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We present the results of first-principles plane-wave pseudopotential calculations of piezoelectric coefficients
of first and second order for a total of nine III-V binary phases (AlP, AlAs, AlSb, GaP, GaAs, GaSb, InP,
InAs, InSb) of zinc-blende semiconductors. These coefficients are used to calculate the piezoelectric fields for
[111]-oriented quantum wells (QWs) with different well-barrier combinations and various dimensions. We derive
an approximate analytic expression for the strain tensor in the case of pseudomorphic growth along an arbitrary
growth direction. Together with the piezoelectric coefficients, this allows a simple calculation of the piezoelectric
field up to second order in strain for an arbitrary growth direction and any material combination within the nine
III-Vs presented here. Nonlinear contributions to the polarization are shown to be of significant magnitude for
all the materials presented. In some cases the field is increased by the second-order terms; in some cases it is
decreased. We analyze the chemical trends of the obtained coefficients. We compare our results to available
experiments and find good agreement in one-third of the cases, while for the remaining cases the calculated field
is larger to significantly larger than in the measurements. We discuss the popular experimental techniques and
highlight possible reasons for the discrepancies.
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I. INTRODUCTION

Heterostructures, made of materials with different lattice
constants, are subjected to elastic deformations. In the presence
of a shear strain, piezoelectric fields develop in crystals with
zinc-blende structure. The existence of internal piezoelectric
fields (sign, magnitude, as well as their consequences) within
[111]-grown strained semiconductor layers was established
theoretically in a series of papers by Mailhiot and Smith.1–7

In fact, the [111] orientation offers the possibility to produce
piezoelectric fields, which can easily exceed 100 kV/cm. Since
then, a great deal of theoretical and experimental research has
been devoted to the understanding of the piezoelectric proper-
ties of bulk (e.g., Refs. 8 and 9), quantum wells (QWs) (e.g.,
Refs. 10–12), quantum wires (e.g., Refs. 13–15), and quantum
dots (e.g., Refs. 16–20). The work on QWs has been especially
decisive since the screening of the piezoelectric fields can be
strongly reduced under most experimental conditions. Conclu-
sions drawn from bulk measurements, on the other hand, are
usually shadowed by the appearance of free carriers (residual,
intrinsic, or photoinduced) effectively screening the field. In
the case of III-V zinc-blende heterostructures specifically,
the intrinsic strain-induced electric fields are held responsi-
ble for strong effects on the transport properties,21 optical
characteristics,22–24 and acousto-optical modulation25 in a way
which may lead to the microstructural engineering of novel
optical and electronic devices.26,27 The interest on these modi-
fied properties is therefore manyfold: the understanding of the
physics involved and the development of new applications, that
is, integrated, mixed-effect devices, optical switches, modula-
tors, and nonlinear devices.28–32 A recent paper by Lew Yan
Voon33 reviews recent work involving piezoelectric effects.

The existence of a nonlinear piezoelectric effect, subject
to this work, was first mentioned by Cibert et al.34,35 for
II-VI CdTe QWs. They argued that this material was an ideal
candidate for nonlinear piezoelectric effects due to its small
piezoelectric coefficient. They measured a piezoelectric field
that depended in a nonlinear fashion on the elastic strain.

Subsequent theoretical calculations36 showed that the piezo-
electric tensor in CdTe strongly depends on the hydrostatic
pressure, but very little on the traceless strain. The author
concluded that for CdTe, where the linear coefficient is very
small, its hydrostatic strain dependence should be taken into
account. They further speculated that the nonlinear terms
should give a small contribution in materials such as GaAs,
due to a large linear piezoelectric effect. The methodology for
the calculation of second-order piezoelectricity within density
functional theory was developed by Bester et al.37 and applied
to the III-V InAs/GaAs QWs.37 The effect of the second-order
terms for InxGa1-xAs/GaAs [111] QWs with conventional
compositions (x � 0.20) was shown to reduce the field by
around 20%. In the case of the popular InxGa1-xAs quantum
dots embedded in GaAs, the second-order effect was shown
to nearly cancel the first-order effect.38 The investigation
on the balance between linear and quadratic piezoelectric
terms was then extended to QDs of different shapes and
compositions.13,18,19,39,40 The effect of second-order piezoelec-
tricity on the pressure coefficient of the light emission was
further investigated in InGaAs/GaAs QWs.41 The calculations
revealed that changes of the built-in electric field with pressure
in (111)-oriented QWs are significantly enlarged by the effect
of nonlinear piezoelectricity, in comparison to the case when
linear piezoelectricity is used.41

In this paper we calculate via first-principles plane-wave
pseudopotentials calculations the linear and quadratic piezo-
electric coefficients for a total of nine III-V binary compounds
([Al,Ga,In]-[P,As,Sb]) with zinc-blende structure. Using these
coefficients we calculate the piezoelectric fields for 14 different
QWs. We find large nonlinear contributions for all the investi-
gated materials. The paper is organized as follows. In Sec. II we
review the methodology and outline the computational details.
We present our results and discuss trends we can identify in the
obtained coefficients. Section III presents the methods used for
the calculation of the piezoelectric fields from the piezoelectric
coefficients. First, some considerations from electrostatics are
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presented. Then, the special case of a [111] QW is illustrated,
as is the procedure to obtain the polarizations and fields for
arbitrary crystallographic directions. Section IV describes the
electric fields we obtained for 14 different QWs grown along
the [111] direction. Section V focuses on the InGaAs/GaAs
material system but shows results for arbitrary crystallographic
growth direction. In Sec. VI we discuss the experimental
techniques used to extract piezoelectric fields and in Sec. VII
we compare our results to experiment. In Sec. VIII we point
out the importance of QW and barrier thicknesses, as well as
QW composition.

II. CALCULATION OF PIEZOELECTRIC COEFFICIENTS
UP TO SECOND ORDER IN STRAIN

A. Methodology

Piezoelectricity is defined as the generation of electric
polarization by application of stress to a crystal lacking a
center of inversion. The electric polarization Pμ as a function
of mechanical strain ηαβ can be written assuming summation
over repeating index and retaining the second order in strain as

Pμ =
∑
αβ

eμαβηαβ + 1

2

∑
αβγλ

Bμαβγληαβηγλ, (1)

where eμαβ is the third-rank proper piezoelectric tensor of
the unstrained material, while Bμαβγλ is a fifth-rank tensor
defined below. The Greek indexes μ, α, β, γ , and λ stand for
the x, y, and z axes of the Cartesian coordinate system. The
six independent components of the strain tensor are given in
the Voigt notation as

η1 = ηxx, η2 = ηyy, η3 = ηzz,

η4 = 2ηyz, η5 = 2ηxz, η6 = 2ηxy.

We use Latin letters (i,j,k, . . .) for the Voigt index. Note that
some authors, for example, Grimmer,42 do not use the factor
of 1/2 in Eq. (1), which simply results in a different definition
of B. The polarization component can then be written as

Pμ =
6∑

j=1

eμjηj + 1

2

6∑
jk=1

Bμjkηjηk, (2)

where Bμjk represents the first-order change of the
piezoelectric tensor with strain. Following this definition, the
piezoelectric tensor can be defined as a function of strain

ẽμj (η) = dPμ

dηj

= eμj +
∑

k

Bμjkηk. (3)

The tensor Bμαβγλ is symmetric under an interchange of αβ

and γ λ. It follows that Bμjk is symmetric under an interchange
of j and k. The form of the fifth-rank piezoelectric tensor
for the 21 noncentrosymmetric crystallographic point groups
was first determined by Koptsik and later by Nelson in a
particular orientation.43,44 Recently, Grimmer42 derived the
form of the second-order piezoelectric tensor for crystals and
quasicrystals of any symmetry and for all the orientations.
The orientation of the symmetry elements for the zinc-blende
crystal structure [Td , F (4̄3m)] show that there are three
nonzero coefficients for eμj and that there is only one

independent element to be determined: e14 = e25 = e36. The
symmetry restrictions on the Bμjk tensor lead to 24 nonzero
coefficients with only three independent ones:

B114 = B225 = B336,

B124 = B235 = B316 = B134 = B215 = B326,

B156 = B345 = B246.

