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Magnetic anisotropy of thin Co and Ni films on diamond surfaces
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We present results of ab initio investigations of magnetic properties of Co and Ni multilayers on diamond
surfaces. The generalized gradient approximation is used within the framework of noncollinear density-functional
theory, and fully relativistic pseudopotentials are employed together with a basis set of Gaussian orbitals. The
validity of this approach is demonstrated for freestanding transition-metal (TM) monolayers and TM monolayers
on the Cu(001) surface. Our results for these test systems are in good agreement with respective literature data.
We employ the approach to study up to six Co or Ni adlayers on (111) and (001) surfaces of diamond. These
systems are characterized by a very small lattice mismatch of the constituents. We analyze the influence of the
strong covalent bonds forming in these hybrid systems on the magnetic properties, focusing on the magnetic
anisotropy. For Co multilayers on C(111), the anisotropy energies are quite large and show a weak dependence
on the number of adlayers. For Co or Ni multilayers on C(001), on the other hand, these energies are an order of
magnitude smaller but their dependence on adlayer thickness is much more pronounced. For the hybrid systems
considered, we find configurations with noncollinear magnetization within a given layer or on different layers to
be unstable.
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I. INTRODUCTION

Magnetic anisotropy is a key property of ferromagnetic
materials and plays a major role in many technological
applications. In particular, magnetic anisotropy effects in
ultrathin films and heterogeneous multilayer systems have
received a lot of attention both in experimental as well as
in theoretical studies.1,2

Although the physical origins of magnetic anisotropy have
been known for a long time,3 it took almost 50 years for the
first theoretical investigations for bulk4 and surface systems5

to become available. This is due to the large numerical effort
required to describe anisotropy effects properly, especially for
bulk systems where anisotropy energies are of the order of
a few μeV. For these reasons, investigations of the magnetic
anisotropy in bulk systems remain problematic, even today. For
multilayers and surface systems, on the other hand, anisotropy
energies are larger by about three orders of magnitude, and
there has been a multitude of studies on these systems (for an
overview, see Ref. 6 and references therein).

Although most studies of anisotropy effects concentrate
on purely metallic multilayer systems, there has been an
increasing interest in the study of semiconductor-ferromagnet
hybrid systems in recent years due to their technological
potential in spintronics.7,8 For example, Kosuth et al.9 have
investigated anisotropy effects of thin Fe adlayers on a GaAs
surface, finding a strong influence of the chemical bonds at the
interface on the magnetic anisotropy.

The magnetic anisotropy depends heavily on the atomic
structure of a considered system,2 particularly on the lattice
mismatch and interface roughness. This makes a meaningful
comparison between experiment and theory rather difficult.
Therefore, it is essential that considered systems are well
defined and show good structural compatibility. In a previous
contribution,10 we investigated hybrid systems consisting of
Co multilayers on (001) and (111) diamond surfaces, which
have a very small lattice mismatch between the constituents
and are well suited in this respect. These systems form

strong covalent bonds between the diamond substrate and the
ferromagnetic adlayers, leading to large binding energies.

In this work, we study electronic and magnetic properties of
metal-semiconductor hybrid systems. In particular, we analyze
the impact of the covalent interface bonds on the magnetic
properties of the systems, focusing on anisotropy effects.
We also investigate the consequences of replacing Co by Ni
adlayers on the magnetic properties of the hybrid systems.
Since their lattice constants are very similar, the substitution
of Co by Ni hardly affects the structural properties. The
magnetic moments and anisotropy of the hybrid systems are
considerably different, however.

The paper is organized as follows. In Sec. II, we give a
short overview of noncollinear density-functional theory as
implemented in our program. To check the validity of our
approach, we compare our results for freestanding transition-
metal monolayers as well as transition-metal monolayers on
Cu(001) with results from the literature in Sec. III A. The
results for one to six Co adlayers on the C(111)-(1×1) surface
are presented in Sec. III B. We then change the substrate
to C(001)-(1×1) and consider Co as well as Ni adlayers as
adsorbates in Sec. III C. A short summary concludes the paper
in Sec. IV.

II. METHODOLOGY

Our calculations are carried out in the framework of density-
functional theory employing pseudopotentials together with
a basis set of atom-centered Gaussian orbitals of s, p, d,
and s∗ symmetry. Surfaces are simulated within the standard
supercell approach using a slab geometry for the hybrid
systems.

In a system with noncollinear magnetization, the energy
can be written as a functional Ẽ of the Hermitian 2 × 2
density matrix �(r).11 One can directly map this matrix to
the charge density n(r) and the vector of the magnetization
density m(r) using Pauli spin matrices. Each element of
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�(r) is given by a sum involving the Kohn-Sham spinors
ψ j (r) = (ψ1

j (r),ψ2
j (r)). These spinors are obtained by solving

a noncollinear version of the Kohn-Sham equation that can
be formally derived as the nonrelativistic limit of relativistic
density-functional theory:12

[(−�+ VCoul + Vext)I2 + V xc + VSO L · S]ψj = εjψ j . (1)

Here, VCoul and Vext are the Coulomb and the external potential,
respectively, which already appear in conventional density-
functional theory and are diagonal in spin space. We note
that the external potential contains the Darwin and the mass
term. I2 is the 2 × 2 unit matrix in spin space. The other two
terms are the exchange-correlation potential and the spin-orbit
(SO) interaction, which are, in general, nondiagonal in spin
space.

