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Time-bin entanglement of quasiparticles in semiconductor devices
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A scheme to produce time-bin entangled pairs of electrons and holes is proposed. It is based on a high-frequency
time-resolved single-electron source from a quantum dot coupled to one-dimensional chiral channels. Operating
the device in the weak tunneling regime, we show that at the lowest order in the tunneling rate, an electron-hole
pair is emitted in a coherent superposition state of different time bins determined by the driving pulse sequence.
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I. INTRODUCTION

Because of the very long coherence times, electronic
states at the edge of a two-dimensional electron gas in
the integer quantum Hall effect (IQHE) regime1,2 are ideal
systems for designing of coherent electronics circuitry or
to implement quantum information processing. In particular,
electronic versions of several optical interferometers have
been realized3–11 using continuous electron sources. Recently
it was also shown that high-frequency gate modulation can
realize a single-electron source (SES)12–14 that allows one
to inject in a controlled and coherent way single electrons
and holes onto an edge state. Exploiting the beam-splitting
technique via quantum point contacts (QPCs), the electronic
wave packet produced by the SES can be split, recombined, or
coherently guided toward different paths, via the application
of external gate voltages.15,16 Altogether, SESs, QPCs, and
electronic waveguides represent the necessary toolbox toward
the realization of an electronic version of the numerous
protocols developed in quantum optics.17 The only qualitative
difference is in the measurement process, in that photons are
usually absorbed by photodetectors and are studied in terms of
n-photon coincidence correlation functions, whereas electrons
are characterized by currents and higher-order momenta. In
Ref. 16 this formal equivalence was used to characterize
two-particle nonlocal effects originating via collision and
proper postselection from two independent SESs whose output
states were coherently mixed at a QPC.

A full exploitation of the capabilities of quantum informa-
tion requires the production and manipulation of entangled
states. Several schemes to generate entangled states in mul-
titerminal mesoscopic conductors have been proposed so far
(see Ref. 2 and references therein). The realization of the SES
(Ref. 12) opens possibilities to realize entangled states. Here
we exploit the coherence of time-resolved single-electron wave
packets at the output of a single SES, operated in the weak
tunneling regime to generate superpositions of an electron-hole
(e-h) pair produced at different times. Differently from Ref. 16,
our scheme does not rely on collisional mechanisms followed
by postselection: As a consequence, in our case the e-h pair
emerges from the device in an entangled state without the
need of any filtering processes. The resulting output closely
reminds us of the biphoton state produced by a downconversion

nonlinear crystal (see, e.g., Ref. 18) or, more precisely, the
entangled photon hole states19,20 produced via two-photon
absorbing processes. It admits a representation in terms of
time-bin entanglement21,22 whose two-particle correlations we
characterize by performing current cross-correlation measure-
ments at the output of a Franson interferometer23 (the latter
being an interferometric setting which is specifically designed
to detect coherence properties of sources emitting pairs of
correlated particles).

The paper is organized as follows. In Sec. II we present
the setup and describe in brief the basic idea of the proposal.
The dynamics of the device is discussed in Sec. III and in
Sec. IV we discuss deviation from the ideal case. Conclusions
and remarks are given in Sec. V.

II. THE SETUP

We start with an intuitive description of the model whose
validity will be checked later. As shown in Fig. 1(c), the SES is
described as a quantum dot whose energy levels are externally
controlled via a time-dependent voltage gate U (t), and which
is connected to an edge state of the IQHE effect at a filling
factor ν = 1 via a QPC characterized by a tunneling amplitude
A which can be externally modulated.12,14 In this setup the
linear dispersion relation of the edge state close to the Fermi
energy gives rise to a unique velocity of propagation vF for
all the Fourier k amplitudes that compose the electronic wave
packets: Consequently, a particle generated by the SES at the
position x = 0 of the edge will be found simply translated by an
amount vF t after time t has elapsed, with no spread of the wave
packet. As in Refs. 14 and 24, we consider then an elementary
driving sequence of duration 2τ consisting of two subsequent
movements in which we first rapidly rise the dot energy level
above the Fermi sea and keep it there for a time τ , and then we
rapidly lower it below the Fermi sea and keep it there for a time
τ . Assuming τ to be much smaller than the dot escaping time
1/� (� ∝ A2), a pair of well-separated time-resolved electron
and hole can be created on the edge channel with probability
(2�τ )2 � 1, the electron being localized in the first half of the
time bin and the hole being localized in the second half (other
processes in which no excitation or just a single excitation is
emitted can be neglected since they do not contribute to the
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FIG. 1. (Color online) (a) Driving sequence of the dot level
showing the first and the second time bin. (b) Pictorial representation
of the state of the system at first order in the tunneling rate �. Here
the red (gray) and blue (dark gray) dots represent, respectively,
the electron and hole emitted from the SES, while the slots
inside the brackets define the various time bins of the sequence.
(c) Implementation of a Franson interferometer for an IQHE
architecture at ν = 1. A quantum dot driven by a gate potential U (t)
generates an e-h pair on the edge channel at position x = 0. The
electron and hole propagate freely until they reach the QPC driven by
the time-dependent voltage V (t) that splits them and send the electron
toward the right-hand MZI (Ref. 3) and the hole toward the left-hand
one. The black elements are ohmic contacts to different reservoirs,
all kept grounded.

