrated density of states in the first
miniband N1, which is always several orders of magnitude
higher than the excess carrier concentration �n and the fact
that the first miniband is very narrow. Figure 9 also shows how
the quasi-Fermi-level splitting depends on the charge-carrier
concentration. A higher charge-carrier concentration can be
achieved by means of light trapping16 or an increased lifetime.
A 100-fold higher carrier concentration would increase the
quasi-Fermi-level splitting by 0.24 eV.

The procedure presented here involves several simplifica-
tions and relies on the idealized case of a cubic superlattice with
monodisperse NCs. To check consistency with other band-
gap-related data, we compare in Fig. 10 the quasi-Fermi-level
splitting with the measured optical absorption gap E03 and the
position of the photoluminescence maximum EPL. The three
values show similar size dependence and the same sequence
except for the smallest NC size (2 nm). However, bearing in
mind the severe simplifications made (cubic shape, perfect
size distribution, etc.), the discrepancy for very small NCs
is no surprise. For sizes larger than approximately 2.5 nm,
the calculation of the quasi-Fermi-level splitting seems to be
reasonable.

VI. CONCLUSION

The quasi-Fermi-level splitting of Si NC superlattices in
SiO2, Si3N4, and SiC was investigated using the envelope
function approximation to calculate the energy-band structure
and the density of states together with experimental values
of the charge-carrier density. To estimate the charge-carrier
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density, absorption and carrier lifetime measurements were
performed on size-controlled Si NCs in SiO2 with sizes of
2, 3.5, and 5 nm. Based on these measurements, the carrier
density is estimated to 1016 cm−3 at 1 sun illumination. In
this case, the quasi-Fermi-level splitting was shown to follow
the band gap with an offset of approximately 0.36 eV. A 100-
fold higher carrier generation enhances the quasi-Fermi-level
splitting by 0.24 eV. Given a sufficiently high short circuit
current and fill factor, this would allow a significantly higher
efficiency to be attained.
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