The 2 × 2 matrix of the exchange-correlation potential V xc

is the functional derivative of the exchange-correlation energy
Exc with respect to the components of the density matrix. It
depends on n(r) and on the vector m(r). In the local-spin-
density approximation (LSDA), Exc is written as an integral
over local exchange densities εσ

xc(r), which depend only on the
charge density and on the absolute value of the magnetization.
Therefore, the noncollinear exchange potential V xc can be
derived from the collinear case by locally rotating the spin
quantization axis.13 In the generalized gradient approximation
(GGA), however, one can formulate noncollinear versions in
various manners.14 We use the approach as derived by Peralta
et al.15 and the Perdew-Burke-Ernzerhof (PBE) formulation
of the GGA.16 For the local density approximation (LDA), we
use the data of Ceperley and Alder17 in the parametrization of
Perdew and Zunger.18

In our approach, we replace the external potential Vext

and the spin-orbit potential VSO L · S by a sum over
j -dependent pseudopotentials19,20 with j = l ± 1/2. These
pseudopotentials are generated for the respective atoms ac-
cording to the prescription of Hamann,21 including nonlinear
core corrections,22 and they are eventually converted to the
Kleinman-Bylander form23 V KB

j to improve the numerical
efficiency of the calculations. For both steps, we use the atomic
pseudopotential engine as described by Oliveira et al. in
Ref. 24. In our calculation, orbital angular momenta up to
l = 2 are included. As the spin-orbit interaction is usually
small, it is advantageous to split the j -dependent atomic
pseudopotential into a scalar-relativistic and a spin-orbit
part:20

V
SR,KB
l = 1

2l + 1

[
(l + 1)V KB

l+1/2 + lV KB
l−1/2

]
,

(2)

V
SO,KB
l = 2

2l + 1

[
V KB

l+1/2 − V KB
l−1/2

]
.

Both contributions are fitted to Gaussian functions19 and
transferred to the solid, leading to a nonlocal operator that
is also nondiagonal in spin space (see Ref. 20 for details). For
a Gaussian basis set, the resulting matrix elements have the
same form as the overlap integrals, which are easily evaluated
analytically.25

A fine real-space mesh is needed to represent the charge
density since the pseudopotentials for transition metals are
rather hard. To evaluate the charge density, we use the very

efficient algorithms presented by Wieferink et al.26 The decay
constants27 of the Gaussian basis functions are chosen so as to
minimize the total energy in a calculation of the standard bulk
configuration of the considered atomic species (for example,
fcc bulk Ni for a Ni pseudopotential) and of appropriate
monolayers. To circumvent numerical instabilities during the
optimization of the decay constants, we employ the methods
presented by Petersson et al.28

As pointed out by Jansen,29 the Coulomb part of the total
energy Ẽ should also include a relativistic correction (the
so-called Breit interaction in Hartree form), which can be
approximated by a dipole sum,4

Edipole = 1

c2

′∑
ττ ′

1

|τ − τ ′|3

×
[

mτ mτ ′ − 3
[(τ − τ ′) · mτ ][(τ − τ ′) · mτ ′]

|τ − τ ′|2
]
,

(3)

in units of Rydberg (where 1/c = α/2 and α is the fine-
structure constant).

This dipole sum can be evaluated very efficiently by
methods based on the Ewald-Kornfeld approach30,31 employ-
ing mixed real-space/Fourier-space techniques. We use the
summation method as described in Ref. 32. In our program, the
magnetic moment mτ localized at the position τ is obtained
by a Mulliken analysis33 after the self-consistency cycle is
finished. The resulting dipole sum is then added to the total
energy, i.e., E = Ẽ + Edipole.

The total energy of a system depends on the magnetic
moments via the exchange-correlation potential, the spin-
orbit potential, and the dipole energy. Assuming a collinear
magnetic configuration, the exchange-correlation energy does
not depend on the orientation of the magnetic moments with
regard to the crystal axis. For the spin-orbit interaction and
the dipole energy, this is usually not the case. For magnetic
systems, these interactions lead to a dependence of the total
energy on the direction of the magnetic moments. The energy
difference between two magnetic orientations m1(r) and
m2(r) is called magnetocrystalline anisotropy (MCA) energy,
EMCA = ESO

MCA + E
dipole
MCA . It consists of ESO

MCA = Ẽ[m1(r)] −
Ẽ[m2(r)] resulting from the difference of the total energies
Ẽ including the spin-orbit interaction, and E

dipole
MCA resulting

from the respective difference of the dipole interaction energies
Edipole for both configurations.