current cross-correlation measurements). This weak tunneling
regime is crucial for the results we present and is actually
opposite to the one usually considered in other proposals15,16

(to stress this fact from now on we will refer to our source as a
weak tunneling SES, or wt-SES in brief). Still it is well within
the reach of current experimental capabilities: For instance,
considering that a 1/� on order of 10 ns can be achieved
while preserving the coherence of the process,12,14 the rising
time of the dot energy level can be set to be on order of few
ps, while τ can be taken to be on order of a fraction of ns.
Notice also that during the driving we never leave the dot at
resonance with the Fermi level for an extended period of time:
As experimentally verified in Refs. 14 and 24, this allows us to
avoid the collateral generation of pairs induced by resonance
effect between the Fermi level and the dot.25

Consider hence the case in which the dot is initially charged
and the elementary driving sequence is repeated several times,
say, twice, as depicted in Fig. 1(a). In the weak tunneling
regime the global state of the system [dot+one-dimensional
(1D) line] at the lowest order in the tunneling amplitude A

contains three contributions. First, we have an unperturbed
component in which the dot is still charged and no excitations
are produced in the 1D channel (zero-order contribution in

A). Then there is a contribution proportional to A in which
the dot electron has emerged from the dot but no holes
have been subsequently produced by the driving sequence.
Last, we have a term proportional to A2 describing the case
in which no charge is trapped in the dot and the 1D line
contains a delocalized e-h pair: As anticipated, this is the only
component of the state which can contribute to the current
cross correlations we perform at the output of the setup, the
probability of the event being proportional to |A|4—see below.
If the driving process is kept coherent, it is described as a
coherent superposition of an e-h pair emitted in the first time
bin, an e-h pair emitted in the second time bin, and an e-h
pair with the electron emitted in the first time bin and a hole
emitted in the second time bin—see Fig. 1(b). We can hence
represent it as the following vector:

|�〉 ∝ |1,0〉e|1,0〉h + |0,1〉e|0,1〉h + |1,0〉e|0,1〉h, (1)

where |1,0〉e,h is the state with one electron (hole) in the first
time bin (first label in the ket) and none in the second time
bin (second label in the ket), while |0,1〉e,h is the state with
no electron (hole) in the first time bin and one electron (hole)
in the second time bin. We stress that |�〉 is only the second-
order contribution in the tunneling amplitude A to the real full
state of the system, which we can use to evaluate the current
cross-correlations at the output of the device (in other words,
it is the component of the full state that gets postselected by
our measuring apparatus).

Equation (1) represents an entangled state of two qubits: For
instance, it violates the Clauser-Horne-Shimony-Holt (CHSH)
inequality26 up to

CHSH(�) = 2
√

13/3 ≈ 2.404 (2)

for suitable measurements.27 Specifically, identifying |1,0〉
and |0,1〉 with the eigenstates of σz, the value in Eq. (2) is
achieved by using the following set of local observables

