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Strong spin-orbit interaction and helical hole states in Ge/Si nanowires
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We study theoretically the low-energy hole states of Ge/Si core/shell nanowires. The low-energy valence band
is quasidegenerate, formed by two doublets of different orbital angular momenta, and can be controlled via
the relative shell thickness and via external fields. We find that direct (dipolar) coupling to a moderate electric
field leads to an unusually large spin-orbit interaction of Rashba type on the order of meV which gives rise to
pronounced helical states enabling electrical spin control. The system allows for quantum dots and spin qubits
with energy levels that can vary from nearly zero to several meV, depending on the relative shell thickness.
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I. INTRODUCTION

Semiconducting nanowires are subject to intense exper-
imental effort as promising candidates for single-photon
sources,1 field-effect transistors,2 and programmable circuits.3

Progress is being made with both group-IV materials2–5 and
III-V compounds, particularly InAs, where single-electron
quantum dots6,7 (QDs) and universal spin-qubit control8 have
been implemented. Proximity-induced superconductivity was
demonstrated in these systems,9,10 forming a platform for
Majorana fermions.11–16

The nanowires are operated in both the electron6–9 (con-
duction band, CB) and hole2–5,10,17 (valence band, VB)
regimes. While these regimes are similar in the charge sector,
holes can have many advantages in the spin sector. Due to
strong spin-orbit interaction (SOI) on an atomic level, the
electron spin is replaced by an effective spin J = 3/2, and
even in systems that are inversion symmetric, the spin and
momentum are strongly coupled, enabling efficient hole spin
manipulation by purely electrical means. Holes, moreover, are
very sensitive to confinement, which strongly prolongs their
spin lifetimes.18–23 Also, VBs possess only one valley at the �

point, in contrast to the CBs of Ge and Si, which is particularly
useful for spintronics devices such as spin filters24 and spin
qubits.25 Most recently, spin-selective hole tunneling in SiGe
nanocrystals was achieved.26

In this paper, we analyze the hole spectrum of Ge/Si
core/shell nanowires, which combine several useful features.
The holes are subject to strong confinement in two dimensions
and can be confined down to zero dimension (0D) in QDs.4,27,28

Ge and Si can be grown nuclear-spin-free, and mean free paths
around 0.5 μm have been reported.5 During growth, the core
diameter (∼5–100 nm) and shell thickness (∼1–10 nm) can be
controlled individually. The VB offset at the interface is large,
∼0.5 eV, so that holes accumulate naturally in the core.5,29

Lack of dopants underpins the high mobilities2 and the charge
coherence seen in proximity-induced superconductivity.10

We find that the low-energy spectrum in Ge/Si nanowires
is quasidegenerate, in contrast to typical CBs. Static strain,
adjustable via the relative shell thickness, allows lifting of
this quasidegeneracy, providing a high degree of control.
We also calculate the spectrum in longitudinal QDs, where
this feature remains pronounced, which is essential for spin-
qubit implementation. The nanowires are sensitive to external

magnetic fields, with g factors that depend on both the field
orientation and the hole momentum. In particular, we find an
additonal SOI of Rashba type (referred to as direct Rashba
SOI, DRSOI), which results from a direct dipolar coupling
to an external electric field. This term arises in first order
of the multiband perturbation theory, and thus is 10–100
times larger than the known Rashba SOI (RSOI) for holes
which is a third-order effect.30 Moreover, the DRSOI scales
linearly in the core diameter R (while the RSOI is proportional
to R−1), so that spin-orbit interaction remains strong even
in large nanowires. Similarly to the conventional Rashba
SOI,11–17,24,31,32 the DRSOI induces helical ground states, but
with much larger spin-orbit energies (meV range) than in other
known semiconductors.

The paper is organized as follows. In Sec. II we introduce
the unperturbed Hamiltonian for holes inside the Ge core and
provide its exact, numerical solution. The system is very well
described by an effective 1D Hamiltonian, which we derive
in Sec. III. In Sec. IV we include the static strain and find a
strong dependence of the nanowire spectrum on the relative
shell thickness. The spectrum of Ge/Si-nanowire-based QDs is
discussed subsequently (Sec. V). In the main section, Sec. VI,
we analyze the hole coupling to electric fields and compare
the DRSOI to the standard RSOI. In this context, we also
show that Ge/Si nanowires present an outstanding platform
for helical hole states and Majorana fermions. Magnetic field
effects are discussed in Sec. VII, followed by our summary
and final remarks, Sec. VIII. Technical details and additional
information are appended.

