
PHYSICAL REVIEW B 84, 195303 (2011)

Stability of the q/3 fractional quantum Hall states
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Magnetotransport measurements in a wide GaAs quantum well in which we can tune the Fermi energy (EF ) to
lie in different Landau levels of the two occupied electric subbands reveal a remarkable pattern for the appearance
and disappearance of fractional quantum Hall states at ν = 10/3, 11/3, 13/3, 14/3, 16/3, and 17/3. The data
provide direct evidence that the q/3 states are stable and strong even at such high fillings as long as EF lies
in a ground-state (N = 0) Landau level of either of the two electric subbands, regardless of whether that level
belongs to the symmetric or the antisymmetric subband. Evidently, the node in the out-of-plane direction of the
antisymmetric subband does not destabilize the q/3 fractional states. On the other hand, when EF lies in an
excited (N > 0) Landau level of either subband, the wave function node(s) in the in-plane direction weaken or
completely destabilize the q/3 fractional quantum Hall states. Our data also reveal that the strength of the q/3
fractional states near the crossing of two Landau levels belonging to the two subbands depends on the relative
spin polarization of the levels; specifically, the states remain stable very near the crossing if the two levels have
parallel spins.
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I. INTRODUCTION

The fractional quantum Hall (FQH) effect,1 signaled by the
vanishing of the longitudinal resistance and the quantization
of the Hall resistance, is the hallmark of an interacting two-
dimensional electron system (2DES) in a large perpendicular
magnetic field. It is a unique incompressible quantum liquid
phase described by the celebrated Laughlin wave function.2 In
a standard, single-subband 2DES confined to a low-disorder
GaAs quantum well, the FQH effect is most prominently
observed at low Landau level (LL) filling factors ν < 2, where
the Fermi energy (EF ) lies in the spin-resolved LLs with the
lowest orbital index (N = 0).3 The strongest states are seen at
the q/3 fractional fillings, namely at ν = 1/3, 2/3, 4/3, and
5/3. In contrast, as illustrated in Fig. 1(a), when EF lies in the
second (N = 1) set of LLs (2 < ν < 4), the equivalent q/3
states at ν = 7/3, 8/3, 10/3, and 11/3 are much weaker.4,5

In yet higher LLs (ν > 4), for example, at ν = 13/3, 14/3,
16/3, and 17/3, which correspond to EF being in the third
(N = 2) set of LLs, the FQH states are essentially absent6–8

[see Fig. 1(a)]. This absence is believed to be a result of the
larger extent of the electron wave function (in the 2D plane)
and its extra nodes that modify the (exchange-correlation)
interaction effects and favor the stability of various nonuniform
charge density states (e.g., stripe phases) over the FQH
states.9–13

Recently, the FQH effect was examined in a wide GaAs
quantum well where two electric subbands are occupied.14

A main finding of Ref. 14 is highlighted in Fig. 1(b):
When the Fermi level (EF ) lies in the N = 0 LLs of the
antisymmetric electric subband, the even-denominator FQH
states (at ν = 5/2 and 7/2) are absent and, instead, strong
FQH states are observed at q/3 fillings ν = 7/3, 8/3, 10/3, and
11/3, as well as at q/5 fillings such as 12/5, 13/5, 17/5, and
18/5. Here we extend the measurements in this two-subband
system and examine the stability of the q/3 FQH states at
even higher fillings as we tune the position of EF to lie in
different LLs of the two subbands. At a fixed 2DES density
we observe a remarkable pattern of alternating appearance

and disappearance of the q/3 states as we tune the subband
separation and the position of EF . The data demonstrate that
the q/3 states are stable even at filling factors as high as
ν = 17/3, as long as EF lies in a ground state (N = 0) LL,
regardless of whether that LL belongs to the symmetric or
antisymmetric subband.

Our data also provide evidence that the stability of q/3
FQH states near the crossing (at EF ) of two LLs belonging
to two subbands depends on the relative spin configuration of
the two crossing LLs. More specifically, the q/3 FQH states
seem to disappear suddenly when the two crossing LLs have
antiparallel spins. But when the levels have parallel spins,
the states remain stable near the crossing and disappear slowly.
We provide self-consistent in-field calculations to examine
a possible “pinning” of the crossing levels in a finite range
of magnetic field. The pinning allows for a charge transfer
between the crossing levels, and this charge transfer in turn
helps bring the charge distribution at high fields close to the
zero-field distribution. We use the results of such calculations
to further discuss the stability of the q/3 FQH states near the
LL crossings.

