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We study the long-time dynamics and the stationary nonequilibrium state of an optically driven quantum
dot coupled to acoustic phonons using numerically exact real-time path integrals and a fourth-order correlation
expansion. By exploring wide ranges of temperatures, carrier-phonon and carrier-light coupling strengths, we
characterize the stationary nonequilibrium state and compare the exact solution to known, approximatively
derived results. It is found that analytical calculations tend to overestimate the influence of the carrier-phonon
coupling, particularly at low temperatures and in the weak-coupling regime. The possibility of controlling the dot
occupation in the stationary nonequilibrium by varying the laser detuning is discussed. A comparison between
the numerical methods identifies the range of validity of the correlation expansion, which in the long-time limit
is found to be surprisingly wide.
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I. INTRODUCTION

The dissipative dynamics in coherently driven quantum
dots (QDs) currently attracts much interest in experimental
investigations as well as in theoretical studies. In particular,
much effort has been devoted to better understand and charac-
terize the damping of laser-driven excitonic Rabi oscillations
(ROs),1–10 which presents a prime obstacle to achieving
coherent manipulations of the quantum states in the QD.11,12

Recent experiments4,5 identified the pure dephasing coupling
of carrier states to bulklike acoustic phonons13 as the principle
source of dephasing and confirmed theoretically predicted
results, such as a phonon-induced renormalization of the Rabi
frequency1,2 or a nonmonotonic dependence of the damping
on the driving strength.3,9

The decoherence of a continuously laser-driven QD re-
flected in the decay of ROs strongly depends on temperature
and excitation conditions. Typically it takes place on time
scales from 10 to 100 ps. On the one hand, these times
are much longer than the characteristic time of the initial
phonon-induced dephasing after ultrafast excitation by a single
pulse. This time can be roughly estimated as the time a phonon
needs to pass the QD and is of the order of 1 ps. On the other
hand, the time scale of the decay of ROs is still much shorter
than typical time scales of other mechanisms, such as the
recombination of excitons.14,15 With the lifetime of excitons
in QDs ranging from a few hundred picoseconds to roughly
one nanosecond,14 the dynamics of a continuously driven QD
evolves on two characteristic time scales: first, the system is
driven to a stationary nonequilibrium state performing damped
ROs, and afterwards it relaxes at a much slower rate to a
possibly different stationary nonequilibrium state.

The main aim of our work is to characterize the stationary
nonequilibrium state that is reached due to the phonon-induced
decoherence under optical driving with constant amplitude
(cw excitation) at intermediate times. This differs from related
works1–7,9 that focused on the phonon-influenced dynamics
under pulsed excitation on shorter time scales.

Theoretical studies of the dynamics of a strongly confined
QD influenced by the carrier-phonon interaction are conven-
tionally done using models in which few optically active
electronic states are diagonally coupled to a continuum of
bulk phonon modes. As this pure dephasing mechanism is
dominant,4,16 many details of the relaxation to the stationary
nonequilibrium can be extracted from modeling the time
evolution considering only this mechanism. When the carrier
states are separated by large energy gaps and the frequency
of the excitation is tuned close to resonance with one of
the transition energies, the system can be reasonably well
described by accounting for only two optically active levels. In
the literature, an externally driven two-level system diagonally
coupled to phonons has been discussed extensively in relation
to various systems in physics and chemistry,17,18 often related
to dissipative quantum tunneling.

It has long been conjectured that if such a phonon-
coupled two-level system is continuously driven, the reduced
electronic density matrix will thermalize in a certain basis.19