II. MODEL HAMILTONIAN AND NUMERICAL SOLUTION

In cubic semiconductors, the VB states are well described
by the Luttinger-Kohn (LK) Hamiltonian,33,34

HLK = h̄2

2m

[(
γ1 + 5

2
γs

)
k2 − 2γs(k · J)2

]
, (1)

where Jx,y,z (in units of h̄) are the three components of the
effective electron spin in the VB, m is the bare electron mass,
h̄k is the momentum operator, and γ1 and γs ≡ (2γ2 + 3γ3)/5
are the Luttinger parameters in spherical approximation,
which is well applicable for Ge (γ1 = 13.35, γs = 5.11).35

In studying nanowires [Fig. 1 (top)], the LK Hamiltonian
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FIG. 1. (Color online) Schematic drawing of the systems studied
in this paper. Top: Excerpt of a Ge/Si nanowire with core radius R and
shell thickness Rs − R, where the z axis corresponds to the axis along
the wire. The nanowires are typically several micrometers in length
and can therefore be considered infinitely extended, hosting a 1D hole
gas inside their cores. The surrounding Si shell influences the hole
spectrum through static strain. Bottom: Quantum dots of (effective)
length L form when the holes are subject to additional confinement
in the z direction. This can be realized via gates (Refs. 4, 27, and 28)
or, in principle, by surrounding the Ge with layers of barrier material
during growth (Ref. 44).

must be supplemented with the confinement in the transverse
directions (x-y plane), perpendicular to the wire axis z. Since
we are interested in the low-energy states, we can add two more
simplifications at this stage. First, since the low-energy states
are located near the core center, we can assume a potential
with cylindrical symmetry even though the real system is not
perfectly symmetric. Second, due to the large VB offset, the
confinement can be treated as a hard wall,

V (r) =
{

0, r < R,

∞, r > R,
(2)

with R as the core radius. Given this confinement, the total
Hamiltonian HLK + V commutes with the operator Fz =
Lz + Jz, where Lz = −i∂φ is the orbital angular momentum
along the wire axis, so that Fz is a good quantum number
and the states can be classified accordingly.36,37 The system
is also time-reversal symmetric (Kramers doublets), and due
to cylindrical symmetry one obtains the same spectrum for
the same |Fz|. This is valid for any circular confinement and
does not require the assumption of a hard wall. We note that,
again in clear contrast to the CB case, Lz is not conserved in
the VB.

The Hamiltonian separates into 4 × 4 blocks corresponding
to given Fz. By solving HLK + V numerically, using an ansatz
analogous to those in Refs. 36 and 37, we find that the
low-energy spectrum in the Ge core is formed by two quaside-
generate bands, with Fz = ±1/2 each, where the ground
(excited) states at kz = 0 are of Lz ≈ 0 (|Lz| = 1) type. These
four (in total) bands are well separated from higher bands, and
the quasidegeneracy indicates that one can project the problem
onto this subspace. A plot of the spectrum is shown in Fig. 2
(bottom).

FIG. 2. (Color online) Low-energy hole spectrum of a Ge
nanowire as a function of the longitudinal wave number kz. In the
unstrained case, γ = 0, the plot is independent of R, with h̄2/(mR2) �
0.76 meV for R = 10 nm. Due to time-reversal invariance and
cylindrical symmetry, each line is a twofold degeneracy, where
red (blue) indicates quantum numbers Fz = ±1/2 (Fz = ±3/2). At
kz = 0 the spectrum is quasidegenerate, with the lowest states having
Lz ≈ 0 (ground states) and |Lz| = 1 (excited states) character. Dashed
red lines result from the effective 1D model for the lowest subspace,
where kz is treated perturbatively. The top figure is a plot of the
low-energy sector of a strained system, γ = 40%, illustrating strong
dependence on the Si shell thickness.