II. SAMPLE AND EXPERIMENTAL DETAILS

Our sample, grown by molecular beam epitaxy, is a
55-nm-wide GaAs quantum well (QW) bounded on each
side by undoped Al0.24Ga0.76As spacer layers and Si δ-doped
layers.15 We fitted the sample with an evaporated Ti/Au
front gate and an In back gate to change the 2D electron
density n and tune the charge distribution symmetry and the
occupancy of the two electric subbands, as demonstrated in
Fig. 2. This tunability, combined with the very high mobility
(∼400 m2/V s) of the sample, is key to our success in probing
the strength of the q/3 states at high fillings.

When the QW in our experiments is “balanced,” that is,
the charge distribution is symmetric, the occupied subbands
are the symmetric (S) and antisymmetric (A) states [see
the lower panels in Figs. 2(a) and 2(b)]. When the QW
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FIG. 1. (Color online) Longitudinal resistance (Rxx) vs magnetic
field (B) for electrons confined to: (a) a narrow (well-width W =
30 nm) and (b) a wide (W = 55 nm) GaAs quantum well. In (a)
FQH states at ν = 5/2 and 7/2 can be clearly seen, but the states at
ν = 7/3 and 8/3 are weak. In contrast, the even-denominator states
are absent in (b) but strong FQH states are seen at ν = 7/3, 8/3,
10/3, and 11/3. The insets schematically show the positions of the
spin-split LLs of the symmetric (S) and antisymmetric (A) subbands;
the indices N = 0 and 1 indicate the lowest and the excited LLs,
respectively. The subband separation for the trace in (b) is 24 K.

is “imbalanced,” the two occupied subbands are no longer
symmetric or antisymmetric; nevertheless, for brevity, we still
refer to these as S (ground state) and A (excited state). In
our experiments we carefully control the electron density and
charge distribution symmetry in the QW by applying back-
and front-gate biases.16,17 For each pair of gate biases, we

measure the occupied subband electron densities from the
Fourier transforms of the low-field (B � 0.5 T) Shubnikov–de
Haas oscillations. These Fourier transforms, examples of
which are shown in Fig. 2(c), exhibit two peaks (BS and
BA) whose frequencies, multiplied by 2e/h, give the subband
densities nS and nA. The difference between these densities
directly gives the subband separation � through the expression
� = πh̄2

m∗ (nS − nA), where m∗ is the electron effective mass.
Note that, at a fixed total density, � is smallest when the
charge distribution is balanced and it increases as the QW is
imbalanced. Figure 2(d) shows the measured � as a function
of the charge δn transferred between the back and front sides
of the QW. Note that we measure δn from the change in
the sample density induced by the application of either the
back-gate or the front-gate bias.

III. MAGNETOTRANSPORT DATA

Figure 3 shows a series of longitudinal resistance (Rxx) vs
magnetic field (B) traces taken at a fixed density n = 2.12 ×
1011 cm−2 as the subband spacing is increased. The y axis is
�, which is measured from the low-field Shubnikov–de Haas
oscillations of each trace. The same data are interpolated and
presented in a color-scale plot in Fig. 4(a). In Fig. 5 we show
a color-scale plot of the data in the low field regime.

In Figs. 3, 4(a), and 5 we observe numerous LL co-
incidences at various integer filling factors, signaled by
a weakening or disappearance of the Rxx minimum. For
example, the Rxx minimum at ν = 4 is strong and wide at all
values of � except near � = 32 and 58 K, marked by squares
in Fig. 4(a), where it becomes narrow or disappears. Such
coincidences can be easily explained in a simple, qualitative
fan diagram of the LL energies in our system as a function of
increasing �, as schematically shown in Fig. 4(b). In this
figure we denote an energy level by its subband index (S
or A), LL index (N = 0,1,2, . . .), and spin (↑ or ↓). Also
indicated in Fig. 4(b) are the separations between various
levels: the cyclotron energy (EC = h̄eB/m∗), Zeeman energy
(EZ = g∗μBB, where g∗ is the effective Landé g factor), and
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FIG. 2. (Color online) (a) Charge distribution (red) and potential (black), and (b) wave functions from self-consistent simulations for a
55-nm-wide GaAs QW. The charge density is kept fixed at n = 2.12 × 1011 cm−2. The subband separation � is the smallest when the QW is
balanced (bottom panels), and increases as the QW is imbalanced. (c) The Fourier transform spectra of the measured low-field Shubnikov–de
Haas oscillations. Each spectrum exhibits two main peaks, denoted as BA and BS , whose separation increases as the QW is imbalanced (from
bottom to top). (d) The subband separation � determined from the Fourier transforms through � = h̄e