The relations for the linear and quadratic dependence of the po-
larization on the strain tensor are given by P = P l + Pnl , with

P l = e14

⎛
⎝η4

η5

η6

⎞
⎠ ,

Pnl = B114

⎛
⎝η1η4

η2η5

η3η6

⎞
⎠ + B124

⎛
⎝η4(η2 + η3)

η5(η3 + η1)
η6(η1 + η2)

⎞
⎠ + B156

⎛
⎝η5η6

η4η6

η4η5

⎞
⎠ .

(4)

Our calculations of these tensor elements rely on the
density functional perturbation theory (DFPT) techniques
applied in the local density approximation (LDA) and the
generalized gradient approximation (GGA) for the exchange
correlation functional. The results reported here were obtained
from an implementation of the LDA in the framework of the
ABINIT code package.45 The calculations were carried out
using the Troullier-Martins (TM) pseudopotentials,46 prepared
by the Fritz Haber Institute code.47 Some calculations were
also done using the relativistic separable pseudopotentials in
the form of Hartwigsen, Goedecker, and Hutter (HGH).48 The
numerical results presented were computed by treating the
electrons of the 3d (Ga) and 4d (In) level as valence states.
Plane waves up to 100 Ha were used to expand the electronic
states and the Brillouin zone was sampled with a mesh of
12 × 12 × 12 k points.

In order to obtain the coefficients eμj and Bμjk we
proceeded in the following manner. First, we relaxed the
lattice parameters for the binary compounds [Al, Ga, In]-[P,
As, Sb]. Next, linear-response calculations of the linear bulk
piezoelectric constant eμj were carried out on these relaxed
structures using the DFPT module of the ABINIT package,49,50

which implements a direct calculation of the strain derivatives
of the quantities of interest (Kohn-Sham wavefunctions,
polarizations, etc.) via a chain rule. Then, a finite-difference
technique was used in order to obtain the “improper” (see next
section) nonlinear bulk piezoelectric tensors Bi

μjk . With the
strain ηi frozen at a particular value δ, the ions were allowed to
relax, after which the piezoelectric tensor elements ẽμj (δ) were
computed using linear-response techniques. This is repeated
for several values of δ up to 2% for the diagonal elements and
up to 0.2% for the nondiagonal elements, then the dependence
of these elements on δ is fitted, and the linear dependence
extracted. This was done for different strains ηi leading, in a
first step, to different improper second-order coefficients Bi

μjk .

B. From improper to proper second-order coefficients

Until now, except for the last paragraph, we implicitly
talked about the “proper” coefficients. It has already been
shown that the proper (linear) piezoelectric coefficient ep does
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not depend on the branch of the polarization as the improper
piezoelectric coefficient ei does.51 We emphasize here that a
naive computation of the second-order coefficient leads to an
improper coefficient and that it needs to be corrected in order to
get the proper second-order coefficient. The proper coefficients
should be directly comparable to the experimental one; that is,
they should not depend on the branch of polarization.

In order to derive the proper second-order piezoelectric
tensor we use Cartesian coordinates, instead of the Voigt index:

Bi
μαβγλ = dẽ

p

μαβ

dηγλ

. (5)

According to Vanderbilt,51 the proper piezoelectric tensor is
given by

ẽ
p

μαβ = − 1

2π

q

	

∑
ν

dφν

dηαβ

Rνμ, (6)

with φν the total Berry phase in direction ν, 	 the volume
of the unit cell, and q the electronic charge. So the improper
second-order piezo coefficient is given by

Bi
μαβγλ = 1

2π

q

	2

d	

dηγλ

∑
ν

dφν

dηαβ

Rνμ − 1

2π

q

	

∑
ν

dφν

dηαβ

dRνμ

dηγλ

− 1

2π

q

	

∑
ν

d2φν

dεαβdεγλ

Rνμ. (7)

Then one has to remember the definition of a strained vector
and a strained volume,

Rνα = R0
να +

∑
τ

ηντ R0
τα, (8)

and

	 = 	0 +
∑

τ

ηττ	0. (9)

Since by definition the strain is symmetric (otherwise it is a
strain + rotation), the following property has to be ensured:

ηντ = ητν = 1
2 (ηντ + ητν). (10)

This is an important point since otherwise the B’s can lack
symmetry. Applying this property to the derivatives of the real
space lattice vectors and in the volume derivatives one finds

dRνα

ηγλ

= 1

2

∑
τ

(δνγ δτλ + δνλδτγ )R0
τα, (11)

and
d	

dηγλ

=
∑

τ

δτγ δτλ	0. (12)

Thus, one finds (remembering that the piezoelectric coef-
ficients are calculated at zero strain, that is, R = R0 and
	 = 	0),

Bi
μαβγλ = 1

2π

q

	
δγλ

∑
ν

dφν

dηαβ

Rνμ − 1

2π

q

	

∑
ν

dφν

dηαβ

× 1

2
(δμγ Rνλ + δμλRνγ )

− 1

2π

q

	

∑
ν

d2φν

dηαβdηγλ

Rνμ. (13)

The last term is what we call the proper second-order
piezoelectric coefficient B

p

μαβγλ.
Rearranging the terms, one finally gets

B
p

μαβγλ = Bi
μαβγλ + δγλeμαβ − 1

2 (δμγ eλαγ + δμλeγαβ). (14)

Explicitly, the second-order piezoelectric coefficients cal-
culated in this work are [when the B’s have three (five) indices
it represents the Voigt (Cartesian) notation]

B
p

114 = B
p

11123 = Bi
11123 + δ23e111 − 1

2 (δ12e311 + δ13e211),

B
p

114 = Bi
114,

B
p

141 = B
p

12311 = Bi
12311 + δ11e123 − 1

2 (δ11e123 + δ11e123),

B
p

141 = Bi
141,

B
p

124 = B
p

12223 = Bi
12223 + δ23e122 − 1

2 (δ12e222 + δ13e222),

B
p

124 = Bi
124,

B
p

142 = B
p

12322 = Bi
12322 + δ22e123 − 1

2 (δ12e223 + δ12e223),

B
p

142 = Bi
142 + e14,

B
p

156 = B
p

11312 = Bi
11312 + δ12e113 − 1

2 (δ11e213 + δ12e113),

B
p

156 = Bi
156 − 1

2e25,

B
p

165 = B
p

11213 = Bi
11213 + δ13e112 − 1

2 (δ11e312 + δ13e112),

B
p

165 = Bi
165 − 1

2e36.

To illustrate quantitatively this correction, we take the coef-
ficients B124 and B142 of GaAs. The straightforward calculation
described in Sec. II A leads to the improper coefficients,
−3.78 C/m2 and −3.54 C/m2, respectively. Applying the
correction, we find that the corresponding proper coefficients
are equal and amount to −3.78 C/m2. The correction therefore
restores a fundamental symmetry of the coefficients. In this
case, the proper B142 and B124 deviate by less than 0.01 C/m2,
which is below the precision we expect from the convergence
of the parameters (0.05 C/m2).