III. EFFECTIVE 1D HAMILTONIAN

The present analysis does not, however, allow us to derive
an effective 1D Hamiltonian describing the lowest-energy
states. For this, we integrate out the transverse motion
and treat kz in perturbation theory (kzR < 1). The four
eigenstates g∓ and e±, corresponding to ground and excited
states for Fz = ±1/2 at kz = 0, serve as the basis states in
the effective 1D Hamiltonian. The subscript refers to the
sign of the contained spin state |±3/2〉, since the system
at kz = 0 can be separated into two 2 × 2 spin blocks;37

details of the calculation are described in Appendix B.
Knowledge of g± and e±, with eigenenergies Eg ≡ 0 and
Ee ≡ �, allows us to include the kz-dependent terms of
the LK Hamiltonian. The diagonal matrix elements take
on the form 〈g±| HLK |g±〉 = h̄2k2

z /(2mg), 〈e±| HLK |e±〉 =
h̄2k2

z /(2me) + �, and the nonzero off-diagonal terms are of
type 〈e±| HLK |g∓〉 = iCkz, with C as a real-valued coupling
constant.38 Summarized in matrix notation, this yields

H eff
LK = A+ + A−τ z + Ckzτ yσ x, (3)

where A± ≡ h̄2k2
z (m−1

g ± m−1
e )/4 ± �/2, and τ i ,σ i are

the Pauli matrices acting on {g,e},{+,−} (see also Ap-
pendix A). For Ge, the values are � = 0.73 h̄2/(mR2), C =
7.26 h̄2/(mR), mg � m/(γ1 + 2γs) = 0.043m, and me =
m/(γ1 + γs) = 0.054m. The eigenspectrum

Eg,e(kz) = A+ ∓
√

A2− + C2k2
z (4)
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nicely reproduces all the key features of the exact solution and
is added to Fig. 2 for comparison, with good agreement for
kzR < 1.

IV. STATIC STRAIN

To the above model one needs to add the effects of static
strain, since the Si shell (radius Rs) tends to compress the
Ge lattice. A detailed derivation of the strain field in Ge/Si
core/shell nanowires will be provided elsewhere; here we
just quote the results needed to calculate the hole spectrum.
Coupling is described by the Bir-Pikus Hamiltonian HBP,
Eq. (C1), which for Ge (the spherical approximation applies)
is of the same form as Eq. (1), with kikj replaced by the strain
tensor elements εij .39 Assuming a stress-free wire surface and
continuous displacement and stress at the interface, symmetry
considerations and Newton’s second law require εxx = εyy

and εxy = εxz = εyz = 0 within the core, so that only terms
proportional to J 2

z contribute. Hence, Fz remains a good
quantum number, [HLK + V + HBP,Fz] = 0, which allows us
to solve the system exactly even in the presence of strain,
following the same steps as described in Sec. II. It is important
that these exact spectra show that the low-energy states [Fig. 2
(bottom)] separate even further from the higher bands when
the Ge core is strained by a Si shell, so that the low-energy
sector remains energetically well isolated and projection onto
this subspace is always valid.

In the 1D model, strain leads to a simple rescaling of the
energy splitting � → � + δ(γ ), where 0 � δ(γ ) � 30 meV
for 0 � γ < ∞, with γ ≡ (Rs − R)/R as the relative shell
thickness. Hence, δ is independent of the core radius, while
� ∝ R−2. We note that � � 0.6 meV for a wire of R =
10 nm, which makes this energy scale very small. Therefore
the splitting can be changed not only via R, but also via Rs .
In fact, the system can be varied from the quasidegenerate to
an electronlike regime [Fig. 2 (top)], where the Lz � 0 and
|Lz| � 1 states are parabolas.

V. QUANTUM DOT SPECTRUM

We analyze this feature in more detail by calculating the
eigenenergies of Ge/Si-nanowire-based QDs [Fig. 1 (bottom)].
All steps of this calculation are carefully explained in Ap-
pendix D. Remarkably, the variability with Rs also transfers
to the QD levels. Figure 3 shows the spectrum as a function of
confinement length for a wire with both thin and thick shells
and plots the energy splitting of the lowest Kramers doublets
as a function of γ . For a negligible shell, the states lie so close
in energy that additional degeneracies may even be observed.
With increasing Rs , the QD spectrum changes monotonically
from the quasidegenerate regime to gaps of several meV, which
should, in particular, be useful for implementing spin qubits.