Once this nonequilibrium state is introduced, the relaxation
dynamics can be easily described by the Bloch equations for
the dissipative two-level system.18,20,21 It should be noted,
however, that within a Markovian approach, the basis is chosen
by hand and this choice may be ambiguous, particularly
when the carrier-phonon coupling is not weak. Numerical
calculations not invoking the Markov approximation revealed
that in the case of ohmic phonon coupling and small coupling
constants (Kondo parameter), the density matrix is close to
becoming diagonal in the basis formed by the dot-photon
dressed states.22–24 An approximate analytical result17 for the
stationary nonequilibrium state was later obtained by going
beyond the noninteracting-blip approximation,18,25 including
a prediction of how the strength of the carrier-phonon coupling
influences the long-time behavior. In the limit of a vanishing
coupling strength, the obtained expression reduces to a thermal
occupation of the dot-photon dressed states. The validity
of this extended weak-coupling theory is restricted to low
temperatures and weak phonon couplings.
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To study the long-time dynamics in optically driven
quantum dots for arbitrary carrier-phonon coupling strengths,
we adapted a numerically exact quasi-adiabatic path-integral
method22,23,26,27 for the superohmic case.28 This gives us the
unique opportunity to characterize the stationary nonequilib-
rium of a many-particle system without any prejudice. We
compare our results with known theoretical predictions based
on approximations of different complexity and demonstrate
that for a surprisingly wide range of parameters, the nonequi-
librium state is close to a thermal occupation of the dot-photon
dressed states. In addition, we show that the experimentally
measurable dot occupation in the stationary nonequilibrium
state can be controlled by a frequency detuning of the optical
driving. Finally, we compare exact real-time path-integral
results with those of a fourth-order correlation expansion
approach.2,29,30 Although this level of the correlation expan-
sion is one of the most accurate approximative methods usually
available to treat the dynamics of correlated systems, the
question of whether residual errors accumulate and thus limit
the prediction for the long-time behavior is still open. Thus, a
comparison in the domain of long times, including the regimes
of high temperatures and strong couplings, provides valuable
information on its validity.

The paper is organized as follows. In Sec. II we introduce
the model. The long-time evolution of the electronic system
and its stationary nonequilibrium state is presented in Sec. III.
Within the comparison of the numerical approaches, several
technical issues for both calculation methods are discussed.
Finally, some concluding remarks are presented in Sec. IV.

II. MODEL

We consider a strongly confined GaAs QD diagonally
coupled to a continuum of delocalized acoustic phonons
and driven by an external laser field. The corresponding
Hamiltonian can be written as

H = Hdot + Hphonon + Hdot−phonon + Hdot−light, (1)

where Hdot describes the electronic structure of the dot,
Hphonon is the free phonon Hamiltonian, Hdot−phonon represents
the carrier-phonon coupling, and Hdot−light represents the
carrier-light coupling. As for strongly confined semiconductor
QDs the electronic single-particle states are energetically well
separated, we can safely neglect a Coulomb-induced mixing
of states with different single-particle energies and, choosing
circularly polarized light, we can restrict our analysis to two
electronic levels. We take the unexcited ground state |0〉 as the
zero of energy and define the energy gap between |0〉 and the
single-exciton state |1〉 by h̄ωX. Thus, Hdot reads

Hdot = 1
2h̄ ωX (1 − σz), (2)

where σz is a Pauli matrix. With b
†
q (bq) representing the

creation (annihilation) operator of a phonon with a wave vector
q and energy h̄ωq, the free phonon Hamiltonian is given by

Hphonon = h̄
∑

q

ωqb
†
qbq, (3)

and the pure dephasing carrier-phonon interaction reads

Hdot−phonon = 1

2
(1 − σz)

∑
q

(γ ∗
q bq + γqb

†
q). (4)

Here, γq denote the dot-phonon coupling constants that depend
on the specific coupling type and the carrier wave functions as
presented in detail in Ref. 29. As for GaAs self-assembled QDs
the deformation potential coupling to longitudinal acoustic
phonons provides by far the largest contribution to pure
dephasing we concentrate on this mechanism and assume
the dispersion relation to be linear, ωq = vc|q|, where vc is
the sound velocity. For simplicity, we consider spherical dots
with wave functions given by the ground-state solution of a
harmonic potential, i.e.,

ψe(h)(r) = 1

π3/4a
3/2
e(h)

exp

(
− r2

2a2
e(h)

)
, (5)

where ae(h) are the localization lengths of electrons and holes,
respectively. The spectral density of the phonon bath is then
given by29

J (ω)= ω3

4π2ρh̄v5
c

{
De exp

(
−ω2a2

e

4v2
c

)
− Dh exp

(
−ω2a2

h

4v2
c

)}2

,

(6)

where De(h) denote the deformation potential constants and
ρ is the density of the material. In the low-frequency limit,
J (ω) scales as ω3 and is thus of the superohmic type. For
our calculations, we choose ae = 3 nm and set ah = 0.87ae.
All other material parameters are taken from Ref. 29. Let us
finally turn to Hdot−light. Within the usual dipole and rotating
wave approximation (RWA), the interaction with the classical
light field E takes the form

Hdot−light = d · E(+)(t) σ+ + d∗ · E(−)(t) σ−, (7)

where σ± = σx ± iσy , d is the transition dipole moment, and
E(±) denote the positive and negative frequency components
of the electric field. We set

d · E(+)(t) = h̄

2
f (t)e−i(ω+�/h̄)t . (8)

The real envelope function f (t) represents the instantaneous
Rabi frequency, ω denotes the frequency resonant to the
polaron-shifted exciton transition,29 and � is a detuning. In
the following, we will consider the case of constant optical
driving, i.e., we assume cw excitation with f (t) = const and,
for brevity, refer to f as the field strength.