Here we should add that the proper second-order piezoelec-
tric tensor could be calculated more straightforwardly by using
the second derivative of the energy. One should first calculate
the reduced second-order tensor by finite difference:

Br
νij

= δ

δηj

[
d2Ec

dηidεν

+ d2Ec

dsτμdηi

(
d2Ec

dsαβdsγλ

)−1

τμτ ′μ′

d2Ec

dsτ ′μ′dεν

]
,

(15)

with εν the reduced electric field in direction ν, sαβ the small
displacement of ions with α and β running on each atom in all
three directions of the unit cell vectors, and Ec the energy of
the unit cell. Then one should be able to compute the proper
second-order piezoelectric coefficient as

B
p

αij = − q

	0
Br

νij Rνα. (16)

We underline here that in what follows we only consider the
proper piezoelectric tensor.
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TABLE I. Linear and quadratic piezoelectric coefficients (C/m2) as calculated from LDA-DFT. We report the lattice constant (bohr) at
which the calculation has been done. The materials accompanied with an asterisk are uncertain, and the uncertainty is put into square brackets
if above our 0.05 C/m2 precision.

e14 B114 B124 B156 a0 a
exp
0 e

exp
14

AlP −0.033 −1.9 −2.7 −1.3 10.222 10.301 Unknown
AlAs −0.048 −1.5 −2.6 −1.2 10.619 10.699 Unknown
AlSb −0.084 −0.7 −2.2 −0.7 11.478 11.594 0.157, 0.068
GaP −0.131 −0.7 −3.6 −0.9 10.235 10.273 −0.15
GaAs −0.238 −0.4 −3.8 −0.7 10.645 10.683 −0.16
GaSb* −0.247 0.2 [±0.1] −3.2 [±0.1] 0.0 11.378 11.519 −0.12
InP 0.003 −1.1 −3.8 −0.5 11.042 11.090 Unknown
InAs* −0.115 −0.6 [±0.1] −4.1 0.2 11.432 11.449 −0.045, −0.12
InSb* −0.159 0.1 −3.5 0.6 12.141 12.243 −0.071, −0.097

C. Reduction of the number of calculation and consistency
checks based on symmetry considerations

The step-by-step methodology used to calculate the second
order piezoelectric coefficients was described in Sec. II A.
However, it is convenient to calculate the coefficients of
interest by noticing the specific symmetry of the second-order
tensor (presented in Sec. II A). By considering a [111] shear
strain η = (0,0,0,δ,δ,δ) in Eq. (3), one is able to obtain in one
calculation ẽ11(δ) = ẽ11(η4), ẽ12(δ) = ẽ12(η5), and ẽ15(δ) =
ẽ15(η6), which gives, after correction, the proper coefficient
B114, B124, B156.

However, applying different deformations to obtain one
second-order coefficient serves as a consistency check. For
instance, the relation

B141 = B114 (17)

must hold and can be checked by calculating the η1 dependence
of e14 and the η4 dependence of e11. In this case, no correction
is required and the linear slopes of these dependences
give the proper second-order coefficients, and they must be
equal. So with only few calculations with hydrostatic and
uniaxial strains, it is possible to calculate the three nonlinear
coefficients and check them.

D. Results

The numerical values of the first- and second-order piezo-
electric coefficients are given in Table I along with the lattice
constant (in Bohr) at which the calculations were performed.
The materials with zero band gap in the calculations are
marked with an asterisk and the error bars are given in square
brackets. In the last two columns, the experimental values of
the lattice constant and the linear piezoelectric constant are
reported. A graphical representation of these results is given
in Fig. 1. The nine semiconductors are arranged according to
the Periodic Table on a grid and the height of the columns
is given by the negative value of the coefficients. The colors
are distributed for each panel (coefficient) from blue to red
according to the magnitude of the coefficients, blue being
attributed to the smallest. We can see large variations within
the nine III-V’s in the value of the coefficients for e14,
B114, and B156 with even some changes in sign. In contrast,
the magnitudes of B124 are large and rather constant for

the nine materials. All four coefficients seem to underlie a
different trend: For e14 the coefficients become larger along
the series phosphide → arsenide → antimonide. There is no
recognizable trend along Al → Ga → In. The magnitude of
e14 is largest for the Ga compounds. For B114 the trend seems
reversed and the coefficients go from large to small (even
from positive to negative for the In and Ga compounds) in
the direction Sb → As → P. For B124 the trend follows Al →
Ga → In with increasing magnitudes; qualitatively different
than the trends for e14 and B114. The trend for B156 is yet
another one and goes across the series, going from a positive
coefficient for InSb (0.6) to a negative one for AlP (−1.3),
seemingly following the mass or the lattice constant of the
compound. To highlight this trend we plotted in Fig. 2 the
piezoelectric coefficients as a function of the compound’s

e14 B114

B124 B156

In
Ga

Al

P
A

s
S

b

FIG. 1. (Color online) Graphical display of the piezoelectric
coefficients. The height of the columns (also indicated by the color
code, from blue to red) give the negative values of the coefficients.
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FIG. 2. (Color online) Piezoelectric coefficients as a function of
the lattice constants.

lattice constants. A relatively clear trend with lattice constant
can be only observed for B156 as just noted.

As for the importance of the second-order coefficients we
present calculations on QWs made of the different materials.
However, from the coefficients alone, we can anticipate that
for materials with very small e14 and large second-order
coefficients, such as the aluminides and InP, the nonlinear
effects will dominate the piezoelectric properties.

To gauge the effect of the chosen exchange correlation
function, we performed additional calculations using the GGA.
The results are given in Table II. We see that the value of the
B’s for LDA and GGA are comparable, while the values of e14

are quite different. This difference is attributed to the values
used for the lattice constant in both approximations. The GGA
leads for GaAs and InAs to lattice constants significantly larger
than the experimental values so that we assess the LDA values
as more accurate. In general, the calculated lattice constants
reported in Table I are in good agreement with experiment.

We also note significant discrepancies with previously
calculated B156 coefficients37 for InAs and GaAs. For GaAs,
our present value (−0.763 C/m2) is around 50% larger in
magnitude than the earlier value (−0.492 C/m237) and for
InAs even the sign is opposite (0.156 here vs −0.120 earlier37).

TABLE II. Linear and quadratic piezoelectric coefficients (C/m2)
as calculated from GGA-DFT. The lattice constant (bohr) at which
the calculation has been done is reported in the last column and is
significantly larger than reported experimentally. We discard these
results as less accurate.

e14 B114 B124 B156 a0

GaAs −0.342 −0.5 −4.1 −0.6 10.948
InAs −0.241 −0.5 −4.4 0.1 11.764

The facts that the remaining coefficients are in excellent
agreement with this previous work37 and that we do not
see fluctuations of nearly that magnitude by using different
levels of approximation (pseudopotentials used and exchange
correlation functional), leads us to believe that the previous
results must have been erroneous. A negative B156 coefficient
for InAs was obtained independently.52

E. Accuracy of the results and issues with zero-gap materials

Overall, the electronic structure parameters (number of k

points, energy cutoff) were chosen to reach an accuracy of
0.05 C/m2 on the B’s.

However, since DFT (LDA or GGA) is well known
to estimate roughly the electronic band dispersion, and in
particular it underestimates the band gap, it happens in our
calculations that for some materials with small gap (GaSb,
InAs, InSb) the gap was found to be null. For those materials,
despite all the care we took to ensure convergence (k points,
cutoff, relaxation, etc.), we obtain discrepancies between
coefficients that must be identical on symmetry grounds (under
Voigt indices interchange). We interpret these discrepancies
as arising from the self-consistent change of the density, in
response to the applied strain, that can be affected by the
pathological situation of vanishing band gaps. For example,
for the GaSb compound, we find B114 = 0.30 C/m2 and
B141 = 0.18 C/m2, although these should be equal. So for
this material we retain only the average value and we consider
the error as the difference between the two values; this is
±0.12 C/m2. This value is given as error bars in our final
results. For these materials, we also have reasons to doubt
the accuracy of the linear coefficients. Using pseudopotentials
without d states opens the band gap and changes the results
for e14 quite dramatically (for InAs, the coefficient changes
from −0.115 to +0.066 C/m2) while this change is smaller
for materials with nonzero band gap at the LDA level. These
changes are tied with the strong dependence on the lattice
constant (that is just given by the B’s) and it is difficult to
estimate an error bar. Our impression, however, is that the
linear coefficients for materials with zero gap in LDA/GGA
may be improved by methods yielding a proper band gap (e.g.,
GW), not available at the moment.