VI. DIRECT RASHBA SOI AND HELICAL HOLE STATES

An electric field Ex applied along x couples directly to the
charge of the hole via the dipole term

Hed = −eExx, (5)

FIG. 3. (Color online) Top: Hole energy spectrum in a nanowire-
based QD (Ge/Si core/shell, R = 5 nm), for both a thin and a thick
shell, as a function of confinement length L. Each line corresponds to
a Kramers pair, and dashed lines represent � for comparison. Bottom:
Level splitting of the two lowest Kramers doublets as a function of
relative shell thickness γ and for different lengths L. Static strain,
induced via the shell, allows continuous tuning of the energy gap
over several meV, an attractive feature for spin-qubit applications.
For details, see Appendix D.

with x = r cos(φ) as the carrier position in the field direction.
For holes in the Ge core we expect this energy gradient to
have sizable effects compared to electron systems, since the
low-energy band is made of quasidegenerate states of different
Lz character. Moreover, Ex will also couple directly to the
spins due to the SOI in the VB. Projection of Hed onto the
subspace yields the effective SOI Hamiltonian

HDR = H eff
ed = eExUτ xσ z, (6)

referred to as direct Rashba SOI (DRSOI), characterized
by the coupling constant U = 〈g+| (−x) |e+〉. The form of
Eq. (6) still resembles that in the CB case, where dipolar
coupling cannot modify the spins. However, the additional
kzτ yσ x term in H eff

LK makes the key difference to the CB and
accounts for the SOI featured in the LK Hamiltonian. Indeed,
by diagonalizing H eff

LK + HDR we find that the DRSOI lifts
the twofold degeneracy, as plotted in Fig. 4. Surprisingly,
the effects closely resemble a standard RSOI for holes in
a transverse electric field (see the discussion below). [Again,
this is not the case for the CB, where Hed does not lift the
degeneracy since spin and orbit are decoupled (in leading
order).]

As a consequence, when analyzing the eigenstates of
H eff

LK + HDR for their spin properties, we find that an electric
field generates helical ground states, i.e., holes of opposite spin
move in opposite directions. Figure 5 (top) shows the splitting
of the lowest band when Ex = 6 V/μm is applied to a typical
Ge/Si nanowire of 5 nm core radius and 1.5 nm shell thickness.
Even though RSOI is absent, the result resembles the typical
CB spectra considered in previous studies, where Rashba SOI
for electrons leads to two horizontally shifted parabolas in the
E-k diagram.12–14,17,24,31 Moreover, the analogy also holds for
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FIG. 4. (Color online) Dispersion relation for holes in a Ge
nanowire of R = 10 nm, negligible shell, and an applied electric
field Ex along x, calculated from H eff

LK + HDR, Eqs. (3) and (6), with
HDR as the DRSOI Hamiltonian. Hole bands of lower (higher) energy
are plotted blue (red). The RSOI is about 100 times smaller than the
DRSOI and thus negligible. Note that the DRSOI shows qualitatively
similar features to the standard Rashba SOI with dispersion curves
shifted along kz against each other.

the spins, which are twisted toward the y direction, perpen-
dicular to both the propagation axis z and the field direction
x. As Fig. 5 (bottom) illustrates, 〈Jy〉 in the ground state is
an antisymmetric function of kz, the characteristic feature of
a helical mode. We note that 〈Jx〉 = 〈Jz〉 = 0 throughout, so
that the spins are indeed oppositely oriented. The values of
|Jy | around the band minima are �1/2, while the spin-orbit
(SO) energy, i.e., the difference between band minimum and
degeneracy at kz = 0, is ESO > 1.0 meV. This value exceeds
the reported 100 μeV in InAs nanowires by a factor of 10 (see
also Appendix E),6,40 and further optimization is definitely
possible via both the gate voltage and the shell thickness.

We can understand the qualitative similarity of the DRSOI,
Eq. (6), and RSOI,30

HSO = αEx(kyJz − kzJy), (7)

FIG. 5. (Color online) Top: Splitting of the lowest valence band
when an electric field Ex = 6 V/μm is applied to a Ge/Si nanowire of
R = 5 nm and Rs = 6.5 nm. Ground (excited) hole states are plotted
blue (red). ESO > 1.0 meV, a large value compared to that for InAs
(Refs. 6 and 40), and the degeneracy at kz = 0 may be lifted via
a magnetic field (see Fig. 6). The conventional RSOI for holes is
negligible. Bottom: Plot of 〈Jy〉 for the above system, where 〈Jx〉 and
〈Jz〉 are zero throughout. In the ground state, the nanowire carries
opposite spins in opposite directions with |〈Jy〉| � 1/2.