III. RESULTS

To study the long-time behavior of a continuously driven
QD, we first present results obtained by using a numerical
real-time path-integral approach.22,28 In contrast to other
widely used methods, the path-integral formalism is numer-
ically exact and yields trustable results at arbitrarily long
times, where the validity of approximate methods is a priori
unclear. For the system under consideration, real-time path
integrals are particularly suitable as the environment coupling
is superohmic. This leads to a finite memory length and
allows for a numerical memory truncation scheme. While
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FIG. 1. (Color online) Temporal evolution of the density-matrix
elements (a) ρ11 (occupation of the upper level) and (b) ρ01

(coherence) for � = 0 and f = 1.0 ps−1 at T = 10 (blue lines) and
20 K (red lines). In (b), solid lines represent the real part of ρ01, while
dashed lines represent the imaginary part.

for ohmic or subohmic couplings such truncation schemes
introduce qualitative changes in the long-time behavior, in the
superohmic case the complete time evolution can be correctly
reproduced.28 The accuracy of the calculations solely depends
on the chosen time step and the memory truncation length,
and is therefore well controllable. A detailed description of
our algorithm is given in Ref. 28.

We assume that the system is initially in a product state, with
the electronic subsystem being in the ground state without an
electron-hole pair and the phonons being in the thermal state at
temperature T . At t = 0 ps, a laser with constant field strength
f is switched on. Figure 1 shows the subsequent temporal
evolution of the electronic system in the rotating frame for
resonant driving, i.e., for � = 0, with f = 1.0 ps−1 at T = 10
(blue lines) and 20 K (red lines). Plotted in Fig. 1(a) is the
occupation of the upper level ρ11, while the complex valued
coherence ρ01, which is related to the polarization vector P via
P = Re (d ρ01), is shown in Fig. 1(b). Together, both quantities
fully characterize the electronic degrees of freedom. The QD
occupation performs phonon-damped ROs until it approaches
the stationary and temperature-independent value ρ11(∞) =
1/2. For higher temperatures, the damping is enhanced and
the stationary state is reached faster. The imaginary part of the
coherence (dashed lines) shows similarly damped oscillations
and vanishes in the limit of long times. In contrast, the
real part of ρ01 (solid lines) decreases monotonically and
reaches a temperature-dependent finite value. The latter clearly
demonstrates that the electronic system does not become
diagonal in the basis given by the eigenstates of Hdot.

Naturally, the question arises what defines the long-time
behavior and whether there is a basis in which the system ther-
malizes. Quite generally, when a system can be decomposed
into a set of stable quasiparticles and bath degrees of freedom
that have a sufficiently weak coupling to the quasiparticles,
the common expectation is that in the long-time limit, the bath
coupling leads to a thermal occupation of the quasiparticle
states. In our case, such a decomposition is suggestive when
the carrier-phonon coupling is weak. Then the phonons provide

the bath, and in the stationary state, a thermal occupation of
the eigenstates of H0 = Hdot + Hdot−light that are referred to
as dot-photon dressed states is expected.18,20,21 In the rotating
frame, H0 is time independent and reads

H0 = 1
2�(σz − 1) + 1

2h̄f σx. (9)

With the abbreviation

	 =
√

�2/h̄2 + f 2, (10)

the reduced density matrix for a thermal occupation of the
dot-photon dressed states written in the eigenbasis of Hdot is
given by

ρ(ds) = 1

2
1 − 1

2	
tanh

(
h̄	

2kBT

) (
�

h̄
σz + f σx

)
. (11)