F. Harrison model of piezoelectricity

Here we give a short introduction to the popular Harrison
model of piezoelectricity which gives an intuitive picture of
piezoelectricity. Harrison53 followed the idea of the bond-
orbital model.54 He defined the microscopic electric dipole
of a pair of anion-cation induced by a lattice deformation η4

as the piezoelectric dipole p:

p = δd e∗
P e with δd = ξη4a/8, (18)

with a the lattice constant, e∗
P the so-called piezoelectric

charge, and e the electron charge. The internal displacement
of the metallic relative to the nonmetallic atom is given by
δd. Without any change in the physics it is rewritten for a
zinc-blende structure using the Kleinman parameter ξ . The
piezoelectric charge e∗

P is also commonly rewritten using
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parameters from the bond-orbital model as

e∗
P = Z∗ − 8αp

(
1 − α2

p

)
(1 − ξ )

3ξ
, (19)

where Z∗ is the effective charge of the material and αp

the polarity of the bond, both originally defined based on
a linear combination of atomic orbitals model.54 Since Z∗
can be directly related to αp

54 this model of piezoelectricity
requires only two parameters, namely, ξ and αp. While
these parameters have an intuitive meaning, they cannot be
measured or calculated directly. They are usually extracted
from some experimental quantities and can then be reused to
predict other quantities. In the original work of Harrison53 the
calculated piezoelectric charge e∗

P was in poor agreement with
the values deduced from experimental piezoelectric constants.
However, this is not surprising since the piezoelectric response
is a delicate balance between a clamped-ion part and an
internal-strain part55 that depend sensitively on the chosen
parameter. Indeed, an adjustment of the parameters brings
experiment and theory in agreement (at the expense to bring
about a disagreement with the experiment from which the
parameters were extracted from originally). The benefit of the
model lies in its simplicity and the intuitive picture it draws.
The generality of Eq. (18) makes it possible to introduce strain
dependence beyond the trivial linear term in δd. This has been
recently done by Migliorato et al.56 for InxGa1-xAs. In this
work, the bond polarity αp was taken from a tight-binding
model and the Kleinman parameters were calculated by DFT.
The effective charges Z∗ of InAs and GaAs were not calculated
from αp

54 but were used as fitting parameters to reproduce the
experimentally determined piezoelectric coefficients of bulk
InAs and GaAs. Using the same strain dependence for αp and
Z∗ and a linear interpolation between different compositions,
the piezoelectric charge and hence coefficient, show a bowing
toward less negative values, compared to a treatment linear in
strain. This bowing is in agreement with our ab initio results
where the second-order terms make the effective piezoelectric
coefficient less negative.

III. CALCULATION OF PIEZOELECTRIC FIELDS
IN QUANTUM WELLS

A. Considerations from electrostatics

From the electrostatic equations of dielectrics the displace-
ment field D is introduced as

D = ε0 E + P, (20)

with the electronic polarization P describing the electronic
response to the applied external field E. Using the permittivity
tensor,

ε ≡ εαβ = 1

ε0

∂ Dα

∂ Eβ

, (21)

we obtain

P = ε0(ε − 1)E + P0, (22)

where P0 and ε0 are the zero-electric-field polarization and the
permittivity of the vacuum, respectively. Assuming a linear
relation between the applied electric field and the ensuing
electronic polarization and an isotropic medium, we can

rewrite it

P = ε0χ e E + P0, (23)

using the electrical susceptibility tensor χ e = ε − 1. The
polarization P0 can only be nonzero if the medium lacks
inversion symmetry. In the case of a piezoelectric material
this is the case and an additional polarization emerges as
given in Eq. (2), written here as a sum of linear and second-
order (in strain) terms: Ppz = Ppz

1 + Ppz
2 . Following Eq. (23)

this piezoelectric polarization is defined theoretically as the
response function under vanishing macroscopic field E = 0,
and this is the way it is calculated within DFT. This is a
rather theoretical concept since in a crystal an electric field will
emerge from the polarization charges. This field would have
to be explicitly short-circuited, to fulfill the E = 0 condition,
which is probably difficult to realize. A discussion on this point
can be found, for example, in Ref. 57.

The displacement fields, polarization, and electric fields are
related in first order of strain and field via

D = ε0 E + P,

P = ε0χ e E + Ppz
1 ,

D = ε0 E + ε0χ e E + Ppz
1 = ε0εE + Ppz

1 ,

and up to second order in both strain and field via

D = ε0 E + P,

P = ε0χ e E + ε0χ
′
e E2 + Ppz

1 + Ppz
2 ,

D = ε0 E + ε0χ e E + ε0χ
′
e E2 + Ppz

1 + Ppz
2 ,

D = ε0εE + ε0χ
′
e E2 + Ppz

1 + Ppz
2 .

Now two possible experimental situations can occur. If the
sample is short circuited E = 0 and if it is electrically isolated
D = 0. For the latter case we obtain in first order

ε0εE = −Ppz
1 , (24)

and in second order we obtain

0 = ε0εE + ε0χ
′
e E2 + Ppz

1 + Ppz
2 , (25)

which would require the calculation of the second-order
electric susceptibility tensor:

χ ′
e ≡ χ ′

αβγ = 1

ε0

∂Pα

∂Eβ∂Eγ

. (26)

We neglect the term of second order in the field and write
ε0εE = −Ppz

1 − Ppz
2 .

Note that the stress and the electric field are coupled via the
Navier equation:

T = cS − ẽE, (27)

where T is the stress tensor, c the stiffness tensor, ẽ the
piezoelectric tensor, and E the electric field.33 We neglect
this coupling, which has been shown to be small.33

We apply this formalism to the case of superlattices or QWs,
which are structures with periodicity in the growth plane. In
this case ∂/∂x = ∂/∂y = 0 (if x,y are in the growth plane) and
from Maxwell’s equations we obtain for the in-plane electric
field, E‖ = 0. Hence, the electric field is parallel or antiparallel
to the growth direction and if the dielectric tensor is diagonal
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(as in the zinc blende structure), only the projection of the
polarization along the growth axis is relevant.

B. Special case of a [111] quantum well

For zinc-blende III-V semiconductor materials, strain along
the [111] axis represents an important case since the polariza-
tion P and the piezoelectric field E are directed along the
direction of growth (which is not generally the case) and the
piezoelectric field is usually the largest (this is only formally
true if second-order effects are neglected, but even considering
second-order effect it is true in most of the cases). Moreover,
the overwhelming majority of previous investigations were
performed on structures grown on the (111)-oriented surface.
The field and polarization can be reduced to scalar quantities
E and P since polarization and electric field are parallel or
antiparallel to the growth axis. Using first-order terms in strain
for the piezoelectric polarization the piezoelectric field in the
well can be calculated from Eq. (4). The strain tensor in this
geometry has the following properties: η4 = η5 = η6, η1 =
η2 = η3, and the polarization can be written as

P 111
l =

√
3e14η4 = 2

√
3e14ηxy. (28)

The shear strain can be calculated for pseudomorphic growth
from the elastic constants Cij :58

ηxy = − C11 + 2C12

C11 + 2C12 + 4C44
ε‖, (29)

where

ε‖ = δa

a
= asub − awell

awell
, (30)

where asub and awell are the lattice constants of the substrate and
the well, respectively. Investigating all the material properties
entering in Eqs. (28) and (24), we see that the linear regime
is appropriate for the dielectric constant59 given the electric
field values involved (hundreds of kV/cm), and the elastic
coefficients for strain values up to 2%.36 The only remaining
source of possible nonlinearity is then the piezoelectric
constant.