by projecting the latter onto the low-energy subspace, which
yields

HR = H eff
SO � αExSτ xσ z (8)

for kzR < 1, with S = 〈g+| kyJz |e+〉. Further information
on HSO, HR, and the Rashba coefficient α can be found in
Appendix F. This formal analogy of HDR and HR, Eqs. (6)
and (8), immediately implies that Ge/Si nanowires provide
a promising platform for novel quantum effects based on
Rashba-type SOI.7,8,11–17,24,31,32 A particular advantage of the
DRSOI, as compared to conventional Rashba SOI, is its
unusually large strength. While the Rashba term for holes
arises in third order of multiband perturbation theory and
thus scales with 1/(band gap)2, the DRSOI is a first-order
effect and therefore much stronger.30 Explicit values for Ge
are U = 0.15 R, S = 0.36/R, and α ≈ −0.4 nm2 e, so that,
in typical nanowires with R = 5–10 nm, HDR dominates HR

by one to two orders of magnitude (Appendix F). Moreover,
sizable RSOI would require unusually small confinement,
since HR ∝ R−1. In stark contrast, for DRSOI we find HDR ∝
R, which allows one to realize the desired coupling strengths
in larger wires as well. The upscaling, however, is limited by
the associated decrease of level splitting (∝R−2) and of the
term Ckzτ yσ x (∝R−1) in Eq. (3).

VII. MAGNETIC FIELD EFFECTS

The Kramers degeneracy can be lifted by an external
magnetic field B, which couples to the holes in two ways,
first, via the orbital motion, through the substitution h̄k →
−ih̄∇ + eA(r), with A(r) as the vector potential, and second,
via the Zeeman coupling HZ

B = 2κμB B · J , where κ is a
material parameter. For B along z (x), parallel (perpendicular)
to the wire, the 1D Hamiltonian is of the form

HB,z = μBBz(Z1σ z + Z2τ zσ z + Z3kzτ xσ y), (9)

HB,x = μBBx(X1σ x + X2τ zσ x + X3kzτ y), (10)

where the real-valued constants Zi (Xi) are listed in Eq. (G1) of
Appendix G. The results agree with recent experiments, where
the g factors in Ge/Si-nanowire-based QDs (multihole regime)
were found to vary dramatically with both the orientation
of B and also the QD confinement.27,28 In the absence of
electric fields, the ground state g factor g‖(kz) for Bz along
the wire turns out to be small for kz = 0, |g‖(0)| � 0.1, and
increases as |kz| increases. In contrast, the g factor g⊥(kz) for
a perpendicular field Bx is large at kz = 0, |g⊥(0)| � 6, and
decreases as |kz| increases, until g⊥(kz) eventually changes
sign at |kz| ≈ 0.5/R. We note that these results for the ground
state cannot be directly compared to experimental results in the
multihole regime, as the g factors in the excited state already
show a clearly different dependence on kz. In the presence of
an electric field Ex , the effective g‖ and g⊥ at kz = 0 may, to
some extent, be tuned by the strength of Ex .

Detailed analysis of the low-energy Hamiltonian yields the
result that the combination of magnetic and electric fields
allows for optimal tuning of the energy spectrum. For instance,
Bx = 1 T opens a gap of 0.30 meV at kz = 0 in Fig. 5
(top), keeping the spin properties for kz �= 0 unaffected. This
corresponds to |g⊥(0)| � 5.2 and is illustrated in Fig. 6. With
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FIG. 6. (Color online) Top: Hole spectrum of Fig. 5 (top) in the
presence of Bx = 1 T. The magnetic field opens a gap of 0.30 meV at
kz = 0, corresponding to a g factor above 5. Bottom: Plot of the
ground state spin, 〈Jx〉 and 〈Jy〉, where 〈Jz〉 = 0 throughout. At
energies within the gap, the Ge/Si nanowire features helical hole
states with ESO > 1.0 meV, |kz| � 90 μm−1, and |〈Jy〉| � 1/2.

the Fermi level within the induced gap, the spectrum of Fig. 6
presents a promising basis for applications using helical hole
states. Remarkably, an all-perpendicular setup with, e.g., Bx

along x and Ey along y, HDR,y = −eEyUτ y , leads to an
asymmetric spectrum where only states with one particular
direction of motion may be occupied, which moreover provide
a well-polarized spin along the magnetic field axis. As before,
this does not require standard RSOI.