�(0)
e = (σz + 2σx)/

√
5,

(3)
�(1)

e = (σx − 2σz)/
√

5

for the electronic part of Eq. (1), and

�
(0)
h = (4σx − 7σz)/

√
65,

(4)
�

(1)
h = (σz + 8σx)/

√
65

for the hole part.
The time-bin entanglement of the state in Eq. (1) can be

detected by means of a Franson interferometer.23 The two
subsystems (here, the electron and the hole) must be sepa-
rated and sent to unbalanced Mach-Zehnder interferometers
(MZIs), at the output of which coincidences are recorded.
Furthermore, on each side, single-qubit measurements can be
implemented probabilistically by adapting the phase delays
and the transmittivity of the second beamsplitter (BS) of the
MZI. Therefore, in principle, in the Franson setup the value of
CHSH or of any other entanglement witness can be measured.
This is well known and we refer the reader to the optical
implementations for details.28 Here, we rather have to discuss
how a Franson setup can be realized for our e-h pair generator.
The electron and the hole in each time bin are separated by
means of a time-dependent QPC that acts as a switch, sending
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the electron and the hole, respectively, toward different MZIs,
which are implemented along the lines of Ref. 3, as depicted in
Fig. 1. This separation is a challenging task: The potential V (t)
of the QPC has to rise on a time scale equal or smaller to the
inverse frequency of the gate potential U (t) on the dot, in such
a way that the switch perfectly “cuts” the wave function. The
difference � between the long and the short path in each MZI
is chosen equal to 2vF τ . On the one hand, this guarantees that
no single-particle interference arises within the MZIs which
then operate as effective, probabilistic (but coherent) delay
lines. On the other hand, this allows us to align the time slot
associated with the long path of a particle belonging to the
first time bin with the time slot of the short path associated
with second time bin. The current cross correlations are finally
measured at the outputs of the setup, i.e.,

δCRj ,Li
= 〈δIRj

(t ′)δILi
(t)〉, (5)

with δIαi
(t) = Iαi

(t) − 〈Iαi
(t)〉, where for α = L,R and i,j =

1,2, Iαi
(t) is the current operator at the αi port evaluated at

time t , and where 〈· · ·〉 stands for the expectation value on
the initial state of the system. Different times t 	= t ′ have
to be chosen since the electron and hole are time shifted
within the same time bin. Notice that due to the assumption
of linear dispersion channel, the current operator at different
times commutes and Eq. (5) is a real quantity. This is entirely
due to the fact that the field itself, out of which the current
operator is made, anticommutes at different times, getting just
spatially translated by the propagation in the channel. This
allows to postselect the events we are interested in, discarding
single-particle currents.

The transmittivities of the BSs can be engineered as in
Ref. 3 and do not require special discussion. For the sake of
simplicity, we first assume to fix them at 50% as in the original
proposal by Franson:23 Indeed, this choice is sufficient to
detect a signal which is sensitive to the superposition of Eq. (1)
[instead, to recover CHSH(�) one would need to adjust the
transmittivities as detailed at the end of the section]. In order
to have a phase difference between the two arms of a MZI, we
invoke instead the Aharonov-Bohm (AB) effect. Accordingly,
the statistics of the coincidence events will be sensitive to a
nonlocal two-particle AB phase29 that gives rise to interference
fringes that can witness entanglement in the e-h pair. To see
this, consider that each of the three input terms of Eq. (1) is
mapped after the MZIs into the sum of four states. Out of the
12 total contributions, three will be indistinguishable when
revealing the proper coincidence counts: The event where the
e-h pair is generated in the first time bin and both particles
choose the long paths in the MZIs, i.e.,

|1,0〉e|1,0〉h → eiϕR−iϕL |0,1〉e|0,1〉h + · · · , (6)

(here ϕR,L are the AB phases computed with a gauge for which
only particles traveling along the long arms of the MZIs acquire
a phase, the difference in sign arising from the opposite charge
for electron and the hole); the event where the e-h pair is
generated in the second time bin and both the particles choose
the short paths of the MZIs, i.e.,

|0,1〉e|0,1〉h → |0,1〉e|0,1〉h + · · · ; (7)

finally, the event where the electron is generated in the first time
bin, the hole in the second time bin, and choose, respectively,
the long and the short paths, i.e.,

|1,0〉e|0,1〉h → eiϕR |0,1〉e|0,1〉h + · · · . (8)

Measuring then coincidence events in the second time bin at
the output of the MZIs (i.e., |0,1〉e|0,1〉h) will then produce
a signal which is sensitive to the coherent superposition of
Eq. (1), i.e.,

δCR1,L1 = −(�/4)2|1 + eiϕL + eiϕL−iϕR |2. (9)

The three terms correspond to the three vectors which compose
Eq. (1) and display coherent oscillations. In particular, a
dependence on a nonlocal two-particle AB phase appears as
the difference of the AB phases of the left- and right-hand
MZIs.