Considering the quadratic dependence of the piezoelectric
polarization in strain involves the use of both diagonal and
traceless strain components [Eq.(4)]. For [111] growth, the
diagonal components can be calculated from the elastic
constants as well:

ηxx = ηyy = ηzz = 4C44

C11 + 2C12 + 4C44
ε‖, (31)

and the off-diagonal components are ηxy = ηxz = ηyz, as given
in Eq. (29).

The polarization from Eq. (2) along the [111] direction
becomes

P 111 =
√

3 [e14η4 + (B114η1 + 2B124η2) η4 + B156η5η6] ,

(32)

with a linear part given by P 111
l = √

3e14η4 and a nonlinear
term: P 111

nl = √
3(B114η1 + 2B124η2)η4 + B156η5η6. Note that

the polarization P 111 can be positive or negative if it is parallel
or antiparallel to the [111] crystallographic direction.

For ternary compounds we use Vegard’s law for the lattice
parameters. For the elastic constants, deformation potentials
and piezoelectric constants we interpolated between bulk
values.

C. General case of a quantum well grown along
an arbitrary direction

We describe how to obtain the strain tensor in Cartesian
coordinates for a layered zinc-blende structure pseudomorphi-
cally gown on a substrate for arbitrary crystallographic growth
directions. Pseudomorphic growth means that a semiconductor
of lattice constant awell is grown on a substrate of lattice
constant asub. The atomic layers of lattice constant awell on the
substrate are facing compressive or tensile strain [depending
on the sign of (asub − awell)] in the growth plane. In the
growth direction, the layered zinc-blende structure (the well)
is allowed to relax and will do so, according to the elastic
properties of the material, fully described by the the fourth-
rank elastic tensor Cαβγ δ . To calculate the strain tensor for
arbitrary growth direction (hkl), where h,k,l are the Miller
indices, we proceed as follows.

(1) We define a rotation matrix Rαβ that transforms the
Cartesian coordinate system to a coordinate system where
the (hkl) direction represents the z′ direction, with x ′ and
y ′ orthogonal to it and to each other.

(2) In this primed coordinate system, five of the six
independent strain tensor elements can be simply derived
by symmetry arguments: η′

xx = η′
yy = δa/a, η′

xy = 0, and
η′

xz �= η′
yz �= 0. The analytic expressions for η′

xz and η′
yz can

be found in Refs. 60–62 and are not reproduced here. The last
element, η′

zz, can be obtained by imposing a vanishing stress
along the growth direction. The stress and the strain tensors are
connected via σ ′

αβ = C ′
αβγ δη

′
γ δ , which leads to the expression

η′
zz = −C ′

3311 + C ′
3322

C ′
3333

δa

a
. (33)

(3) The rotated elastic constants needed in Eq. (33) are
obtained via the Von Neumann relation of the tensor rotation,

C ′
αβγ δ = RαλRβμRγνRδξCλμνξ .

(4) Now that the strain tensor in the primed coordinate
system is fully defined, we obtain it in the unrotated Cartesian
coordinates via ηαβ = R−1

αλ R−1
βμη′

λμ, where the inverse of a
rotation matrix is simply its transpose. Unfortunately, very
lengthy expressions are obtained following this procedure. In
the Appendix, we give the general analytic expression for the
strain tensor we obtain assuming η′

xz = η′
yz = 0, and discuss

how severe this approximation is. The strain tensors for specific
common orientations have a rather simple form given as [111]
QW θ = tan−1[

√
2], φ = π/4,

ηxx = ηyy = ηzz = 4C44

C11 + 2C12 + 4C44

δa

a
, (34)

ηxy = ηxz = ηyz = − (C11 + 2C12)

C11 + 2C12 + 4C44

δa

a
; (35)

[100] QW θ = π/2, φ = 0,

ηxx = −2C12

C11

δa

a
, (36)
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ηyy = ηzz = δa

a
, (37)

ηxy = ηxz = ηyz = 0; (38)

[110] QW θ = π/2, φ = π/4,

ηxx = ηyy = − (C12 − 2C44)

C11 + C12 + 2C44

δa

a
, (39)

ηzz = δa

a
, (40)

ηxy = − (C11 + 2C12)

C11 + C12 + 2C44

δa

a
, (41)

ηxz = ηyz = 0. (42)

D. Electrostatic boundary conditions and
quantum well superlattices

In [111]-oriented QW superlattices the polarization along
the growth direction is piecewise constant in the barrier
and in the well. This is equivalent to a distribution of
piezoelectric bound charges confined to sheets of charges with
uniform density −P on one type of interface and +P on
the other. The system thus behaves as an array of parallel
capacitors. Using the integral version of Maxwell’s equation
and applying periodic boundary conditions, which means the
superlattice is short circuited in the growth direction, the
induced piezoelectric field in the wells reads

E = −P

ε0

L − t

tεb + (L − t)εw

, (43)

where t is the thickness of the well, L the period of the
superlattice, and εb and εw the static dielectric constants of the
barrier and the well materials, respectively. Assuming D = 0,
which is valid for an isolated sample with no free charges, we
obtain

E = − P

εwε0
, (44)

which also represents the limiting case of Eq. (43) for an
infinite barrier.

IV. RESULTS FOR PIEZOELECTRIC FIELDS IN [111]
QUANTUM WELLS

Using the piezoelectric coefficients and the elastic constants
given in Table III we can calculate the piezoelectric fields
for different material combinations. From all the possible 72
combinations between the nine III-Vs semiconductors we have
chosen 14 based on the requirement of lattice mismatch and
the popularity of the material system. The barrier is taken
as infinitely thick, following Eq. (44). We show the results in
Fig. 3 in the form of bar charts, where we use the notation A/B

to describe material A lattice matched to material B. We used
pure materials, although some combinations are impossible
to grow due to the large lattice mismatch. This figure is
clearly an illustration of the effect. The field for a specific
QW composition and geometry can be easily calculated from
the coefficients. The field using linear coefficients only is given
for each QW by the left bar and the field including linear and
quadratic terms by the right bar. The effects of the quadratic

TABLE III. Elastic constants in units of 1011 dyne cm−2 calcu-
lated via DFT and used in the calculation of the piezoelectric fields
in QWs.

AlP AlAs AlSb GaP GaAs GaSb InP InAs InSb

C11 13.29 11.22 8.56 14.06 11.33 8.92 9.89 8.28 6.70
C12 6.75 5.53 4.25 6.18 5.08 3.97 5.56 4.66 3.63
C44 6.29 5.43 3.96 6.90 5.68 4.43 4.47 3.74 3.05

terms is very large for all the structures, sometimes reversing
the sign of the field (InAs/GaAs, InSb/GaSb, InP/InAs,
InAs/InP, InSb/InAs). Some structures have very small fields
if only the linear terms are accounted for (InP/GaP, InP/InAs)
but have significant fields taking second-order coefficients
into account. Some QWs exhibit very large fields up to few
MV/cm, such as GaP/InP or GaAs/InAs.