VIII. DISCUSSION

The low-energy properties found in this work make Ge/Si
core/shell nanowires promising candidates for applications.
The dipole-induced formation of helical modes proves useful
for several reasons. First, the strength and orientation of
externally applied electric fields are well controllable via
gates. Second, the DRSOI scales linearly in R, instead of
R−1, and thicker wires remain operational. Third, the system
is sensitive to magnetic fields, and undesired degeneracies
at kz = 0 may easily be lifted, with |g⊥(0)| � 5. Finally,
helical modes with large ESO and wave numbers kF are
achievable using moderate electric fields of order V/μm. In
Fig. 6, with the Fermi level inside the gap opened by the
magnetic field, these are ESO > 1.0 meV and kF � 90 μm−1,
with |〈Jy〉| � 1/2, and optimization via both the gate voltage
and the Si shell is possible. For R = 10 nm and thin shells,
due to the quasidegeneracy at γ → 0, even small electric
fields of ∼0.1 V/μm are sufficient to form helical states with
ESO � 0.3 meV. We note that a strong SOI, tuned via electric
fields, was recently reported for Ge/Si nanowires based on
magnetotransport measurements.41

The nanowire spectrum can be changed from the quaside-
generate to an electronlike regime, depending on the shell
thickness. This moreover holds for QD spectra, so that,
given the strong response to electric and magnetic fields,
Ge/Si wires also seem attractive for applications in quan-
tum information processing, particularly via electric-dipole-
induced spin resonance.7,8,42 Finally, when combined with a

superconductor,10 the DRSOI in these wires provides a useful
platform for Majorana fermions.11–16
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APPENDIX A: REPRESENTATION OF SPIN MATRICES

All results presented in this paper are based on the following
representation of the spin-3/2 matrices:

Jx =

⎛
⎜⎜⎜⎜⎜⎝

0
√

3
2 0 0

√
3

2 0 1 0

0 1 0
√

3
2

0 0
√

3
2 0

⎞
⎟⎟⎟⎟⎟⎠ , (A1)

Jy =

⎛
⎜⎜⎜⎜⎜⎝

0 −i
√

3
2 0 0

i
√

3
2 0 −i 0

0 i 0 −i
√

3
2

0 0 i
√

3
2 0

⎞
⎟⎟⎟⎟⎟⎠ , (A2)

Jz =

⎛
⎜⎜⎜⎝

3
2 0 0 0

0 1
2 0 0

0 0 − 1
2 0

0 0 0 − 3
2

⎞
⎟⎟⎟⎠ . (A3)

The Pauli operators τ i (referring to {g,e}) and σ i (acting on
{+,−}) are defined as

τ x =
(

0 1
1 0

)
, τ y =

(
0 −i

i 0

)
, τ z =

(
1 0
0 −1

)
,

(A4)

and analogously for σ i .

APPENDIX B: BASIS STATES FOR THE EFFECTIVE 1D
HAMILTONIAN

In this appendix we outline the calculation of the basis
states {g+,g−,e+,e−}. For kz = 0, each of the 4 × 4 blocks for
given quantum number Fz and energy E reduces to two 2 × 2
blocks, labeled by ± according to the sign of the contained
spin state |±3/2〉. In the absence of confinement, using an
ansatz analogous to those in Refs. 36 and 37, the eigenstates
to be considered are

ψ
Fz

hh,± = JFz∓3/2(khhr)ei(Fz∓3/2)φ |±3/2〉
−

√
3JFz±1/2(khhr)ei(Fz±1/2)φ |∓1/2〉 , (B1)

ψ
Fz

lh,± =
√

3JFz∓3/2(klhr)ei(Fz∓3/2)φ |±3/2〉
+ JFz±1/2(klhr)ei(Fz±1/2)φ |∓1/2〉 , (B2)

195314-5



CHRISTOPH KLOEFFEL, MIRCEA TRIF, AND DANIEL LOSS PHYSICAL REVIEW B 84, 195314 (2011)

where the Jn(x) are Bessel functions of the first kind, and

khh,lh ≡ 1

h̄

√
2mE

γ1 ∓ 2γs

. (B3)