m� (BS − BA), plotted as a function of the
charge distribution asymmetry δn. The solid curve represents � vs δn from self-consistent calculations for a 55-nm-wide GaAs QW.
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FIG. 3. Waterfall plot of Rxx vs B taken at a fixed density n =
2.12 × 1011 cm−2 as the subband separation (�) is increased. The
scale for Rxx is indicted in the upper left (0 to 1 k�). Each trace is
shifted vertically so that its zero (of Rxx) is aligned with its measured
value of � which is used as the y axis of the waterfall plot. Vertical
lines mark the field positions of the filling factors ν.

�. From Fig. 4(b) it is clear that the condition for observing
a LL coincidence at odd fillings is � = iEC , while for
coincidences at even fillings, the condition is � = iEC ± EZ;
in both cases, i is a positive integer.

In Figs. 4(a) and 4(b), we have indicated the two coin-
cidences at ν = 4 with squares. Note that the coincidences
at even fillings correspond to a crossing of two levels with
antiparallel spins. In Figs. 3 and 4(a), the coincidences at
low, odd fillings (e.g., ν = 3 and 5) are not as easy to see at
low temperatures since the resistance minima remain strong as
the two LLs, which have parallel spins, cross. Such behavior
has been reported previously and has been interpreted as a
signature of easy-plane ferromagnetism.18–20 We note that
our data taken at higher temperatures (T = 0.31 K) reveal
a weakening of the ν = 5 Rxx minimum at � = 35 K, and
of the ν = 3 minimum at � = 58 K;21 these are marked by
circles in Fig. 4(a). The crossings at higher odd fillings are
clearly seen in Figs. 4(a) and 5; for example, the ν = 7 Rxx

minimum disappears at around � = 50 K, and the ν = 9 Rxx

minimum around � = 40 and 60 K.22

In Figs. 4(a) and 5 we include several solid white lines
representing � = iEC , assuming GaAs band effective mass of
m∗ = 0.067 (in units of free electron mass). These lines indeed
pass through the positions of the observed LL coincidences
at odd-integer fillings, implying that � is not re-normalized

at these coincidences. We will return to the possibility of the
renormalization of � near coincidences later in the paper. The
dashed lines in Figs. 4(a) and 5 represent � = iEC ± EZ , i =
1,2, . . ., where g∗ is chosen as a fitting parameter so that these
lines pass through the observed coincidences at even-integer
fillings. All the dashed lines in Figs. 4(a) and 5 are drawn using
g∗ = 8.8, except for the � = EC − EZ line, which is drawn
using g∗ = 7.6.

We conclude that g∗ is enhanced by a factor of ∼20
relative to the GaAs band g factor (0.44). This enhancement
is somewhat larger than the values reported for GaAs QWs
with two subbands occupied. For example, Muraki et al.19

reported a ∼tenfold enhancement of g∗ for electrons in a
40-nm-wide QW with n ∼ 3 × 1011 cm−2 while Zhang et al.23

measured a ∼fivefold enhancement in a 24-nm-wide QW
with n ∼ 7 × 1011 cm−2. In GaAs/AlGaAs heterojunction
samples, Leadley et al.24 report a density-dependent g∗ which
is about 14-fold enhanced at a density comparable to our
sample density. It appears then that the enhancement depends
on the QW width, confining potential, and electron density,
and a systematic study of the enhancement would be an
interesting future project. We would also like to emphasize
that the dashed lines in Figs. 4(a) and 5 pass through nearly
all of the observed coincidences quite well. Since each of
these lines are drown using very similar g∗, the data imply
that the enhancement is nearly independent of the filling
factor. This is surprising, because an exchange-enhanced g∗
is theoretically expected to depend on the filling factor.25