A. Measuring CHSH correlations

We analyze in more detail how to use our Franson setting
to measure the value of CHSH(�). We remind that to do so we
need to perform local measurements on the two subsystems
(electron and hole separately). As anticipated, this can be
done in a probabilistic fashion by properly adjusting the
transmittivities of the BS of the setup. Indeed, let us consider
the effect of an asymmetric MZI, characterized by transmission√

s and reflection i
√

r amplitudes of the second BS, while
keeping the first BS symmetric. Let us suppose also that the
generic state of, say, the electron before the right-hand MZI
can be written as |φ〉in = α|1,0〉e + β|0,1〉e. By focusing on
the second time bin at the outputs of the MZI, the electron will
come out with an amplitude

S1 = −(αeiϕR
√

r − β
√

s)/
√

2 (10)

from output 1 and with amplitude

S2 = i(αeiϕR
√

s + β
√

r)/
√

2 (11)

from output 2. Defining the rotated input qubit states

|u+〉 = e−iϕR
√

s|1,0〉e + √
r|0,1〉e,

(12)
|u−〉 = e−iϕR

√
r|1,0〉e − √

s|0,1〉e,
it follows that 〈u+|φ〉in = −i

√
2S2 and 〈u−|φ〉in = −√

2S1,
and it becomes clear that in the second time-bin outputs one
reads the results of the measurements of |φ〉in on the eigenstates
of

(s − r)σz + 2
√

sr(cos(ϕR)σx + sin(ϕR)σy), (13)

where the Pauli matrices are written in the basis |1,0〉e and
|0,1〉e. The probability of success is 1/2, provided that |α|2 +
|β|2 = 1. According to this analysis we can hence realize the
observables (3) by taking ϕR = 0 and s0 = (1 + 1/

√
5)/2,

s1 = (1 − 2/
√

5)/2 for the MZI on the right-hand side of
Fig. 1, and the observables (4) by taking instead ϕL = 0 and
s0 = (1 − 7/

√
65)/2, and s1 = (1 + 1/

√
65)/2 for the MZI on

the left-hand side.
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III. MICROSCOPIC MODEL

We now turn to a more quantitative model where the
dynamics of the wt-SES is described via a time-dependent
Hamiltonian25 of the form

H (t) = εD(t)d†d +
∑

k

εkc
†
kck + Htun(t), (14)

where d and ck are, respectively, the Fermionic annihilation
operators of the dot energy level and of the 1D free-electron
modes associated with the chiral IQHE edge channel at
ν = 1, while Htun(t) is the tunneling term. We take the dot
energy εD(t) as in Fig. 1(a) while, assuming linear dispersion
around the Fermi energy (set to zero), we write the energy
levels of the ck modes as εk = h̄vF k (nonlinear corrections
being typically negligible in IQHE systems for small bias
voltages). In the weak-coupling regime we consider a (time-
dependent) tunneling amplitude peaked around the resonance
value kD(t) = εD(t)/h̄vF associated with the instantaneous dot
energy14 within a bandwidth BW = h̄vF �k, i.e.,

Htun(t) = A
∑

k∈[kD (t),�k]

(d†ck + c
†
kd), (15)

and assume kD > �k. The spread �k is associated with
the uncertainty in the emission position of the electron on
the 1D channel, taking into account the not perfect pointlike
coupling between the dot and the edge, allowing hence the
tunneling hopping to extend over a range �x � 2π/�k.
A natural bound on �x can be set as �x � RD , where
RD is the linear dimension of the quantum dot. The latter,
however, is directly related with the dot energy-level spacing
� = 2εD via the expression � � h̄2(2π/RD)2/2m∗, m∗ being
the effective mass of the electron (m∗ = 0.068m0 for GaAs
heterostructures). It follows a minimum bandwidth on order

BW0 = 2πh̄vF /RD =
√

2m∗v2
F �. (16)

To put some number we notice in the experiment of Ref. 14 one
has � � 4.4K (� � 0.36 meV). Choosing vF � 104 m/s, we
get BW0 � 0.2 meV. Therefore, we see that the validity of
the condition kD > �k, ensured if BW0/� � BW/� < 1,
can be satisfied.