V. RESULTS FOR PIEZOELECTRIC FIELDS IN
INxGA1-xAS/GAAS QUANTUM WELLS FOR

ARBITRARY GROWTH DIRECTION

We have expressed the polarization from Eq. (2) in spherical
coordinates using the general form of the strain tensor for
pseudomorphic growth, as described in Sec. III C. This allows
us to calculate the polarization for any growth direction (hkl).
From the polarization we obtain the piezoelectric field using
Eq. (43), where the scalar P is the projection of the polarization
on the vector r ,

P = P · r̂,

where r̂ is along the growth direction and is given as a
function of Euler angles as (sin θ cos φ, sin θ sin φ, cos θ ).
In this section, we show results for an InxGa1-xAs QW
with a thickness of 10 nm, pseudomorphically grown on
GaAs. For the dielectric constants we used εInAs = 15.15 and
εGaAs = 12.90. The elastic, lattice, and dielectric constants are
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FIG. 3. (Color online) Bar charts of the piezoelectric fields for
14 different QWs A/B, where the material A is strained to the
lattice constant of material B. The barrier is taken as infinitely thick
[Eq. (44)]. The left (right) bar for each QW represents the result taking
only the linear (both the linear and quadratic) term(s) into account.
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Linear Only

In20Ga80As In40Ga60As In60Ga40As In80Ga20As InAs
[111]

[110]

[100]

[101]
(a)

(b)

Up to second order in strain

InAs

|P|[111] (mC/m2): 4 4 0 8 2014

E[111] (kV/cm): 249 259 28 -447 -1169819

FIG. 4. (Color online) Spherical polar plots of the magnitude of the polarization (a) and of the piezoelectric field (b) in pseudomorphic
InxGa1-xAs/GaAs QWs of arbitrary crystallographic orientation. The wells are 10 nm wide and surrounded by 30-nm GaAs barriers. The Euler
angles θ and φ give the direction of the growth axis according to Eqs. (A1), and at the same time the orientation of the piezoelectric field.
The radial dimension of the spherical polar plot gives the absolute value of the length of the polarization vector (a) and the piezoelectric field
along the growth direction (b). The blue and red colors in (b) indicate if the field is oriented parallel or antiparallel to the growth direction,
respectively. The numerical values of the magnitude of the polarization and of the piezoelectric fields along the [111] direction are given at
the bottom of each plot. Note that the field E[111] (for [111] growth) is oriented along the growth direction for In concentrations up to 60%
but is reversed for 80% and 100% In concentrations. The spherical polar plots considering only the linear term are qualitatively the same for
all concentrations and only the pure InAs case is shown on the left. With linear term only for the concentrations 20%, 40%, 60%, 80%, 100%
the values of the field are 324, 561, 720, 804, 819 kV/cm, respectively, and for the magnitudes of the polarizations we obtain 5, 9, 12, 13,
14 mC/cm2.

averaged between bulk values when we calculate the random
alloys. In Fig. 4(a) we have plotted the magnitude of the
polarization in a spherical polar plot where the Euler angles
θ and φ give the direction of the growth axis according to
Eqs. (A1). In a similar fashion we have plotted in Fig. 4(b) the
piezoelectric field including only the linear term [leftmost plot
in Fig. 4(b)] and also including the linear and nonlinear terms
for various In concentrations. On the grounds of symmetry,
the polarization vanishes for the {100} directions. If only the
linear terms are included, the magnitude of the polarization
shows sharp dips around the {100} directions but, aside from
these steep depressions, is rather homogeneous. For instance,
the difference between the magnitude of the polarization along
the [111] and [110] directions is only 8%. The piezoelectric
field in Fig. 4(b) is qualitatively different as it vanishes also
along the {110} directions. In this case the polarization is
perpendicular to the growth direction and does not allow for the
field to develop. So the {100} directions are nonpiezoelectric
because of the symmetry of the strain tensor (no shear strain
components), while the {110} directions are nonpiezoelectric
because the polarization is orthogonal to the growth direction.
If only the linear terms are considered, the shape of the polar
plots of the polarization and field do not change qualitatively,
when changing the concentration, and we therefore show only
one image for the pure InAs case. The magnitude of the
polarization and field, however, does increases as the strain
becomes larger, moving to higher In concentrations. We obtain
for the concentrations x = 0.2, 0.4, 0.6, 0.8, 1.0 the fields 324,

561, 720, 804, 820 in kV/cm and the polarizations 5, 9, 12,
13, 14 mC/m2 along the [111] direction, respectively.

Including the second-order terms (six images on the right
of Fig. 4) changes the images qualitatively. At 20% In
concentration, the shape is still similar to the shape obtained
with linear coefficients only, although the field has shrunk
by 23% (from 324 to 250 kV/cm). Further increase in
concentration changes the morphology of the surface plot
and its magnitude. At around 60% the sign of the field
for [111]-growth changes, so that the field is now oriented
toward the [1̄1̄1̄] direction. The second-order terms make
the surface extremely anisotropic. The field along the {111}
directions reaches the MV/cm. This represents, however, the
extreme case of a pure InAs QW, which cannot be grown
pseudomorphically on GaAs. Such values of strain can only
be obtained in quantum dot structures,38 but also there the
structures are usually alloyed with overall concentrations
around 60%. At this concentration the expected field is very
small (36 kV/cm, much smaller than if only the linear terms
were considered: 720 kV/cm), but it becomes clear that small
deviations from a nominal composition of 60% will boost up
the piezoelectric field significantly.

VI. EXPERIMENTAL DETERMINATION
OF PIEZOELECTRIC FIELDS

The experimental determination of the piezoelectric field
is an intricate and indirect process. The simple measurement
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of the deformation of the crystal under applied voltage via
interferometric techniques is possible, but the results depend
heavily on the sample morphology and used apparatus (see,
e.g., Ref. 63). Other methods are indirect and based on
approximations sometimes difficult to gauge. We critically
present the most common techniques and related issues.

A. Determination from optical spectra

Photoluminescence (PL) has been used extensively to char-
acterize heterostructures and piezoelectric field effects.64–69

In fact, PL and absorption spectra give indications about
the spatial separation of electrons and holes in the presence
of strain-induced electric field: The transition probability
between electron and hole states in a QW is reduced and
its transition energy is also lowered due to the separation of
electrons and holes and the quantum-confined Stark effect. The
measurement of both effects makes it possible, in principle,
to determine the built-in field. Since the composition of the
QW generally fluctuates, the calculation of one transition
energy cannot be directly compared with the measurements.
The transition energy is therefore measured as a function
of a parameter. Four main possibilities have been explored:
(1) varying the well width, (2) varying the QW composition,
(3) varying the optical excitation power and hence the density
of screening charges,70–74 or (4) applying an external voltage
and looking for the flat-band condition, when the PL intensity
and transition energy are maximum.63,75–77

B. Local minima lead to interface charges

In multiquantum well (MQW) structures, the observed
blueshifts were attributed to another mechanism.78 Depending
on the geometry of the structure, an internal field can
sometimes be created across the MQW, giving rise to local
minima in the potential at either end of the MQW and trapping
photogenerated carriers that have escaped from the QWs and
have drifted to the edges of the MQW region. Many PL
and time-resolved absorption measurements are consistent
with this model,78–84 but they do not provide quantitative
information about the internal position of the screening
charges. Generally both in-well and out-of-well screening can
occur in such structures and, the estimate of piezoelectric field
strength from the variation in transition energy only cannot
yield reliable results.

C. The calculation of transition energies depends
on several nontrivial aspects

Several processes responsible for both the redshifts and
the blueshifts can occur simultaneously making interpretation
of the PL complicated. The redshifts seen at low excitation
power are attributed to the photovoltaic effect in piezoelectric
strained InGaAs-GaAs MQW p-i-n structures,85 while the
blueshifts are attributed to competing effects of band-gap
renormalization (quantum confinement), band-state filling and
partial carrier screening of the piezoelectric field in InGaAs
QWs grown on (111)B (Refs. 28,86, and 87) and (111)A
(Refs. 88 and 89) GaAs substrates. However, even at low
optical power, that is, at negligible carrier densities, big
differences still appear and are thought to be due to strain

relaxation, charge trapping, and defects at the interfaces.88,89

For doped samples, the possibility that the piezoelectric field
is screened by free charges supplied from the substrate (for
example, n+ GaAs substrate in Ref. 90) cannot be completely
ruled out. These uncertainties are probably in the same order
of magnitude as the theoretical uncertainties for materials with
a vanishing gap in the LDA or GGA approximations (InAs,
GaSb, InSb), as mentioned in Sec. II E.