We mention, however, that the observation of a significantly
enhanced g factor which is essentially independent of the
filling factor is not unprecedented and has been reported before
for 2D electrons in GaAs24 and in AlAs.26,27

We now focus on the main finding of our work, namely the
correspondence between the stability of the FQH states and
the position of EF . Note in Figs. 3 and 4(a) that FQH states
are observed only in certain ranges of �. For example, the
ν = 10/3 and 11/3 states are seen in the regions marked by
A and C in Fig. 4(a) but they are essentially absent in the B
region. The ν = 13/3 and 14/3 states, on the other hand, are
absent in regions D and F while they are clearly seen in regions
E and G.

To understand this behavior, in the fan diagram of Fig. 4(b)
we have highlighted the position of EF as a function of � for
different filling factors by color-coded lines. Concentrating on
the range 3 < ν < 4 [green line in Fig. 4(b)], at small values
of � (region A), EF lies in the A0↓ level. At higher �, past
the first ν = 4 coincidence which occurs when � = EC − EZ ,
EF is in the S1↑ level (region B). Once � exceeds EC , EF lies
in the A0↑ level (region C) until the second ν = 4 coincidence
occurs when � = EC + EZ . Note in Fig. 4(a) that strong FQH
states at ν = 10/3 and 11/3 are seen in regions A and C. From
the fan diagram of Fig. 4(b) it is clear that in these regions
EF is in the ground-state (N = 0) LLs of the asymmetric
subband, that is, A0↑ and A0↓. In contrast, in region B, where
the 10/3 and 11/3 states are essentially absent, EF lies in an
excited (N = 1) LL, namely, S1↑. We conclude that the 10/3
and 11/3 FQH states are stable and strong when EF lies in a
ground-state LL.

The data in the range 4 < ν < 5 corroborate the above
conclusion. In Fig. 4(b) we represent the position of EF
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in this filling range by a blue line. In regions E and G,
EF lies in the ground-state LLs of the asymmetric subband
(A0↓ and A0↑), and these regions are indeed where the
ν = 13/3 and 14/3 FQH states are seen. In regions D and
F, on the other hand, EF is in the excited LLs of the symmetric
subband (S1↑ and S1↓), and the 13/3 and 14/3 FQH states
are absent. Data at yet higher fillings (5 < ν < 6) follow
the same trend: FQH states at ν = 16/3 and 17/3 are seen
in region I when EF is in the A0↓ level,28 but they are
absent in regions H or J where EF lies in the S1↓ or S2↑
levels.

In Fig. 6 we show additional data for a density of n =
2.90 × 1011 cm−2 in the same QW. Longitudinal and Hall
resistance traces are shown in the bottom panels for three
different values of �, and in each panel the calculated charge
distribution (at B = 0) is also shown. In the top panels we show
the positions of the LLs and EF , corresponding to the filling
factors in the bottom panels. In all cases, strong q/3 FQH
states are observed when EF lies in the A0↓ level. Note that the
data shown in Fig. 6 are for asymmetric charge distributions.
We would like to emphasize that strong q/3 states are also
observed for symmetric (balanced) charge distributions; for
example, see the bottom trace in Fig. 3, or the traces in Fig. 2(c)
of Shabani et al.14

Next we address the FQH states observed at lower ν (<3)
in our sample. Data are shown for n = 2.12 × 1011 cm−2

for the balanced QW (� = 24 K) in Fig. 7; the Rxx trace
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is an extension of the lowest trace shown in Fig. 3. In the
range 1 < ν < 3, strong FQH states are seen at ν = 4/3, 5/3,
7/3, and 8/3. Data taken at yet higher magnetic fields (not
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shown) reveal the presence of a very strong FQH state at
ν = 2/3. From the fan diagram of Fig. 4(b), it is clear that
EF at these fillings lies in an N = 0 LL, namely, the A0↑
(ν = 7/3 and 8/3), S0↓ (ν = 4/3 and 5/3), or S0↑ (ν = 2/3)
levels.29

IV. DISCUSSION

Our observations provide direct evidence that the q/3 FQH
states are strong when EF resides in a ground-state (N =
0) LL, regardless of whether that LL belongs to the A or
S subband. This finding implies that the node in the wave
function in the out-of -plane direction does not significantly
destabilize the q/3 FQH states. On the other hand, when EF

lies in an N > 0 LL, the wave function node(s) in the in-plane

direction weaken or completely destabilize the q/3 FQH states.
These conclusions are consistent with the data from single-
subband samples,4,6–8 as well as theoretical calculations.5,9–13

In a composite Fermion picture, our data also imply that the
fully occupied, lower-lying LLs are essentially inert and the
composite Fermions are formed in the partially filled LL where
EF lies. The composite Fermions, however, could have a spin
and/or subband degree of freedom, as we discuss at the end of
this section (see also Ref. 14).