Integrations over the Brillouin zone are performed using
special k-point sets according to the prescription of Monkhorst
and Pack.34 To obtain reliable results for spin polarization,
as well as magnetization, a precise sampling of the Fermi
surface is mandatory. As all systems considered in this work
are metallic, we employ the extended broadening scheme
introduced by Methfessel et al.35 The number of k points
and the broadening width η depend on the required accuracy
of the Brillouin-zone integrals. An exact solution requires
η → 0 and Nk → ∞, which is of course not feasible due
to computational limitations. Therefore, one has to choose an
acceptable compromise. This point will be addressed in some
more detail at the end of Sec. III A.
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III. RESULTS

In this section, we first demonstrate the usefulness of our
approach by presenting magnetic moments and anisotropy
energies of free and adsorbed transition-metal (TM) mono-
layers in comparison with literature data. Then we turn to the
main subject of our contribution and discuss thin TM films on
diamond surfaces and the influence of an insulating substrate
on their magnetic behavior.

A. Transition-metal monolayers

Freestanding TM monolayers, as well as TM monolayers
adsorbed on the Cu(001) surface, are especially suitable pro-
totype systems for a comparison of our results with literature
data since these systems have been studied extensively in the
past.

We address freestanding Fe, Co, and Ni fcc monolayers,
which have a very simple structure because there is only
one atom per square unit cell. In addition, we present results
for these monolayers adsorbed on Cu substrates consisting
of three Cu(001) layers. All calculations (including those
for the freestanding monolayers) have been performed at the
experimental bulk lattice constant aexp = 3.60 Å of Cu leading
to a surface lattice constant of a001 = 2.54 Å. The TM/Cu
systems have been relaxed in the direction perpendicular to
the surface until all forces are smaller than 1 mRy/aB .

To ensure a high accuracy in the determination of the
magnetic moments and the anisotropy energies, we have used
a very fine k-point mesh of 84 × 84k points in the whole 2D
Brillouin zone. As all systems are metallic, we employ the
Methfessel-Paxton broadening scheme35 of second order with
a very small width of 1.5meV.

In Table I, we present the magnetic moments of freestanding
and adsorbed TM monolayers, as resulting from our LDA and
GGA calculations, in comparison with literature data. We note
in passing that the absolute value of the magnetic moment
hardly depends on the direction of the magnetization or on
the spin-orbit interaction. In the case of a Co monolayer, for
example, the difference between a calculation including the
SO interaction (with m ‖ ez) to one neglecting this interaction
is less than 0.01μB .

TABLE I. Magnetic moments μ (in μB /atom) of freestanding
Fe, Co, and Ni monolayers, and of these monolayers adsorbed on a
Cu(001) surface. The experimental lattice constant of Cu is used, and
spin-orbit interaction is taken into account.

LDA GGA

this work Lit. this work Lit.

Fe(ML) 3.13 3.00a 3.13 2.97b

Co(ML) 2.11 2.09a 2.11 2.07b

Ni(ML) 0.98 1.00a 0.99 0.98b

Fe/Cu(001) 2.76 2.85c 2.85 2.78b

Co/Cu(001) 1.78 1.72d 1.84 1.83b

Ni/Cu(001) 0.34 0.49 0.44b

aReference 6.
bReference 36.
cReference 37.
dReference 38.

The magnetic moments for the monolayers are considerably
higher than the respective GGA bulk values for Fe (2.19μB ),
Co (1.63μB ), and Ni (0.64μB ). This is due to the lower
coordination of the atoms in a monolayer as compared to
the bulk crystal. For a TM layer on a substrate consisting
of three Cu(001) layers, the magnetic moment is always
strongly localized at the respective magnetic adlayer atoms,
whereas the Cu atoms have a negligible magnetic moment
that always amounts to less than 0.02μB per atom. The
magnetic moments of the ferromagnetic top atoms are reduced
in comparison to those of the freestanding monolayers due to
the presence of the Cu substrate and the concomitant increased
coordination. Comparing our results with the literature data
in Table I, we note that for both the monolayers as well as
the TM/Cu systems, the magnetic moments agree within a
few percent with theoretical results from plane-wave36 and
full-potential linear augmented plane-wave6,37,38 calculations.
The magnitude of the magnetic moments hardly depends on
the used functional. This can be attributed to the fact that the
lattice constants are the same in both calculations.

Magnetocrystalline anisotropy energies, on the other hand,
are much more sensitive to calculational details. Therefore,
they are a very meaningful test for the accuracy and stability
of our approach. In Table II, we present the spin-orbit part of
the MCA energy

ESO
MCA = Ẽ(m ‖ ex) − Ẽ(m ‖ ez) (4)

for the freestanding monolayers and TM/Cu systems. In
addition to calculating the anisotropy energies fully self-
consistently, we have also employed the force theorem (FT)4

for their evaluation. In the latter approach, one calculates the
MCA energies as the difference between the band-structure
energies for both magnetic configurations. In this case,
there is no need to converge a complete self-consistency
cycle.