To check how close a thermal occupation of the dot-photon
dressed states is to the exact stationary state, we compare
in Fig. 2 numerically obtained results (crosses) with the
prediction made by Eq. (11) (lines). Shown is the stationary
value of the off-diagonal element ρ01(∞) as a function of
temperature for resonant driving, i.e., for � = 0, at two field
strengths, namely, at f = 0.5 (red line) and 1.0 ps−1 (blue
line). Over the full temperature range, a quite convincing
agreement can be found, indicating that the system is close
to thermalization in the basis formed by the dot-photon
dressed states. Consideration of the phonons as a bath requires
that the carrier-phonon coupling can be treated as a small
perturbation and, thus, a priori, this agreement had to be
expected only for low temperatures, as for higher temperatures
multiphonon processes gain importance even for weak carrier-
phonon couplings.29 Although the prediction that the system
relaxes to a thermal occupation of the dot-photon dressed
states is essentially confirmed, there are slight deviations,
which are, surprisingly, most clearly visible in the range of
small temperatures (see inset). We will come back to these
deviations below. For the diagonal elements, the prediction
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FIG. 2. (Color online) Stationary value of ρ01 as a function of
temperature for resonant driving (� = 0) with field strengths of f =
0.5 (red line) and 1.0 ps−1 (blue line). Solid lines correspond to a
thermal occupation in the basis of the dot-photon dressed states;
crosses represent path-integral results. The inset shows a zoom into
the region of low temperatures.
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FIG. 3. (Color online) QD occupation ρ11 as a function of time
at T = 5 K and f = 1.0 ps−1 for two different detunings of � = 1.0
(blue solid line) and −1.0 meV (red dotted line). The inset shows
the stationary value of ρ11 as a function of the detuning at T = 5
(black line) and 20 K (gray line). Solid and dotted lines correspond
to a thermal occupation of the dressed states [Eq. (11)] and to the
weak-coupling theory [Eq. (13a)], respectively. Crosses represent
path-integral results.

ρ00(∞) = ρ11(∞) = 1
2 of Eq. (11) for the case � = 0 is

in excellent agreement with the path-integral results for all
temperatures and laser intensities (not shown).

Let us now turn to the case of off-resonant driving. Shown
in Fig. 3 is the QD occupation ρ11 as a function of time at
T = 5 K and f = 1.0 ps−1 for two representative values of
the detuning, � = 1.0 (blue solid line) and −1.0 meV (red
dotted line), respectively. In contrast to resonant excitation [cf.
Fig. 1(a)], the envelope functions of ROs are not symmetric
and, most interestingly, for positive values of the detuning (i.e.,
the laser frequency exceeds the QD transition frequency) in the
long-time limit, the QD occupation is higher than in the case
of resonant driving. Here, for T = 5 K and � = 1.0 meV,
i.e., a detuning that is much smaller than ωX such that the
RWA is still valid, a final occupation of ρ11 � 0.84 is found.
Increasing the detuning or lowering the temperature leads to
even higher occupations, which can be arbitrarily close to one.
We would like to mention that a similar population inversion
has been observed experimentally for a two-dot system in
Refs. 31 and 32. Unlike the related theoretical study in Ref. 33,
we find that in our model, the population inversion appears
for superquadratic coupling [J (ω) scales as ω3 for ω → 0].
Here, the magnitude of the effect only weakly depends on
the strength of the carrier-phonon coupling, and the results
presented in Fig. 3 can with good accuracy be derived from
the assumption of a thermal occupation in the basis of the
dot-photon dressed states. To show this, we compare in the
inset of Fig. 3 the detuning-dependent stationary value of ρ11

at T = 5 (black line) and 20 K (gray line), as predicted by
Eq. (11) (solid lines) and obtained numerically (crosses). An
excellent agreement without any noticeable differences can be
found. The additionally displayed dotted lines represent results
of an extended weak-coupling theory and will be discussed
below. Comparing the off-diagonal elements for finite values
of � (not shown), the agreement is not just as well as for

the diagonal elements, and we find similar deviations from
the prediction of Eq. (11) as shown in Fig. 2 for the case of
resonant driving. In the following, we will concentrate on these
deviations.