Our data also allow us to assess the stability of the FQH
states as two LLs approach each other. It is clear in Fig. 4(a)
that Rxx data near LL coincidences at even (ν = 4 and 6) or
odd (ν = 3 and 5) fillings exhibit different features. As we
approach the � = EC − EZ line from the A region, the 10/3
and 11/3 FQH states remain strong and abruptly disappear
before they reach the dashed line, near which no FQH states
but rather large Rxx peaks are seen. A similar statement can be
made regarding the stability of the other q/3 FQH states when
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a dashed line is approached from a circled region. All these
cases correspond to the crossing of two LLs with antiparallel

spins. Near the coincidences where two parallel spin LLs
are crossing at EF , on the other hand, instead of abruptly
disappearing and being replaced by Rxx peaks, the q/3 states
persist and gradually become weaker. For example, the ν =
10/3 FQH state persists very close to the � = EC line as we
approach this line from region C. These observations suggest
that the relative spins of the two approaching LLs play a role
in the stability of the q/3 FQH states.

It is worth reiterating that, as is evident from Figs. 3 and
4(a) data, the relative spins of the two approaching LLs also
play a crucial role in the stability of the integer quantum Hall
(IQH) states. For antiparallel-spin LLs, the IQH state (e.g.,
at ν = 4) becomes very weak or completely disappears, while
for the parallel-spin LLs the IQH state (e.g., at ν = 3), remains
strong. This behavior has been attributed to easy-axis (for an
antiparallel-spin crossing) and easy-plane (for a parallel-spin
crossing) ferromagnetism.18–20

In order to further discuss the stability of the FQH states
near LL crossings, we examine the possibility that � is
renormalized near LL coincidences. As pointed out in Ref. 30,
when only a small number of quantized LLs belonging to two
different subbands are occupied, the distribution of electrons
between these levels does not necessarily match the B = 0
subband densities. This leads to a mismatch between the total
electron charge density distributions at B = 0 and high B. A
pinning of two crossing LLs belonging to different electric
subbands and a charge transfer between these levels can help
bring these distributions closer to each other. The pinning also
implies that the subband separation in magnetic field [�(B)]
is renormalized and is different from the zero-field subband
separation (�).30–32 To examine the role of such a pinning
quantitatively, we performed self-consistent calculations of

the potential energy and charge distribution at high B, similar
to those described in Ref. 29. The calculations provide the
boundaries inside which two LLs are pinned together at EF .

Examples of the calculated boundaries are shown by solid
lines (rhombohedral-shaped “boxes”) in Fig. 8(a). Each box
marks the boundary inside which the two crossing LLs (at EF )
are pinned together near an integer filling. To explain how we
calculated these boundaries, let us focus on the lower left box
labeled �(B) = EC in Fig. 8(a); we will refer to this box as the
ν = 5 box. Inside this box, which corresponds to the crossing
of the A0↓ and S1↓ levels near ν = 5, the in-f ield subband
separation is given by �(B) = EC . This expression ensures
that �(B) is fixed at a given B, consistent with the pinning
of the S1↓ and A0↓ levels. Consider next a series of in-field
self-consistent calculations, all done for a total density equal
to 2.12 × 1011 cm−2 but each corresponding to a different
QW asymmetry. For each QW asymmetry, the in-field charge
distribution is given by

ρ(B) = e(eB/h)[νS · |ψS(B)|2 + νA · |ψA(B)|2]. (1)