The first point to notice in Table II is the good agreement
between the MCA energies calculated using the force theorem
with those determined self-consistently. This can be attributed
to the small magnitude of the spin-orbit interaction in these
ferromagnets compared to the other terms in the Hamiltonian.
This point is further confirmed by the fact that a self-consistent
calculation starting from a potential determined without

TABLE II. Spin-orbit part of the MCA energy of Fe, Co, and Ni
monolayers and of these monolayers adsorbed on a Cu(001) surface.
Results obtained using the force theorem or self-consistent-field
calculations are labeled FT and SCF, respectively. The experimental
lattice constant of Cu is used in all calculations.

LDA GGA

FT SCF Lit.a FT SCF Lit.a,b

Fe 0.50 0.57 0.21a 0.63 0.65 +0.50,a + 0.63b

Co −1.40 −1.42 −1.42a −1.39 −1.33 −1.49,a − 1.26b

Ni −2.08 −2.01 −1.64a −0.89 −0.77 −0.77,a − 1.43b

Fe/Cu 0.28 0.29 0.38 0.38 +0.29b

Co/Cu −0.30 −0.34 −0.57 −0.52 −0.23b

Ni/Cu −0.77 −0.74 −1.02 −1.02 −1.24b

aReference 6.
bReference 36.
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spin-orbit interaction takes only three to five iterations to
converge. Thus for interface and surface systems, it may often
be sufficient to employ the force theorem, as has been noticed
previously.39 Nevertheless, for the new systems to be reported
about in the remainder of this work, we prefer to carry out all
calculations self-consistently.

For Fe and Fe/Cu, we find the energetically most favorable
configuration to be the one in which the magnetic moments
point out-of-plane, whereas for Co and Ni they prefer to point
in-plane. This general behavior is in excellent agreement with
previous theoretical results.6,36 On a more quantitative basis,
several agreements but also some discrepancies are to be noted.
For the freestanding Ni monolayer, e.g., where previous GGA
results of other groups show a large scatter by about a factor
of 2, our result agrees with that of Ref. 6 while it deviates by
some 0.7meV from the result of Ref. 36. This shows the high
sensitivity of the magnetic anisotropy to numerical details.
This notion is further corroborated by the MCA energies of
the freestanding Fe and Co monolayers. While the GGA results
for the Fe monolayer and both the LDA and GGA results for
the Co monolayer are in very reasonable agreement, our LDA
results for the Fe monolayer show a rather large deviation from
the results of Ref. 6.

Next, we want to identify the influence of the employed
exchange-correlation (XC) functionals on the anisotropy en-
ergies by comparing respective results in Table II. For Fe and
Co monolayers, we obtain very similar anisotropy energies
for both LDA and GGA functionals as long as we fix the
lattice constant to the experimental lattice constant of Cu. The
MCA energy for a Ni monolayer, on the other hand, shows
quite a sizable dependence on the employed functional, as has
been noted previously.6 For the TM/Cu systems, the LDA
anisotropy energies are always smaller than the respective
GGA values. So there is no unique or systematic trend to
be noted concerning the influence of the XC functional on the
MCA energy.

We note in passing that the magnitude of the magnetic
moment is only a minor indicator of the magnetic anisotropy
energy. In fact, the MCA energy depends more strongly on
details of the band structure and on the shape of the Fermi
surface than on the exchange splitting, as has been shown
previously.1 For example, the Fe monolayer has the smallest
anisotropy energy of the three transition-metal monolayers but
the largest magnetic moment, confirming this notion.

In addition to the SO interaction, the dipole-dipole interac-
tion can also contribute significantly to the total anisotropy
energy (see Table III). For the Fe monolayer and the
Fe/Cu system, the SO and dipole contributions to the total
MCA energy are of the same order (see, e.g., the LDA
values of 0.57/ − 0.21 meV for the Fe monolayer and
0.29/ − 0.17 meV for the Fe/Cu system, respectively),
whereas for freestanding Co and Ni monolayers, as well as
for Co and Ni monolayers on Cu, the dipole interaction is
much less important. This results from the fact that the size of
the dipole contribution depends approximately quadratically
on the magnetic moment. Nevertheless, these contributions
have to be taken into account, especially when adding further
ferromagnetic adlayers. In general, the dipole part of the
magnetic anisotropy favors magnetic moments to be in-plane.
As a consequence, the total magnetic anisotropy energy is

TABLE III. Self-consistent spin-orbit (SO) and dipole-dipole
(dipole) contributions to the total MCA energy (total) (in meV). For
further details, see the caption of Table II.

LDA GGA

SO dipole total SO dipole total

Fe 0.57 −0.21 0.36 0.65 −0.21 0.44
Co −1.42 −0.10 −1.52 −1.33 −0.10 −1.43
Ni −2.01 −0.02 −2.03 −0.77 −0.02 −0.79
Fe/Cu 0.29 −0.17 0.12 0.38 −0.19 0.19
Co/Cu −0.34 −0.07 −0.41 −0.52 −0.08 −0.60
Ni/Cu −0.74 −0.00 −0.74 −1.02 −0.00 −1.02

increased by the dipole contribution for Co and Ni while it is
decreased considerably for Fe.