When γq is not negligibly small, the role of phonons is
not restricted to providing a redistribution of the quasiparticle
occupations. Instead, they now also contribute to the definition
of the stable quasiparticles, which become a superposition of
carrier and phonon degrees of freedom, i.e., the quasiparticles
assume a polaronic character. Recently, it has been shown
within advanced master-equation approaches that accounting
for polaronic effects substantially improves the description
of the driven dynamics, in particular when the coupling is
not weak.6,7,34 It is clear that when the quasiparticles assume
a polaronic character, the stationary reduced density matrix
can no longer be independent on γq. Previous studies have
worked out γq-dependent corrections to Eq. (11). In particular,
in Ref. 17, an extended weak-coupling theory has been derived
for the temperature regime

T � h̄	/kB, (12)

which goes beyond the noninteracting blip approximation
(NIBA) by dealing systematically with interblip correlations
to the first order in the coupling strength. The corresponding
prediction for the stationary electronic density matrix is

ρ(∞) = 1

2
1 − 1

2	b

tanh

(
h̄	b

2kBT

) (
�

h̄
σz + f 2

eff

f
σx

)
, (13a)

where

	b = (
�2/h̄2 + f 2

eff

)1/2
, (13b)

and feff depends on the coupling strength via

feff = f exp

(
−1

2

∑
q

γ 2
q

ω2
q

)
. (13c)

A detailed derivation is presented in Ref. 17.
Obviously, in the limit γq → 0, Eq. (13a) simplifies to

Eq. (11). It is instructive to compare our numerically exact
calculations with the perturbatively derived result of the
weak-coupling theory, which should be applicable for GaAs
parameters. Such a comparison will show whether or not
the deviations from a thermal occupation of the dot-photon
dressed states, as seen in Fig. 2, can be traced back to the
finite strength of the carrier-phonon coupling. Plotted in Fig. 4
is the stationary value of the off-diagonal element ρ01(∞) as
a function of temperature at two field strengths of f = 0.5
(red lines) and 1.0 ps−1 (blue lines) for the case of resonant
excitation. Solid lines represent path-integral results, squares
display results of a fourth-order correlation expansion that
will be discussed later in the paper, dashed lines correspond
to a thermal occupation of the dot-photon dressed states
[Eq. (11)], and dotted lines correspond to the weak-coupling
theory given in Eq. (13a). According to Eq. (12), the latter
should be valid up to T = 3.5 and 7 K for f = 0.5 and
1.0 ps−1, respectively. It is clearly seen that at all temperatures
and for both laser intensities, the path-integral results are
in between the predictions of Eqs. (11) and (13a). While a
thermal occupation of the dot-photon dressed states assumes
slightly lower values, the weak-coupling theory overestimates

195311-4



LONG-TIME DYNAMICS AND STATIONARY . . . PHYSICAL REVIEW B 84, 195311 (2011)

-0.5

-0.4

-0.3

-0.2

-0.1

0 2 4 6 8

ρ
0
1
(∞

)

T (K)

f = 1.0 ps−1
f = 0.5 ps−1

FIG. 4. (Color online) Stationary value of ρ01 as a function of
temperature for resonant driving (� = 0) with f = 0.5 (red lines)
and 1.0 ps−1 (blue lines). Dashed and dotted lines correspond to a
thermal occupation of the dot-photon dressed states [Eq. (11)] and
to the weak-coupling theory [Eq. (13a)], respectively. Solid lines
show path-integral results; squares represent results of a fourth-order
correlation expansion.

the dependency on the coupling strength and assumes slightly
higher ones. We would like to stress that the driving strengths
of f = 0.5 and 1.0 ps−1 chosen in our simulations are well
below the frequency f ∼ 2.5 ps−1 at which the environmental
spectral density [cf. Eq. (6)] is maximal. Thus, the diminished
polaronic character of the stationary state with respect to
Eq. (13a) is not due to a too strong driving that would exceed
the cutoff frequency of the phonon bath.

For temperatures exceeding those given by Eq. (12), the
path-integral results are much closer to a thermal occupation
of the dot-photon dressed states than to Eq. (13a). Interestingly,
this is also true in the limit of very low temperatures, and thus
we find that the temperature range where Eq. (13a) yields a
better description than Eq. (11) is rather small. However, even
if the weak-coupling theory is not in quantitative agreement
with the exact calculations, the coupling-strength-induced
corrections with respect to Eq. (11) show the correct tendency
and suggest that the equilibrium will be the closer to a
thermal state in the dot-photon dressed basis the smaller the
carrier-phonon coupling is.