Now, for each point on the ν = 5 box boundary, νS and
νA have specific and well-defined values. For example, at
ν = 5 (B = 1.75 T), for which we show the results of our
self-consistent calculations in Figs. 8(b)–8(d), we have νS = 4
and νA = 1 for the upper boundary and νS = 3 and νA = 2
for the lower one. Note that νS = 4 and νA = 1 at the upper
boundary corresponds to level A0↓ having just depinned from
S1↓ and moved above it [Fig. 8(b)], while νS = 3 and νA = 2
corresponds to A0↓ having just moved below S1↓ [Fig. 8(d)].
Focusing on the upper boundary at ν = 5, we set νS = 4 and
νA = 1 in Eq. (1), and perform a series of self-consistent
calculations, each for a different QW symmetry. One of these
calculations in particular has a subband separation which is
equal to �(B) = EC (=35 K for B = 1.75 T). This particular
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QW asymmetry gives the upper boundary at B = 1.75 T. We
then calculate the zero-field subband separation for this QW
asymmetry, which turns out to be � = 42 K, and mark it in
Fig. 8(a) as the upper boundary for the pinning of the A0↓
and S1↓ levels at B = 1.75 T. Note that the above procedure
ensures that, at the upper boundary, �(B) at B = 1.75 T is
equal to 35 K and the electron charge distributions at zero
field and at 1.75 T are very close to each other [see the blue
and red curves in Fig. 8(b)]. For the lower boundary of the
ν = 5 box at B = 1.75 T, we follow the same procedure but
use νS = 3 and νA = 2 in the calculations. We find that the QW
asymmetry that gives �(B) = 35 K corresponds to a zero-field
� of 29 K which we mark in Fig. 8(a) as the lower boundary
at 1.75 T.

The rest of the ν = 5 box boundaries in Fig. 8(a) are
determined in a similar fashion. For example, at a field of
2.00 T [ν = 4.38, �(B) = 40 K], to determine the upper
boundary we set νS = 4 and νA = ν − νS = 0.38 and do a
series of in-field self-consistent calculations to find the QW
asymmetry that gives a subband separation of 40 K. We then
calculate the zero-field subband separation for this particular
QW asymmetry; this turns out to be 25 K which we mark as the
upper boundary of the ν = 5 box at B = 2.00 T. Following
the same procedure, we also find and draw the boundaries for
the pinning of the S1↑ and A1↑ LLs when they coincide (at
EF ) at and near ν = 3. These boundaries are shown in Fig. 8(a)
by the upper right box labeled �(B) = EC . Similarly, we
calculated the boundaries for the pinning of coinciding LLs
near ν = 4 and 6, and show these in Fig. 8(a). For the box
labeled �(B) = 2EC − EZ we assumed g∗ = 8.8, while for
the two boxes labeled �(B) = EC ± EZ we used g∗ = 7.6.
We note that the boundaries of these boxes depend weakly on
the value of g∗ used. For example, the lower boundary of the
�(B) = EC − EZ box centered around ν = 4 moves up/down
by ∼0.6 K, and the upper boundary by ∼3 K, if we use a g∗
which is smaller/larger than 7.6 by 3 (i.e., if we use g∗ = 4.6
or 10.6).

Despite the simplicity of our simulations, the calculated
boundaries for the LL crossings near ν = 4 appear to match
the observed features of the data reasonably well. For example,
in Fig. 8(a) as we approach the lower right boundaries of
the �(B) = EC ± EZ boxes from below [i.e., from regions
A or C in Fig. 4(a)], the ν = 10/3 and 11/3 FQH states
abruptly disappear when the A0↓ level reaches the S1↑
or S1↓ level at these boundaries. A similar statement can
be made regarding the FQH states at ν = 13/3 and 14/3:
these states disappear near the upper left boundary of the
�(B) = EC ± EZ boxes.33 We note that in Fig. 8(a) the ν =
10/3 and 11/3 fractional states appear to slightly penetrate
inside the �(B) = EC ± EZ boxes. This is likely because
of the inadequacies and uncertainties in our calculations.
We emphasize that our simulations, which are based on
solving Poisson and Schroedinger equations self-consistently,
ignore the exchange-correlation effects and use a constant g
factor for an entire box. It is possible that calculations which
treat many-body interactions properly would account for the
∼2–3 K discrepancy between the boundaries of the boxes and
the regions where the FQH states are experimentally observed.