In the interaction picture, with respect to free evolution of
the system, the Hamiltonian becomes hence

HI = A
√

Lce
iϕD (t) d† ψkD(t)(−vF t) + H.c., (17)

where

ϕD(t) = 1

h̄

∫ t

dt ′ εD(t ′) (18)

is the dot dynamical phase, Lc is the channel length, and

ψkD
(x) = 1√

Lc

∑
k∈[kD,�k]

eikxck (19)

is the field operator in position space of an electron propagating
with mean momentum kD . When applied to the Fermi sea,
the operator ψ

†
kD

(x) adds an electron above the Fermi sea
only if kD > 0 (kF = 0). If the initial dot energy is negative,
εD < 0, the electronic field operator ψ−|kD |(x), when applied
to the Fermi sea, creates a hole of average momentum

|kD|. Field operators at positions x and x ′ satisfy canonical
anticommutation rules if |x − x ′| � �x, which amounts to a
coarse graining of the position resolution. Due to the linearity
of the channel dispersion, we have a one-to-one mapping
between position and time, which implies a coarse graining
in the time coordinate: Fields at times t and t + δt , with δt �
2π/(vF �k), are indistinguishable and the anticommutation
relations at times differing by δt have to be understood as at
equal time.

Consider now the time evolution of the input state
|1〉D|�F 〉, where |1〉D describe the charged state of the dot and
|�F 〉 is the free Fermi-sea state of the edge. In the interaction
picture the first correction that gives rise to nonzero current
cross correlations at the output is described by the vector

∫ t

0
dt ′

∫ t ′

0
dt ′′ eiϕD (t ′,t ′′)ψkD(t ′)(−vF t ′)ψ†

kD(t ′′)(−vF t ′′)|�F 〉,
(20)

which exhibits an electron of momentum kD(t ′′) at time
t ′′ and a hole with momentum −kD(t ′) at time t ′ > t ′′.
Assuming piecewise constant kD , sharp transitions, and ne-
glecting transient effects, we can set kD > 0 for 0 < t < τ

and kD < 0 for τ < t < 2τ , as shown in Fig. 1(a). Since the
two consecutive time slots do not overlap, one can create a
state with the electron localized within �/2 < x < � and a
hole localized within 0 < x < �/2 (here � ≡ 2vF τ ). Defining
thus the electron and hole field operators ψe(x) ≡ ψkD

(x),
ψ

†
h(x) ≡ ψ−kD

(x), we can write the above vector after time
t = 4τ as

|�〉 = − �

vF

∫
dx1 dx2 φ(2)(x1,x2)ψ†

h(x1)ψ†
e (x2)|�F 〉, (21)

with the escaping rate � = A2Lc/h̄
2vF and the e-h wave

function

φ(2)(x1,x2) = Step(x1,x2) + e−ikD�Step(x1 + �,x2)

+ e−ikD�Step(x1 + �,x2 + �), (22)

expressed in terms of the Heaviside distribution θ (x) through
the identity

Step(x1,x2) = eikD(x1+x2)θ (x1 + �)θ (−x1 − �/2)

× θ (−x2)θ (x2 + �/2). (23)

This is the second quantization representation of the state of
Eq. (1) which defines, in the interaction picture, the electron-
hole distribution on the 1D channel that connects the dot with
the time-dependent QCP. The propagation through the latter
can then be described in the Landauer-Büttiker formalism30 by
introducing a time-dependent transmission amplitude toward
the right-hand MZI, sR(t), and a reflection amplitude toward
the left-hand MZI, sL(t), with |sL|2 + |sR|2 = 1, Res∗

LsR = 0.
We assume sharp transitions and neglect transient effects, such
that the QPC is totally transmitting during the first half of the
time bin and it is totally reflecting during the second half
of the time bin (i.e., |sR(t)sL(t + τ )| = 1). For α = R,L and
j = 1,2, the field at the αj output of the setup can then be
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expressed as

ψαj
(x,t) = ij−1sα(t)[ψ(x − vF t)

+ (−)j−1eiϕαψ(x + � − vF t)]/2, (24)

where ϕα the AB phases and where ψ(x − vF t) is the drifting
full free field operator