D. Dielectric models are often not appropriate

As described, most of the measurements determine the
internal field. To extract the piezoelectric constant from the
measured value of the field, Eqs. (28) and (44) are most often
used. According to that equation, the piezoelectric field does
neither depend on the layer thickness nor on the barrier width,
which is true only for infinitely large barriers, or for electrically
isolated wells. This equation is, however, often used for MQW
structures, which is obviously inappropriate. From Eq. (43) it
is clear that well and barrier thicknesses are very much relevant
in these cases. One must also realize that Eq. (43) represents
in most cases an approximation as well. The determination
of the electric field in the well requires the solution of the
electrostatic problem with the appropriate boundary conditions
and taking doping layers into account. These ideas have been
considered in the case of a multiple quantum well in p-i-n
structures in which the in-well field in the active region is
calculated as a combined result of the built-in voltage, due to
the different doping levels of the p and n regions.84,85 However,
these models have been used in only few cases and it is often
not clear what electrostatic model was used to derive the field.

E. Accuracy of the bulk values eexp
14

The discrepancy between the value of the piezoelectric
constant deduced from InxGa1-xAs/GaAs QW measurements
and the value deduced from the linear interpolation between the
bulk values e

exp
14 has been constantly reported in the literature.

In addition to the reasons already mentioned above, such
a disagreement could be due to an approximate knowledge
of the piezoelectric constants of the binary constituents. All
the piezoelectric constants determined from bulk materials
(reported in Table I as e

exp
14 ) originate from one paper by Arlt

and Quadflieg91 with subsequent papers attempting to model
their data (e.g., Ref. 92). It seems reasonable, and has already
been suggested by Tober and Bahder,93,94 to question the
accuracy of the determined piezoelectric constants. Possible
errors due to charge accumulations at the interfaces screening
the electric field cannot be ruled out.

VII. COMPARISON WITH EXPERIMENT

In Table IV we have summarize the results we found in the
literature along with the theoretical results. The overwhelming
majority of reports for III-V materials are for InxGa1-xAs wells,
epitaxially grown on GaAs. The combination InAs/GaAs
offers a rather large lattice mismatch of 7% and cannot be
grown as pure materials. The achievable limit for the In
concentration is around x 	 0.2 for defect-free growth. This
brings down the lattice mismatch below 2%, still enough
to develop rather large piezoelectric fields. In Table IV we
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TABLE IV. Experimental results collected in the literature and theoretical results using the piezoelectric bulk coefficients107 (eexp
14 ), our

linear coefficients only (lin), and the linear plus quadratic coefficients (nonlin).

Piezoelectric field (kV/cm)

Theory

Sample Well Barrier Experiment e
exp.

14 lin nonlin References

S1 In0.20Ga0.80As (10 nm) Al0.35Ga0.65As (50 nm) 154 257 404 301 88
S2 In0.23Ga0.77As (10 nm) GaAs (100 nm) 240 342 462 331 87
S3 In0.15Ga0.85As GaAs 220 ± 50 210 350 289 96
S4 In0.15Ga0.85As (7 nm) GaAs (14 nm) 200 178 235 194 78
S5 In0.15Ga0.85As GaAs ∼200 220 242 200 97
S6 In0.15Ga0.85As (10 nm) GaAs (15 nm) 166 237 212 175 85
S7 In0.17Ga0.83As (9.5 nm) GaAs (14.5 nm) 135 192 239 191 84
S8 In0.15Ga0.85As (10 nm) GaAs (15 nm) 155 227 212 175 98
S9 In0.13Ga0.87As (4.1 nm) GaAs 131 196 307 262 99
S10 In0.17Ga0.83As (8.7 nm) GaAs 170 246 391 313 100
S11 In0.17Ga0.83As (10 nm) GaAs 160 246 391 313 101
S12 In0.21Ga0.79As (10 nm) GaAs 166 292 469 349 102
S13 In0.21Ga0.79As (2–16 nm) GaAs (50 nm) 145 254–287 358–452 267–337 10
S14 In0.10Ga0.90As (10 nm) GaAs 170 155 242 215 103
S15 In0.055Ga0.945As (25 nm) GaAs (50 nm) 90 89 101 94 104
S16 In0.15Ga0.85As (10 nm) GaAs (15 nm) 165 167 212 175 105
S17 GaAs (13.1 nm) GaAs0.87P0.13 (58.6 nm) 220 88 136 146 32
S18 In0.53Ga0.47As (17.5 nm) Al0.70In0.30As (35 nm) 141 192 312 188 106
S19 In0.53Ga0.47As (17.5 nm) Al0.26In0.74As (35 nm) 137 −123 −234 −308 106
S20 In0.24Ga0.76As (10 nm) GaAs (100 nm) 149 320 464 330 28
S21 In0.28Ga0.72As (10 nm) GaAs (100 nm) 146 360 527 343 28
S22 In0.33Ga0.67As (10 nm) GaAs (100 nm) 131 404 598 343 28

indicate the barrier and well width, in case it was reported,
and calculate the piezoelectric fields according to Eq. (43).
In case no such width is reported we assumed infinite wells
and used Eq. (44), with the exception of S5 that refers to
an experiment performed on a MQW structure and assuming
Eq. (28) would be unreasonable. For this structure we chose 10
nm for the well width and 22 nm for the barrier thickness. We
are comparing, whenever possible, the measured field rather
than the piezoelectric coefficients, as the latter are extracted
from the field using some models and are indirect. We report
three different values of theory: one (eexp.

14 column) where we
report the value provided in the corresponding paper or, in case
this value was not reported, the value we calculate using only
the linear coefficients of Arlt and Quadflieg,91 the other using
our linear coefficients only (lin) and finally using our linear
and quadratic coefficients (nonlin).

The general trend discussed in the literature, that the
measured fields are lower than the ones calculated based on
the coefficients, is confirmed in general. However, from the
22 measurements reported, 7 show rather good agreement
between theory and experiment. Others show a measured field
up to a factor of two smaller than the calculated values (S1,
S13, S19, S20, S21, S22). A quantitative comparison among
experimental results is difficult because of the disparity in
the structures studied. However, we can directly compare
S6, S8, and S16 and find a rather modest discrepancy of
11 kV/cm. A similar discrepancy is found in the case of
S10 and S11, with a deviation of 10 kV/cm. It seems that
experiments performed on less strained samples agree better

with the theory. For instance, S15 agrees well with the theory.
The samples S20, S21, S22 show strong disagreement with
the theory, but the trend to have at these high In compositions
a composition-independent field is reproduced by our results,
although the numerical values are higher. This behavior is due
to the nonlinear term, as is illustrated in Sec. VIII.

VIII. DEPENDENCE ON THE In CONCENTRATION
AND THE WELL GEOMETRY

Although it is clear from Eq. (43) that the well and
barrier thicknesses enter the equation for the electric field,
it is sometimes omitted. In Ref. 95, for instance, theoretical
and experimental piezoelectric effects were reported and,
for a multiple quantum well structure consisting of 8-nm
In0.2Ga0.8As wells and 10-nm of GaAs barriers, the piezoelec-
tric field (higher than 300 kV/cm) was found from Eq. (28) as a
function of the indium concentration x. Though the barrier and
well thicknesses were comparable, that work did not take it into
account. As expected from Eq. (43) and shown in Fig. 5, the
field strength is also an outcome of the layer thicknesses ratio
for periodic structures. Thus, uncertainty on the layer thickness
or analysis carried out without regard to the thickness may also
influence the experimental results reported.