The situation appears to be different, however, as the
boundaries of the �(B) = EC boxes centered at odd fillings

are approached. The q/3 fractional states do not disappear
near these boundaries; instead they seem to penetrate deep
inside these boxes and disappear slowly when the �(B) =
EC line [the dotted line in Fig. 8(a)] is reached.34 This is
clearest in Fig. 8(a) for the ν = 10/3 and 14/3 fractional
states. Given that the calculations involve only the cyclotron
energy and not the Zeeman energy, we do not believe that
it is the inaccuracy of the calculation which leads to this
surprising observation.

Note that a main difference between the boxes centered
at odd compared to even fillings is that an odd-filling box
corresponds to the crossing of two LLs with parallel spins,
while the two LLs crossing inside an even-filling box have
antiparallel spins. We believe that the observations described
in the preceding two paragraphs might be explained in terms
of easy-axis vs easy-plane ferromagnetism to which we
alluded before.18–20 The sudden disappearance of FQH states
when two LLs with antiparallel spins become degenerate at
EF is consistent with easy-axis ferromagnetism. Electrons
in these levels could condense into domains with opposite
magnetization. The large resistance [bright colors in Figs. 4(a)
and 8(a)] can be attributed to electron scattering and enhanced
dissipation at these domain walls.35,36 When the two approach-
ing LLs have parallel spins, on the other hand, we expect the
system to exhibit easy-plane anisotropy. Instead of forming
ferromagnetic domains, the wave functions of the electrons in
these levels can mix and fractional states are seen deep inside a
LL crossing box. These states gradually weaken and eventually
disappear as their wave function progressively assumes the
character of the N = 1 LL wave function.

We highlight three further observations. First, strong FQH
states at large q/3 fillings have been recently observed in very
high quality graphene samples.37 These states qualitatively
resemble what we see in our two-subband system. It is
tempting to associate the valley degree of freedom in graphene
with the subband degree of freedom in our sample. But the
LL structure in graphene is of course different from GaAs
so it is not obvious if this association is valid. Second, data
taken in the N = 1 LL at very low temperatures and in the
highest quality, single-subband samples exhibit FQH states at
even-denominator fillings ν = 5/2 and 7/2.38,39 In the traces
shown in Fig. 3, we do not see any even-denominator states
when N = 1, for example, at ν = 7/2 in region B where EF

is in the S1↑ level. However, in the same sample, at higher
densities (n > 3.4 × 1011 cm−2) and at low temperatures
(T = 30 mK), we do indeed observe a FQH state at ν = 7/2
flanked by very weak 10/3 and 11/3 states when EF lies in
the S1↑ level.14

Third, in the N = 0 LL, high-quality samples show
strong higher-order, odd-denominator FQH states at composite
Fermion filling factor sequences such as 2/5, 3/7, 4/9, etc.3

We do observe a qualitatively similar behavior in our data
when EF is in an N = 0 LL. For example, in region A
[Figs. 3 and 4(a)] we see weak but clear minima at ν = 17/5
next to the 10/3 minimum. Again, at higher densities and
low temperatures, such states become more developed.14 In
Fig. 1(b), for example, there are strong minima at ν = 12/5
and 13/5, adjacent to the 7/3 and 8/3 minima, and at 17/5
and 18/5, adjacent to the 10/3 and 11/3 minima. These
states, as well as the q/3 states, exhibit subtle evolutions
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even when EF lies within a fixed N = 0 LL, consistent with
the presence of composite Fermions which have spin and/or
subband degrees of freedom.14 A related question concerns
the role of charge distribution symmetry in the stability of
the q/3 states. In other words, in a QW with fixed width,
density, and filling, and with EF in a particular N = 0 LL,
how does the strength of given a FQH state at a particular
filling vary with charge distribution symmetry. We do not have
data to answer this question quantitatively, but the data we
present here clearly indicates that a primary factor determining
the strength of the q/3 FQH states is whether or not EF lies
in an N = 0 LL.

V. SUMMARY

In conclusion, the position of EF is what determines the
stability of odd-denominator, q/3 FQH states at a given filling

factor. When EF lies in a ground-state (N = 0) LL, the q/3
FQH states are stable and strong, regardless of whether that
LL belongs to the symmetric or antisymmetric subband. This
observation implies that the wave function node in the out-
of-plane direction is not detrimental to the stability of these
FQH states. Also, the stability of the q/3 FQH states near the
crossing of two LLs depends on the relative spin polarization
of these levels.
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