At this point, we briefly address the convergence of our
calculations. We would like to emphasize that a precise
sampling of the Brillouin zone turns out to be a necessary
prerequisite for a reliable description of magnetic properties,
especially of MCA energies. To illustrate this point, we present
the spin-orbit contribution to the MCA energy of a freestanding
Co monolayer calculated on the basis of the force theorem
within the LDA for different numbers of k points Nk and
different Gaussian broadenings η (Fig. 1).

For larger systems, the determination of eigenvalues be-
comes the most time-consuming part of the calculations. In
a Gaussian basis set, however, the size of the Hamiltonian
matrices is rather small, as compared to a plane-wave basis
set, allowing for a rapid solution of the eigenvalue problems.
Nevertheless, it is highly desirable to reduce the number
of k points as much as possible. As can be seen from
Fig. 1(a), convergence with respect to the number of k
points depends strongly on the broadening width η. A large
broadening η can speed up the convergence of the Brillouin
zone integrals considerably, leading, however, to a large
error in the anisotropy energy. For example, the anisotropy
energy determined with η = 100 meV differs from the one
determined for η = 0.1meV by some 0.2meV. However,
anisotropy energies determined for η � 1 meV differ by less
than a few μ eV from each other. Therefore, the broadening
width should be of this magnitude.

Comparing Figs. 1(a) and 1(b), we find that the use of
extended broadening techniques according to Ref. 35 does not
speed up the convergence of the integrals with respect to the
number of k points, but it does reduce the dependence on the
broadening width η. Therefore, we use this extended scheme
throughout the paper.

Figure 1(b) suggests that about 7000 sampling points in the
Brillouin zone are necessary to obtain an accuracy of some
μ eV for η = 1 meV. This amount of accuracy is sufficient for
all surface and interface systems considered here, and this grid
is used in the remainder of this work.

B. Co multilayers on the C(111) surface

In the following, we apply our approach to metal-
semiconductor hybrid systems. This class of systems has
attracted much attention in recent years due to its possi-
ble application in spintronic devices.7–9 In particular, Co
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FIG. 1. (Color online) Spin-orbit part ESO
MCA of the magnetic anisotropy energy of a Co monolayer in dependence on the number of k points

Nk in the Brillouin zone for different broadening widths η. In (a), Gaussian broadening (n = 0) is used, while in (b), second-order broadening
(n = 2) according to Ref. 35 is used.

multilayers on graphite surfaces40 or on graphene40,41 have
been studied in the context of spin valves and graphene-based
spintronic devices. Quite generally, the magnetic properties of
such systems depend strongly on the nature of the interface
bonds. We illustrate this point by investigating Co multilayers
on C(111) in this section. Afterwards, we study Co multilayers
on a C(001) surface and discuss the importance of the surface
topology on the magnetic properties. Subsequently, we replace
the Co by Ni adlayers and explore the concomitant effects in
the magnetic anisotropy of the resulting Ni:C(001) systems.

1. Structural properties of Co:C(111) systems

A useful hybrid system must have a good structural com-
patibility because a large lattice mismatch leads to diffusive
transport processes, as has been shown previously.42 These
quickly destroy the magnetization of the currents induced by
the source. To this end, we recently10 proposed a hybrid system
consisting of n Co adlayers on a diamond (111) surface. We
will henceforth refer to this system as n Co:C(111).

The experimental bulk lattice constant of Co is a = 2.51 Å
for the hcp structure with an optimal c/a ratio of 1.62. This
lattice constant shows an almost perfect matching (mismatch
of less than 1%) with the surface lattice constant aC(111) =
2.52 Å of C(111)-(1×1). Therefore, the constituents of this
metal-semiconductor hybrid system are highly compatible.
Our calculated GGA bulk lattice constant of hcp Co amounts to
a = 2.52 Å and is thus only 0.4% larger than the experimental
value. For diamond, the calculated lattice constant of 3.57 Å
yields aC(111) = 2.52 Å, in full agreement with experiment.
Thus the theoretical lattice mismatch of <0.2% is even smaller
than in experiment. Therefore, we use the theoretical GGA
lattice constant of diamond for the hybrid systems.

We briefly summarize the structural and electronic proper-
ties of this hybrid system. For a more detailed discussion of its
structure, we refer the reader to Ref. 10. Starting with one Co
adlayer on C(111), the energetically most favorable adsorption
configuration turns out to be the one shown in Fig. 2. The Co
adatoms are located above the surface layer C atoms in on-top
positions saturating all dangling bonds of the substrate. They

form strong covalent Co-C hybrid bonds, which lead to a large
binding energy of 1.9 eV per Co atom.