We show in Fig. 6 for an InAs/GaAs QW that the
second-order contribution induces a sign change in the field.
Retaining only the linear contribution from Table I leads to
a monotonously increasing field with increasing In content,
until a maximum value Emax is reached around x = 1. In
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FIG. 5. (Color online) (Left) In0.17Ga0.83As/GaAs. Strain-induced field (kV/cm) in the QW as a function of the well width, calculated
with linear (dashed line) and nonlinear (solid line) piezoelectric constants. The barrier width is fixed at 29 nm. (Right) Piezoelectric field as a
function of the barrier width for a well thickness fixed at 10 nm.

fact, this behavior is closely linked to the configuration
chosen. The general trend is a decrease of the field after the
maximum has been attained. Increasing x beyond the value
corresponding to Emax does not result in higher fields. When the
second-order terms are taken into account, the maximum field
value is attained at much lower In fraction. This behavior is
in qualitative agreement (although our fields are quantitatively
higher) with the series S20, S21, S22 in Table IV. The In
concentration was varied in the range of 24% to 33% with no
significant change in the piezoelectric field.

IX. DISCUSSION

Before we conclude we address some possible issues and
open questions. From the sections devoted to the description
of experimental procedures and to the comparison with exper-
iment it seems reasonable to assume that the measured fields
are, to some extent, screened. This is based on the fact that
some experiments agree very well with the theory, suggesting
that high fields can be produced. The complementary argument
is heuristic and based on the assumption that any imperfections
would lower the field, rather than increase it. While this seems
a reasonable conclusion, possible errors in the calculation
should be pointed out. (1) The basis of density functional
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FIG. 6. (Color online) Piezoelectric field (kV/cm) in
InxGa1-xAs/GaAs QW as a function of the indium concentration x.
Dashed line, only the linear constants from Table I; solid line, the
nonlinear constants are included. Well width =10 nm and barriers
width =30 nm.

theory, as we have used it, is the local approximation to the
exchange correlation (LDA). Severe deficiencies are known
to ensue from this approximation, such as wrong band gaps,
effective masses, and Dresselhaus spin splittings along with
a wrong energetic position of d states, all of these being
interrelated. As previously discussed (Sec. II E), the results
for the linear coefficients for materials with vanishing band
gap in the LDA/GGA approximations (InAs, GaSb, InSb) are
shadowed by uncertainties. Especially, we cannot exclude at
the moment that the e14 coefficient for InAs may be close to
the experimental value of Arlt and Quadflieg.91 We notice
that assuming the experimental value for the linear term
would bring the piezoelectric fields for QWs in excellent
agreement with most experiments. On the other hand, elastic
properties are quite well behaved and have led to impressive
predictions, especially for phonons. Phonons are, much like
the piezoelectric effect, driven by the electronic response to
a mechanical deformation. So we have no a priori reason to
doubt the applicability of LDA or GGA. (2) Another issue
is the assumption in the calculation of piezoelectric fields for
QWs of a linear interpolation between bulk values for alloyed
materials. This approach is rather accurate for lattice constants
(Vegard’s law) but certainly represents an approximation for
piezoelectric coefficients, where we expect a certain degree
of nonlinearity (bowing). As the comparison with experiment
does not yield the necessary accuracy, we would suggest ab
initio calculations based on special quasirandom structures
(SQSs). These structures reproduce some alloy properties
while keeping the number of atoms low. Such an approach was
recently taken108 to obtain elastic coefficients of alloys and
earlier for the linear piezoelectric coefficients of nitrides.109

(3) One last comment is related to details of the structure.
Some interdiffusion at the interface between the materials
was suggested by Ballet et al.110 and cannot be ruled out.
This uncertainty is to be added to the uncertainty given in the
nominal width of barriers and wells.

X. SUMMARY

We have calculated the first- and second-order (in strain)
piezoelectric coefficients for nine binary III-V semiconductors
based on ab initio DFPT. We derive the relation between the
proper and the improper second-order coefficients and outline
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a simple calculational procedure. We have tested the reliability
of the results by using different types of pseudopotentials and
exchange correlation functionals. We assess the parameters to
be reliable with some remaining uncertainties on the the linear
terms for the materials with vanishing gap at the LDA/GGA
level (InAs, GaSb, InSb). We confirm previous ab initio
results37,38 that the piezoelectric effect of second order in strain
is an important component of the piezoelectric field and cannot
be omitted. We show that this is valid for all the calculated
materials: GaAs, GaP, GaSb, InAs, InP, InSb, AlAs, AlP, and
AlSb. We calculate the strain tensor for pseudomorphic growth
along arbitrary crystal directions. This allows us to study the
anisotropy of the piezoelectric field with respect to growth di-
rections. We find a significant increase in anisotropy when the
second order is included. A careful survey of the experimental
literature shows that the measured fields are in most experi-
ments lower than our theoretical predictions, although some
measurements are in very good agreement. Possible reasons for
this have been discussed, mostly pointing to the possibility of
the existence of screening charges and the use of inappropriate
electrostatic models, along with the questionable assumption
of negligible bowing in the piezoelectric coefficients.
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APPENDIX

We give the expressions for the strain tensor for an
arbitrary growth direction (hkl), assuming vanishing shear
strain components in the rotated frame: η′

xz = η′
yz = 0. This

represents an approximation in the case of low-symmetry
directions that leads to errors in the polarization along these
directions. In Fig. 7 we show the difference between the
approximate result using η′

xz = η′
yz = 0 (dashed line) and the

accurate result taking the full dependence of η′
xz and η′

yz into
account60–62 (solid line). Related approaches to this problem
with more details can be found in Refs. 60–62 and 111. As
shown in Fig. 7 the qualitative behavior of the magnitude
of the polarization is similar for the approximate and the
exact results, and, indeed, the spherical plots from Fig. 4
appear qualitatively very similar (and quantitatively identical
for the high-symmetry growth directions) using either of the
approaches (not shown). However, quantitative differences in
the magnitude of the polarization can be quite significant for
specific directions. For instance, in the [113] growth direction
(De Caro and Tapfer62 highlighted that for this direction the
shear strain component η′

xz is largest), the polarization is
significantly modified by the neglect of shear strain.

The connections between the Miller indices (hkl) and the
angles θ,φ is given by

θ = tan−1

[√
h2 + k2

l

]
, φ = tan−1[k/h], (A1)

-0.010

-0.015

0.015
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FIG. 7. (Color online) Polar plots of the magnitude of the
polarization (in C/m2) for an InAs QW pseudomorphically grown
on GaAs with φ = π/4 and varying angle θ (measured from the
apex). The dashed line is the result assuming η′

xz = η′
yz = 0 and the

solid line corresponds to the correct result with η′
xz �= η′

yz �= 0.

and we give the results as a function of these Euler
angles:

ηxx = δa

a

(
sin2[φ] + cos2[φ] (A + B cos[2θ ] + C)

D

)
,

ηxy = δa

a

(
−E sin[2φ] sin2[θ ]

D

)
,

ηxz = δa

a

(
−E cos[φ] sin[2θ ]

D

)
,

ηyy = δa

a

(
cos2[φ] + sin2[φ] (A + B cos[2θ ] + C)

D

)
,

ηyz = δa

a

(
−E sin[φ] sin[2θ ]

D

)
,

ηzz = δa

a

(
A − 4(3C11 + 9C12 + 2C44) cos[2θ ] + C

D

)
,

A = 5C11 − 21C12 + 22C44,

B = 4(5C11 + 7C12 − 2C44),

C = (C11 − C12 − 2C44)(7 cos[4θ ] + 8 cos[4φ] sin4[θ ]),

D = 21C11 + 11(C12 + 2C44) + (C11 − C12 − 2C44)

× (4 cos[2θ ] + 7 cos[4θ ] + 8 cos[4φ] sin4[θ ]),

E = 16(C11 + 2C12). (A2)

With this general expression (within the approximation
η′

xz = η′
yz = 0), the polarization or the piezoelectric field can

be calculated for an arbitrary growth direction using linear and
second-order piezoelectric coefficients.
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