To prove the validity of this conclusion and to analyze
up to which coupling strengths one can trust Eq. (13a), we
performed calculations for different values of the carrier-
phonon coupling. To this end, we scaled |γq|2 by hand by
a factor α varying from α = 0.5 up to 10. While unscaled
GaAs parameters, i.e., α = 1, represent the low-coupling limit,
a tenfold stronger coupling roughly simulates the strength
of acoustic phonon coupling in GaN,35 which provides a
benchmark material for enhanced coupling. Plotted in Fig. 5
is the stationary value of ρ01 normalized by the dressed-state
expectation ρ

(ds)
01 as a function of α for resonant driving with

f = 1.0 ps−1 at temperatures of T = 7 (red line), 3 (blue line),
and 1 K (black line). For each temperature, solid lines represent
path-integral data, while dashed lines have been calculated
according to Eq. (13a). Note that a thermal occupation in
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FIG. 5. (Color online) Deviations from the stationary value of
ρ01 from the dressed-state expectation ρ

(ds)
01 as a function of the

coupling strength (in units of the unscaled carrier-phonon coupling
of GaAs) for resonant driving (� = 0) with f = 1.0 ps−1 at different
temperatures (see key). Solid lines represent path-integral results;
dashed lines display the prediction made by Eq. (13a). The inset
shows a zoom into the weak-coupling regime.

the basis of the dot-photon dressed states would correspond
to ρ01(∞)/ρ(ds)

01 = 1. It is clearly seen that the deviations of
ρ

(ds)
01 from the exact results increase with rising strength of the

carrier-phonon coupling and vanish for α → 0+. Of course,
in the limit α = 0, no stationary state will be reached, as in
this case our model system would experience no damping
but everlasting ROs. Nevertheless, the path-integral results
suggest that for a finite but arbitrarily small carrier-phonon
coupling, the equilibrium state will indeed be given by a
thermal occupation of the dot-photon dressed states. It is
remarkable that although this limit is in accordance with the
weak-coupling theory, Eq. (13a) overestimates the dependence
on the coupling strength not only for α � 1, but also in the
weak-coupling limit, as shown in the inset of Fig. 5. In the latter
regime, the exact results for 1 and 7 K are closer to one, i.e., to
Eq. (11), than to Eq. (13a). For 3 K, the path-integral data are
almost equally far from both predictions. Thus, we find that the
deviations of ρ01(∞)/ρ(ds)

01 from one depend nonmonotonically
on the temperature. The latter holds also in the strong-coupling
regime. As can be seen, the weak-coupling theory predicts a
convex dependence on α, while we find a dependence which
is close to being linear. Because of this difference, in the
strong-coupling regime, the equilibrium is better estimated
by Eq. (13a).

In the previous discussion, we focused on off-diagonal
elements and demonstrated that for nearly all temperatures in
the weak-coupling regime, Eq. (11) provides a more accurate
description than Eq. (13a). A similar conclusion can be drawn
for diagonal elements. In the inset of Fig. 3, we discussed the
detuning dependence of ρ11 and found an excellent agreement
between path-integral data (crosses) and Eq. (11) (solid lines).
For T = 5 K (black lines), where Eq. (13a) should be valid, we
added the prediction of the weak-coupling theory as a dotted
line. With rising values of the detuning, small discrepancies
emerge, demonstrating that the bare dressed-state assumption
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yields again a better estimate. For T = 20 K, the differences
between Eqs. (11) and (13a) are tiny and both lines coincide.

So far, we have presented results obtained by using nu-
merically exact real-time path integrals. Usually, approximate
methods, such as the correlation expansion, are much more
commonly used to study the combined dynamics of carriers
and lattice vibrations in optically driven QDs.1,2,30 Within
the latter approach, one first sets up equations of motion for
the occupation and the polarization. These equations are not
closed, but are the starting point of an infinite hierarchy of
higher-order phonon-assisted density matrices. This hierarchy
has to be truncated by factorizing higher-order correlation
functions on a chosen level. By including all density matrices
with up to four operators, it has been shown that over a
wide range of parameters, the correlation expansion is able
to reproduce exactly known dynamics, both in the linear1

and the nonlinear regime.29 In the remainder of this paper,
we aim to answer the open question of whether, and, if so,
in which parameter range, the correlation expansion yields
trustable results in the limit of long times. To this end, the
numerically exact path-integral calculations can be used for
benchmark purposes. A recent comparison between a fourth-
order correlation expansion and the path-integral formalism
concentrating on coherent control oscillations after excitation
with two phase-locked pulses revealed that the correlation
expansion breaks down at high temperatures and/or strong
couplings.36 However, in that work, the dynamics was studied
only over a few ps. Having in mind that usually errors may
accumulate during the evolution in time, one could expect
that in the long-time limit, the parameter range, where the
correlation expansion is applicable, shrinks compared with that
found in Ref. 36. In contrast to this conclusion, here we will
demonstrate that for a wide range of elevated temperatures and
carrier-phonon coupling strengths, the correlation expansion
yields surprisingly reliable predictions for the stationary
nonequilibrium, even if it fails completely to reproduce the
precedent dynamics. Problems in the long-time limit may,
however, appear at low temperatures.