Due to the negligible lattice mismatch between diamond
and hcp cobalt, Co atoms adsorb in hcp bulk Co sites
characteristic for a Co(0001) surface when adding further
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d21

d23
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C2
C1

Co1

Co2

top view

[0
10

0]

[1000]

(a)

side view

[1000]

[0
00

1]

(b)

FIG. 2. (Color online) Top and side view of one and two Co
adlayers on the C(111) surface (see text). Large filled red circles
mark Co atoms on the first adlayer and large open circles mark Co
atoms on the second adlayer. Small blue circles indicate C substrate
atoms. Full lines represent covalent sp3 or pd bonds parallel to the
drawing plane, while dashed lines represent sp3 bonds that form an
angle with the drawing plane or metallic dd bonds. In the top view,
only dd bonds between Co atoms on the first adlayer are indicated
by dashed lines.
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BERND STÄRK, PETER KRÜGER, AND JOHANNES POLLMANN PHYSICAL REVIEW B 84, 195316 (2011)

adlayers. For 2 Co:C(111), the most favorable configuration
for the top Co layer is also shown in Fig. 2 (open circles). For
a larger number of Co adlayers, we find that the interface has
only a minor impact on the structural properties of both the
Co layers and the diamond substrate. For the Co adlayers, we
observe some inward relaxations with respect to bulk Co sites,
while the structure of the diamond substrate layers is hardly
changed in comparison to bulk diamond.

2. Magnetic properties of Co adlayers on C(111)

Although the structural properties away from the interface
are only slightly influenced, the interface hybrid bonds
between the substrate and the Co adlayers have a large impact
on both the magnetic moments as well as on the anisotropy
properties of the systems. In Table IV, we present the magnetic
properties for one to six Co adlayers on the C(111) surface.
The magnetic anisotropy energies are split into spin-orbit
and dipole contributions. For 1 Co:C(111), the value of the
magnetic moment (0.94μB ) is rather small in comparison
to the bulk value of μhcp = 1.62μB due to the covalent
nature of the Co-C bond. The rather small magnetic moment
leads to a negligible dipole anisotropy of only −0.03 meV.
Yet there is an appreciable spin-orbit anisotropy energy of
0.62 meV favoring the direction of the magnetic moment to be
out-of-plane eventually. These findings are in strong contrast to
the respective results for a freestanding hcp Co monolayer, for
which the magnetic moment amounts to μmono = 1.95μB and
the total magnetic anisotropy energy amounts to −0.43 meV.
Thus, the presence of the diamond substrate changes the
easy axis of magnetization from in-plane to out-of-plane and
increases the absolute value of the magnetic anisotropy energy
by about 50%, although the magnetic moment is reduced
significantly. As the unit cell is hexagonal, there is also a small
energy difference between different in-plane configurations.
These energy differences are about two orders of magnitude
smaller than the energy difference between an out-of-plane and
an in-plane configuration and are therefore neglected. Again,
one can observe that the magnetic moment is only a minor
indicator of the magnitude of the anisotropy energy.

The addition of more Co adlayers to the system leads to
an increase of the average magnetic moments since every Co
adatom carries an additional magnetic moment. An analysis
shows, however, that the magnetic moments at the interface
are always reduced (<1μB) with respect to the bulk value
of μhcp = 1.63μB , whereas the top Co atom always has an
increased magnetic moment of μtop ≈ 1.7μB .

TABLE IV. Average magnetic moments μtot/n (in μB per Co
atom), as well as spin-orbit and dipole contributions to the total
anisotropy energy EMCA (in meV) for n Co:C(111).

n μtot/n ESO
MCA E

dip
MCA EMCA

1 0.94 0.62 −0.03 0.59
2 1.46 0.42 −0.13 0.29
3 1.44 0.41 −0.20 0.21
4 1.53 0.30 −0.29 0.01
5 1.52 0.45 −0.36 0.09
6 1.55 0.56 −0.44 0.12

The spin-orbit anisotropy part shows only a slight variation
when adding further ferromagnetic layers to the surface. This
weak dependence of the anisotropy energy on the number
of adlayers is rather rare, and for most other systems this
dependence is strong. It is very difficult to trace this peculiar
behavior back to its physical origins, as magnetic anisotropy
energies depend on the band structure as a whole and on
the concrete shape of the Fermi surface.1 Nevertheless, for
freestanding Fe monolayers43 and Fe monolayers on MgO
(Ref. 44), the contribution of specific bands to the anisotropy
energy has been assigned successfully. In our case, however,
the band structures are very intricate, particularly for more than
one ferromagnetic adlayer. Thus, a corresponding analysis
turned out to be less revealing.

The dipole interaction, on the other hand, can be understood
much more easily. Adding additional layers of Co to the surface
leads to an almost linear increase in the magnetic anisotropy
energies. This thickness dependence of the anisotropy has
been observed previously45 and can be ascribed to long-
range parts of the dipole-dipole interaction, namely the
volume contribution of the shape anisotropy known from
continuum electrodynamics. The dipole interaction usually
prefers an in-plane orientation of the magnetic moments and
thus counteracts the magnetic anisotropy stemming from the
spin-orbit interaction. Eventually, the dipole part exceeds the
spin-orbit part and the preferred magnetic orientation switches
to in-plane.