When confinement is present, the eigenstates read

�
Fz

± (r,φ) = a
Fz

± ψ
Fz

hh,±(r,φ) + b
Fz

± ψ
Fz

lh,±(r,φ), (B4)

where the coefficients a
Fz

± ,b
Fz

± and the energies E are to be
found from the boundary condition �

Fz

± (R,φ) = 0, resulting
in the determinant equations

0 = JFz∓3/2(khhR)JFz±1/2(klhR)

+ 3JFz±1/2(khhR)JFz∓3/2(klhR). (B5)

By solving the above equations, we find that for ± the lowest
eigenenergy corresponds to Fz = ∓1/2 and the second lowest
one to Fz = ±1/2. The associated eigenstates g± ≡ �

∓1/2
± and

e± ≡ �
±1/2
± for the transverse motion are found by calculating

the coefficients a
∓1/2
± , b

∓1/2
± , a

±1/2
± , and b

±1/2
± , respectively,

and serve as the basis states in the effective 1D Hamiltonian.
Normalization requires

〈g± | g±〉 =
∫ R

0
drr

∫ 2π

0
dφ |g±|2 = 1, (B6)

and analogously for e±. It turns out that the excited states are
purely heavy-hole-like, b±1/2

± = 0, and we choose the complex
phases such that all coefficients are real, with a

∓1/2
± < 0,

b
∓1/2
± > 0, and a

±1/2
± > 0.

APPENDIX C: BIR-PIKUS HAMILTONIAN

Referring to holes, the Bir-Pikus Hamiltonian reads

HBP = −
(

a + 5

4
b

) ∑
i

εii + b
∑

i

εiiJ
2
i

+ 2d√
3

(εxy{Jx,Jy} + c.p.), (C1)

where a, b, and d are the deformation potentials, εij = εji are
the strain tensor elements, {A,B} ≡ (AB + BA)/2, and “c.p.”
stands for cyclic permutations.39 For Ge, the deformation
potentials are b � −2.5 eV and d � −5.0 eV,39 so that the
spherical approximation d = √

3b applies. The hydrostatic
deformation potential a accounts for the constant energy shift
of the VB in the presence of hydrostatic strain, and therefore
does not contribute to δ(γ ), i.e., the rescaling of the energy
gap �.

APPENDIX D: QUANTUM DOT SPECTRUM

When the quantum dot length L is much larger than the core
radius R, Fig. 1, the spectrum can be well approximated using
the effective Hamiltonian for extended states. In the absence

of external fields, Fz remains a good quantum number and the
Hamiltonian

H eff
LK =

⎛
⎜⎜⎜⎜⎜⎜⎝

h̄2k2
z

2mg
−iCkz 0 0

iCkz
h̄2k2

z

2me
+ � + δ(γ ) 0 0

0 0 h̄2k2
z

2mg
−iCkz

0 0 iCkz
h̄2k2

z

2me
+ � + δ(γ )

⎞
⎟⎟⎟⎟⎟⎟⎠

,

(D1)

here explicitly written out in the basis {g+,e−,g−,e+} for
illustration purposes, is 2 × 2 block diagonal with degenerate
eigenstates. The subspace {g+,e−} corresponds to Fz = −1/2,
while {g−,e+} corresponds to Fz = +1/2. Aiming at the
quantum dot spectrum, we introduce two complex functions
gn(z) and en(z), for which we require⎛

⎝ h̄2k2
z

2mg
−iCkz

iCkz
h̄2k2

z

2me
+ � + δ(γ )

⎞
⎠ (

gn(z)

en(z)

)
= En

(
gn(z)

en(z)

)
.

(D2)

The associated set of coupled differential equations reads

0 = − h̄2

2mg

g′′
n(z) − Ce′

n(z) − Engn(z), (D3)

0 = − h̄2

2me

e′′
n(z) + Cg′

n(z) + [� + δ(γ ) − En] en(z), (D4)

and in addition we demand gn(0) = en(0) = gn(L) = en(L) =
0 due to hard wall confinement at z = 0 and z = L. When
the differential equations have been solved, these boundary
conditions finally lead to a determinant equation for the
eigenenergies En, which can be analyzed numerically. The
results are plotted in Fig. 3.