Let us first concentrate on the latter temperature regime and
the weak-coupling limit, as represented by the unscaled GaAs
carrier-phonon coupling strength. In this parameter range, two
factors may limit the applicability of the correlation expansion:
(i) The stationary state is reached after rather long times, i.e.,
fine-grained q discretizations are needed to ensure results that
do not diverge over a long time interval. (ii) The memory
introduced by the coupling to a continuum of acoustic phonons
increases significantly with decreasing temperature, i.e., the
dynamics is strongly non-Markovian. The latter dependence
can be investigated using the path-integral approach and is
illustrated in Fig. 6, where we show the stationary value of
the off-diagonal element ρ01(∞) as a function of temperature
at field strengths of f = (a) 0.5 and (b) 1.0 ps−1 for resonant
excitation. As already stated above, in the implementation of
the path-integral formalism, the memory truncation length can
be varied. Plotted are results obtained by choosing different
memory depths. For higher temperatures, the results for all
displayed memory lengths coincide. However, in the range of
low temperatures, significant deviations become apparent and
the memory length that is chosen has to be rather long in order
to ensure converged results, which are displayed as solid black
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FIG. 6. (Color online) Stationary value of ρ01 as a function of
temperature for field strengths of f = (a) 0.5 and (b) 1.0 ps−1.
Colored lines correspond to different memory truncation lengths
within the path-integral approach (see key); black lines represent
converged results, i.e., they are unaffected if the memory is further
increased.

lines. Here, by “converged”we mean that a further increase
of the memory length does not lead to any further changes.
Our results clearly demonstrate that the phonon-induced
memory increases significantly for decreasing temperatures. In
addition, a comparison between Figs. 6(a) and 6(b) reveals that
the memory depth also noticeably depends on the strength of
the optical driving and rises with decreasing laser intensities.
Close to zero temperature, memory lengths of 9 and 5 ps,
respectively, have to be chosen. The path-integral approach
is capable of dealing with the long memory depths faced at
low temperatures and weak fields. However, when fixing the
time discretization, longer memory truncation lengths require
a larger storage space, as well as longer computing times, and
are thus much more demanding.

The corresponding results of the correlation expansion
are added in Fig. 4 where they are displayed as squares.
At f = 1.0 ps−1, for nearly all temperatures, the correlation
expansion agrees extremely well with the path-integral results
(solid blue line), and confirms that Eq. (13a) overestimates the
coupling-strength-related correction with respect to a thermal
occupation of the dot-photon dressed states. Only in the range
T � 1 K can slight deviations be found, which are probably
due to the increased memory depths. At f = 0.5 ps−1 (red
lines), the correlation expansion again coincides with the path
integral at T � 4 K. However, due to the weak applied field
strength for low temperatures, it takes very long times until the
stationary state is reached.3 In our calculations, even for the
finest q discretization compatible with the computing power
available to us for T � 3 K, the correlation expansion results
diverged before this stationary limit was reached and, hence, no
data points could be included in Fig. 4. Thus, for temperatures
close to zero, the correlation expansion is not the method of
choice to study the long-time behavior.

Let us finally turn to elevated temperatures and increased
carrier-phonon couplings. Shown in Fig. 7 is the temporal
evolution of the real part of ρ01 for f = 1.0 ps−1 at different
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FIG. 7. (Color online) Time dependence of the real part of the
coherence for f = 1.0 ps−1 at different temperatures as indicated.
Solid lines represent path-integral results; dashed lines correspond
to a fourth-order correlation expansion. (a) Coupling constant of
GaAs; (b) and (c) with |γq |2 increased by factors of three and ten,
respectively.