3. Noncollinear configurations

For more than one adlayer of Co, it is also conceivable
that the magnetic moments located at different Co atoms of
one layer or at different layers point in different directions.
Such configurations have been observed, for example, by
Hobbs et al.46 for Cr on Cu(111) surfaces in a

√
3 × √

3
reconstruction. Also, noncollinear structures have been pro-
posed by Meyerheim et al.47 to explain the observed magnetic
behavior of ultrathin Fe layers on the Cu(001) surface. Using
DFT they find quasistable noncollinear configurations explain-
ing the vanishing total magnetic moment of this particular
system. In these configurations, the magnetic moments in
each ferromagnetic adlayer point in the same directions, but
the directions differ from layer to layer. In all cases, these
quasistable structures have a higher energy than collinear
configurations, in agreement with previous studies.48 In our
case, however, these noncollinear configurations are not stable
as they converge to a purely collinear magnetic structure
during the self-consistency cycle. As an example, we present
the evolution of the magnetic moments for 3 Co:C(111) in
Fig. 3. At the beginning of the calculations, the magnetic
moment on the top Co layer is parallel to the surface normal,
that of the second Co layer points in-plane, and the one on
the bottom Co layer is antiparallel to the surface normal.
In the following, we refer to this configuration as ⇑⇒⇓.
During the self-consistency cycle, the angles between the local
magnetic moments and the surface plane converge to a com-
mon angle of about 20◦ with respect to the surface plane for all
three layers. The resulting magnetic configuration represents a
stable energy minimum, which is 0.5 meV per unit cell higher

195316-6



MAGNETIC ANISOTROPY OF THIN Co AND Ni FILMS . . . PHYSICAL REVIEW B 84, 195316 (2011)

-100

-50

0

 50

 100

0  20  40  60  80  100  120  140  160

-4277.5

-4277.4

-4277.3

-4277.2

-4277.1

an
gl

e 
be

tw
ee

n 
m

 a
nd

 s
ur

fa
ce

 p
la

ne

E
ne

rg
y 

(e
V

)

number of iteration

top atom Co3
middle atom Co2
bottom atom Co1

Total energy

FIG. 3. (Color online) Evolution of the angle between the
localized magnetic moments and the surface plane for the 3 Co:C(111)
system during the self-consistency cycle. The starting configuration
is ⇑,⇒,⇓ from top to bottom adlayer.

than the (global) minimum ⇑⇑⇑ presented in the preceding
section.

We have also considered numerous other starting config-
urations (for example, ⇑⇑⇓ and ⇒⇑⇓), none of which has
proven to lead to a stable noncollinear configuration. This
is due to the fact that the system prefers collinear magnetic
configurations because these reduce the exchange energy of the
system. During the self-consistency cycle, the system reacts
by aligning the noncollinear magnetic moments. Obviously,
the spin-orbit interaction is not strong enough to counteract
this effect, as it is roughly two orders of magnitude smaller
than the exchange interaction.

C. Co and Ni multilayers on the C(001) surface

1. Structural properties of Co:C(001) and Ni:C(001) systems

The second kind of hybrid system considered in this work
consists of n Co or Ni adlayers adsorbed on a C(001) substrate
surface. Henceforth, we refer to these systems as n Co:C(001)
and n Ni:C(001), respectively.

For n Co:C(001), the structural properties have also been
discussed at length in Ref. 10. In the energetically most
favorable configuration, the Co atoms reside in ideal diamond-
lattice positions above the substrate (see Fig. 4) saturating
all dangling bonds of the substrate surface by forming two
covalent Co-C bonds per unit cell. Due to these two bonds, the
binding energy of the Co adlayer is very large, amounting to
3.3 eV per unit cell. Additional Co adlayers can adsorb in ideal
Co(001) positions since the mismatch between the C(001)
and fcc cobalt surface lattice constants is again smaller than
1%. For the top Co adlayers, there is some inward relaxation
comparable to that of the n Co:C(111) case, while the diamond
substrate is again hardly affected.

As fcc Ni has a lattice constant close to the value of fcc
Co (aexp

Ni = 3.52 Å and a
exp
Co = 3.54 Å , respectively), one

can replace the Co atoms by Ni atoms in the above structure
without a significant increase in the lattice mismatch (cf.
Ref. 49 for details). This allows us to investigate the influence
of an additional d electron per atom in the transition-metal
adlayers on the magnetic properties of the system without
disturbing structural differences since the atomic structures
are very similar to those of n Co:C(001). The Ni adlayers also

(b)

C3

C2

C1

Co1

Co2

[100]

top view

[0
10

]

[0
01

]

[100]

side view

(a)

FIG. 4. (Color online) Top and side view of one and two Co layers
on the C(001) surface. For further details, see the caption of Fig. 2.

show a similar inward relaxation to that of the Co adlayers,
and the structure of the C(001) substrate surface is again hardly
affected by the presence of the adlayers.

2. Magnetic properties of Co adlayers on C(001)

The magnetic moment at the interface is again strongly
influenced by the covalent bonds forming at the interface. They
quench μtot of the 1 Co:C(001) system to 0.44μB (see Table
V). An analysis of the moments on each of more than one
Co adlayer (cf. Ref. 10) shows that the magnetic moments
at the interface remain smaller than 1.0μB and those on
the inner layers of the adsorbed thin films quickly converge
to the bulk value of μfcc = 1.68μB . The magnetic moments
of the top-layer atoms are again increased with respect to
their bulk values and amount approximately to 1.9μB for all
systems. The average moments are similar to those of the
n Co:C(111) system except for the 1 Co:C(001) case.