ψ(x) = 1√
Lc

∑
k

eikxck (25)

of the channel that connects the dot with the time-dependent
QCP which, neglecting the Fermi-sea contribution, in our
case can be approximated as ψ(x) ≈ ψe(x) + ψ

†
h(x). The

correlation δCR1,L1 of Eq. (9) is then computed by observing
that the current density operator at position x in the 1D channel
associated with the output port αj can be expressed as

Iαj
(x,t) = vF ψ†

αj
(x,t)ψαj

(x,t). (26)

Setting xe = x − vF t , yh = xe − vF τ to compensate for the
time shift between the electron and the hole, the resulting
expression for the cross-correlator results in

δCR1,L1 = −v2
F

16

∣∣∣∣∣
∑

a,b=0,1

G(xe + a�,yh + b�)eiaϕR−ibϕL

∣∣∣∣∣
2

(27)

in terms of the Green’s function G(x,y) ≡ 〈ψ†(x,t)ψ(y,t)〉,
which at the lowest order in � is

G(xe,yh) = 〈�F |ψ†(xe)ψ(yh)|�〉
+ 〈�|ψ†(xe)ψ(yh)|�F 〉. (28)

Choosing then kD� = 2π and measuring the currents at the
central peak −3/2 < xe/� < −1, one finally gets Eq. (9).

IV. NONIDEAL CASE

Until now we have considered an ideal situation of a linear
dispersion channel, a zero-temperature working regime, and
no dephasing process has been taken into account. Quadratic
deviation from a linear dispersion implies that each k state
propagates at his own speed, yielding a spread of the wave
function. Typically, electronlike states with energy above the
Fermi energy propagate slightly faster than holelike states with
energy below the Fermi energy. Consequently, the time bin
becomes smeared and adjacent time bins develop an overlap
as the electron-hole pair propagates along the channel, making
the synchronization of the electron and hole more difficult.

After the state Eq. (21) has been produced at position
x = 0, it propagates into the channel and interaction with
the environment reduces the degree of time-bin entanglement
of the electron-hole pair. Typically, in the IQHE the single-
particle coherence length has been proved to be very long,

on the scale of hundreds of micrometers. For dc-biased MZI
interferometers a direct measurement of the single-particle
coherence length has been reported in Ref. 7 by monitoring the
decrease of the visibility of single-particle Aharonov-Bohm
oscillation in MZIs of different sizes. An observed 1/T de-
pendence versus the temperature has been attributed to thermal
noise of the dissipative part of the finite frequency coupling
impedance between the environment and the reservoirs. Short-
and long-range interactions as well as curvature of the fermion
dispersion have been ruled out due to an expected different
dependence on temperature. As far as two-particle processes
are concerned, an experimental measurement of two-particle
Aharonov-Bohm phase has been performed by Neder et al.,4

where a visibility on order of 70% for a dc-biased case has
been reported.

In the case that we consider, the electronic reservoirs are
kept at the same bias and the nonequilibrium nature of the
excitation is entirely due to the dot driving. At the moment
no experimental test of single- or two-particle interferometry
with SESs or wt-SESs has been reported to our knowledge.
On the other hand, a theoretical study has shown that, for a
single-electron wave packet injected in chiral Luttinger liquid,
the deformation of the wavepacket due to electron-electron
interaction can be partly undone by a suitable voltage pulse,31

whereas in a real device a capacitive Coulomb interaction may
add dissipation into the system.32

V. CONCLUSIONS

By operating a SES in the weak tunneling regime, we have
proposed a scheme to generate a time-bin entangled state of
an e-h pair which can be detected via current cross-correlation
measurements at the output of a Franson interferometer.
Within the range of validity of our approximations the only
higher-order excitations produced in a two time-bin cycle are
|1,1〉e|1,0〉h and |1,1〉e|1,1〉h, which are clearly discriminable
since they bring about a different charge (hence, by monitoring
all the four outputs of the Franson interferometer, it is possible,
in principle, to discard their contribution). Transient effects,
together with all higher-order terms, also contribute to the
shape of the electron-hole wave function, which within our
first-order approximation only amounts to a phase, resulting
in a delocalization of the electron and hole in the two time bins
and a degradation of the signal.
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