temperatures and coupling strengths. While in Fig. 7(a) the
unscaled coupling constant of GaAs has been used, |γq|2
has been increased by factors of α = 3 and 10 in Figs. 7(b)
and 7(c), respectively. Solid lines display the path-integral
calculations; dashed lines display the results of the correlation
expansion. In the weak-coupling regime [Fig. 7(a)] for T = 10
and 30 K, the correlation expansion is in full agreement
with the exact result. In particular, the long-time behavior is
correctly reproduced. The latter holds also for T = 100 K, even
when here, around t = 3 ps, the correlation expansion predicts
a dip which is absent in the exact dynamics. For an intermediate
coupling strength [Fig. 7(b)], deviations emerge during the
evolution in time that are more pronounced for higher
temperatures. For T = 100 K, the dynamics as predicted by

the correlation expansion, after 1 ps, is already far off the
exact result, and shows subsequently not only quantitative
but marked qualitative deviations. However, these differences
diminish in the course of time and the final long-time behavior
is surprisingly close to the exact result. Before a stationary
state is reached, even stronger discrepancies emerge in the
strong-coupling regime [Fig. 7(c)], where the correlation ex-
pansion, at T = 10 K, already produces artificial oscillations.
Nevertheless, despite these oscillations, the stationary state is
still close to the path-integral result. A similar behavior can be
found for T = 30 K. Only at T = 100 K does the correlation
expansion disagree completely with the exact dynamics for all
times longer than a few hundred fs. Thus, our comparison
demonstrates that over a wide range of temperatures and
coupling strengths, the correlation expansion yields rather
reliable predictions in the long-time limit, even though for
intermediate temperatures or coupling strengths the precedent
dynamics cannot even qualitatively be reproduced.

IV. CONCLUSIONS

We analyzed the long-time dynamics of a continuously
driven strongly confined quantum dot concentrating on pure
dephasing processes due to the coupling to a continuum of
acoustic phonons over a wide parameter range. Using numer-
ically exact real-time path integrals enables us to characterize
the stationary nonequilibrium of this many-particle system
without any prejudice. We demonstrated that in the weak-
coupling regime, even at high temperatures, the stationary state
of the electronic system is close to a thermal occupation of the
dot-photon dressed states, indicating that the role of phonons
is restricted to provide a redistribution of the quasiparticle
occupations. Indeed, our numerical results suggest that this
description becomes exact in the limit of negligibly small
carrier-phonon couplings. In the strong-coupling regime,
the stationary values of the off-diagonal elements deviate
significantly from a thermal occupation, reflecting that, here,
phonons also contribute to the definition of the stable quasi-
particles. It is found that the weak-coupling theory derived in
Ref. 17 is capable of describing the tendencies of these devi-
ations qualitatively, but overestimates the dependence on the
coupling strength. Interestingly, the latter holds in particular
in the weak-coupling regime, where the bare dressed-state
assumption represents, for nearly all temperatures, a better
estimate for the stationary nonequilibrium state. A comparison
between path-integral results with different memory truncation
lengths revealed that the memory of the system increases
significantly with decreasing temperature and decreasing
strength of the optical driving. For temperatures close to zero,
the fairly long memory depths, which are specific to the
superohmic coupling, may cause the rather large deviations
of the weak-coupling theory from the exact result. If the
laser frequency is shifted out of resonance, a stationary
nonequilibrium close to a thermal occupation of the dot-photon
dressed states leads to an interesting consequence: Depending
on the sign of the detuning in the long-time limit, the QD
occupation may exceed 1

2 , i.e., a higher final occupation is
reached for off-resonant excitation than for resonant driving.

Using path-integral data for benchmark purposes, we
studied the validity of a fourth-order correlation expansion.
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We found that over a wide range of temperatures and carrier-
phonon coupling strengths, the correlation expansion yields,
in the long-time limit, surprisingly reliable results. Most
interestingly, it predicts a stationary nonequilibrium state close
to the exact result, even if it fails completely to reproduce
the precedent dynamics, as seen for elevated temperatures
or coupling strengths. As the correlation expansion is one
of the most common approximative approaches to study the
dynamics of correlated systems, our results may be useful in
a wide range of physics.

ACKNOWLEDGMENTS

M. G. and M. D. C. acknowledge financial support by
the Studienstiftung des Deutschen Volkes and the Alexander
von Humboldt Foundation, respectively. P. M. acknowledges
support from the Foundation for Polish Science under the
TEAM programme, co-financed by the European Regional
Development Fund. T. K. and P. M. acknowledge support from
the Alexander von Humboldt Foundation within a Research
Group Linkage Project.

*martin.glaessl@uni-bayreuth.de
1J. Förstner, C. Weber, J. Danckwerts, and A. Knorr, Phys. Rev. Lett.
91, 127401 (2003).
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