Table V also shows the MCA energies of the systems. We
find that the magnetic anisotropy stemming from the spin-orbit
interaction is about an order of magnitude smaller than that in
the case of n Co:C(111) and prefers the magnetic moment to
be out-of-plane. The only exception is 1 Co:C(001), where
the preferred axis is in-plane but with a very small anisotropy

TABLE V. Same as Table IV but for n Co:C(001).

n μtot/n ESO
MCA E

dip
MCA EMCA

1 0.44 −0.01 −0.01 −0.02
2 1.42 0.01 −0.12 −0.11
3 1.47 0.04 −0.20 −0.16
4 1.53 0.08 −0.28 −0.20
5 1.55 0.11 −0.36 −0.25
6 1.58 0.03 −0.45 −0.42
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TABLE VI. Same as Table V but for n Ni:C(001).

n μtot/n ESO
MCA E

dip
MCA EMCA

1 0.00 0.00 0.00 0.00
2 0.44 −1.52 −0.01 −1.53
3 0.40 −0.08 −0.02 −0.10
4 0.47 −0.28 −0.03 −0.31
5 0.47 −0.17 −0.04 −0.21
6 0.53 −0.47 −0.06 −0.53

energy. However, this part is exceeded by the dipole part of the
anisotropy, which is dominant for each system with more than
one Co adlayer. Thus the easy magnetic axis of the system is
always in-plane, contrary to the Co:C(111) system.

3. Magnetic properties of Ni adlayers on C(001)

For n Ni:C(001) systems, the additional d electron per
adlayer atom has a significant influence on the magnetic
properties of the system (see Table VI). In general, the
magnetic moments of Ni systems are smaller than those
for Co systems. For a free Ni atom, the magnetic moment
is only 2μB due to Hund’s rule, while it is 3μB for a Co
atom. For fcc bulk Ni, our calculated magnetic moments are
also about 1μB smaller than the respective value for fcc Co
and amount to 0.60μB , in good agreement with experiment50

(μexp = 0.61μB ).
This has some significant consequences for fcc Ni on

the C(001) surface. For one adlayer of Ni, the two covalent
bonds render the whole system unmagnetic, although the
structural properties remain almost unchanged in comparison
to 1 Co:C(001). For two Ni adlayers, an analysis of the
localized magnetic moments shows a small magnetic moment
at the interface Ni atoms (μinterface = 0.21μB ) while the
magnetic moments of the Ni atoms at the surface (μsurface =
0.64μB ) are of the same magnitude as in the bulk. The small
magnetic moment for the interface Ni layer, however, vanishes
for more than two Ni adlayers, leading to a magnetic “dead” Ni
layer at the interface. Thus, the additional d electron present
in Ni leads to significantly changed magnetic properties in
comparison to the Co:C(001) system.

Of course, the vanishing magnetic moment for 1 Ni:C(001)
leads to a vanishing magnetic anisotropy energy. For
2 Ni:C(001), there is a large anisotropy energy of −1.53 meV

that even exceeds the (GGA) anisotropy energy of a free-
standing Ni monolayer. For more than two Ni adlayers, the
anisotropy energies return to the same magnitude as in the
n Co:C(001) systems. As magnetic moments of this system
are about 1μB smaller than for systems containing Co, the
dipole part of the anisotropy is very small and the anisotropy
energies are dominated by the spin-orbit contribution.

IV. SUMMARY

In summary, we have investigated magnetic properties of
ferromagnet-semiconductor hybrid systems in the framework
of noncollinear density-functional theory employing the gen-
eralized gradient approximation. We have considered up to six
Co adlayers on C(111) and up to six Co or Ni adlayers on
C(001) surfaces, respectively. It turns out that strong covalent
bonds form between the diamond substrate surface layer and
the first Co or Ni layer at the interface. These bonds distinctly
quench the magnetic moments at the interface. The addition
of further adlayers quickly reestablishes the bulk magnetic
moments in the inner layers of the adsorbed TM films, while
the moments at the interface remain to be considerably reduced
and those at the top layer of the films are enhanced as compared
to the bulk moments.

The spin-orbit contribution to the anisotropy energies is
heavily influenced by the covalent interface bonds and depends
strongly on the structural properties of both the substrate and
the adsorbate. For n Co:C(111), the anisotropy energies depend
only to a small extent on the number of adlayers as compared
to the n Co:C(001) and n Ni:C(001) systems. For the latter,
the anisotropy energies are much smaller and depend more
strongly on the number of adlayers. Although changes in the
atomic structure are only small when replacing Co by Ni, the
magnetic moments and anisotropy energies of both systems
differ noticeably. In general, these effects cannot be directly
ascribed to certain atoms or bonds as they have their origin
in a superposition of small changes in the band structure
when changing the magnetic orientation of the sample. The
dipole part of the anisotropy, on the other hand, can be
understood much more easily in terms of volume anisotropy
effects well known from continuum electrodynamics. Our
calculations indicate, in general, that configurations with
noncollinear magnetic moments within a given layer or
in different adlayers are unstable for the kind of systems
investigated.
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