APPENDIX E: SPIN-ORBIT ENERGY IN InAs NANOWIRES

For electrons in an electric field Ex along x, the Hamiltonian
for Rashba SOI is of the form

H el
SO = αEx(kzσy − kyσz), (E1)

where α is the Rashba coefficient in the conduction band (�c
6)

and σi are the Pauli matrices for spin 1/2.30 In the following, we
use the notation αx ≡ αEx for illustration purposes. Assuming
a nanowire in which the electron moves freely along the
z direction with effective mass m∗, the Hamiltonian of the
system becomes

H el = h̄2k2
z

2m∗ + αxkzσy, (E2)

with eigenspectrum

E± = h̄2

2m∗

(
kz ± m∗ |αx |

h̄2

)2

− m∗α2
x

2h̄2

= h̄2

2m∗
(
kz ± l−1

SO

)2 − ESO. (E3)
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The spin-orbit length is defined as lSO ≡ h̄2/ (m∗ |αx |), and the
SO energy, the energy difference between the band minima and
the degeneracy at kz = 0, is ESO = m∗α2

x/(2h̄2), so that

ESO = h̄2

2m∗ l−2
SO . (E4)

We can use Eq. (E4) to calculate the spin-orbit energy for InAs
wires, where lSO has recently been measured.6,40 Using lSO �
127 nm and m∗ � m∗

bulk = 0.023m,6 the SO energy in InAs
is ESO � 100 μeV. Further experiments confirmed that lSO

typically varies between 100 and 200 nm in InAs nanowires,40

and in the latter case ESO � 40 μeV only.

APPENDIX F: STANDARD RASHBA SOI AND RASHBA
COEFFICIENT

Both Ge and Si are inversion symmetric, and thus coupling
of Dresselhaus type is absent. However, this does not exclude
the conventional Rashba term (RSOI), Eq. (7). Here we briefly
outline its derivation; details are described in Ref. 30. As in
Sec. VI, we assume a constant electric field Ex along the
x axis, which, referring to holes, results in the dipole term
Hed = −eExx as a perturbation added to the potential energy.
Accordingly, Hed is added to the multiband Hamiltonian
(envelope function approximation), where it appears only
on the diagonal, while off-diagonal parts provide the k · p
coupling. Finally, a Schrieffer-Wolff transformation of the
multiband Hamiltonian, with focus on the valence band �v

8 ,
yields the Rashba term

HSO = αEx(kyJz − kzJy), (F1)

α � −eP 2

3E2
0

, (F2)

in third order of perturbation theory, where α is the Rashba
coefficient and additional, negligible terms have been omitted.

In Eq. (F2), E0 is the band gap (direct, k = 0) between conduc-
tion (�c

6) and valence (�v
8 ) band, and P is the corresponding

momentum matrix element between the s-like �c
6 and the

p-like �v
8 ,�

v
7 states.30 For Ge, explicit values are E0 = 0.90 eV

and P = 9.7 eV Å,43 which yields α ≈ −0.4 nm2 e.
We can project Eq. (F1) onto the low-energy subspace

{g+,g−,e+,e−} by calculating the 16 matrix elements. The
effective Hamiltonian for RSOI takes on the form

HR = H eff
SO = αExSτ xσ z + αExkz · · · , (F3)

where S = 〈g+| kyJz |e+〉. This Hamiltonian has two effects:
first, it features a constant coupling between the g and e states,
and second, it provides a term which is linear in kz and mixes
the spin blocks. The latter is absent at kz = 0, so that only
the constant term αExSτ xσ z contributes for small kz; this is
of the same form as the direct Rashba SOI HDR = eExUτ xσ z

(DRSOI) resulting from dipolar coupling. Finally, we note that

eExU

αExS
� −1.1

R2

nm2
(F4)

for Ge, so that the DRSOI dominates RSOI by one to two
orders of magnitude in typical Ge/Si nanowires of 5–10 nm
core radius.

APPENDIX G: COUPLING TO MAGNETIC FIELDS

In Eqs. (9) and (10), we show the effect of external magnetic
fields on the low-energy sector for fields applied along (z) and
perpendicular (x) to the nanowire, respectively. Below, the
explicit values for Zi and Xi are listed,

Z1 = 0.75, X1 = 2.72,

Z2 = −0.81, X2 = 0.17,

Z3 = 2.38R, X3 = 8.04R,

(G1)

using the parameters γ1 = 13.35, γs = 5.11, and κ = 3.41 for
Ge.35
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