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Topological phases and delocalization of quantum walks in random environments
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We investigate one-dimensional (1D) discrete-time quantum walks (QWs) with spatially or temporally random
defects as a consequence of interactions with random environments. We focus on the QWs with chiral symmetry
in a topological phase, and reveal that chiral symmetry together with the bipartite nature of the QWs brings about
intriguing behaviors such as coexistence of topologically protected edge states at zero energy and Anderson
transitions in the 1D chiral class at nonzero energy in their dynamics. In contrast to results of previous studies,
therefore, the spatially disordered QWs can avoid complete localization due to the Anderson transition. It is
further confirmed that the edge states are robust to spatial disorder but not to temporal disorder.

DOI: 10.1103/PhysRevB.84.195139 PACS number(s): 73.20.Fz, 03.67.−a, 05.40.Fb, 03.65.Yz

I. INTRODUCTION

A quantum walk1 (QW) describes quantum mechanical
time evolution of particles, which is identified as a random
walk when the system is brought to the classical limit. The QW
may provide a unique avenue to realize quantum computation
since the QW can be applied for efficient algorithms of
quantum computation.2,3 Among several kinds of QWs, the
two-state discrete-time QW in one dimension (1D) has been
intensively investigated due to its simple formalism. More
remarkably, it has been experimentally realized in various
systems, such as cold atoms,4 trapped ions,5,6 and photons.7–9

The discrete-time QW is described by two basic operators.
The coin operator C defined as

C ≡
(

cos θ − sin θ

sin θ cos θ

)
(1)

acts on two internal states, right and left walkers |R〉 and |L〉,
respectively. The shift operator S is defined as

S ≡
N/2−1∑

n=−N/2

(|n + 1〉〈n| ⊗ |R〉〈R| + |n − 1〉〈n| ⊗ |L〉〈L|),

(2)

so that each walker moves from a position n to its correspond-
ing neighbor n ± 1. Here, N represents the system length. The
time evolution operator U is built up from these two operators
and the corresponding Hamiltonian H is defined through

U ≡ S

(∑
n

|n〉〈n| ⊗ C

)
= eiHδt , (3)

where δt is a unit of time and we hereafter set δt = 1. Thus, a
state at time t , |ψ(t)〉, is given by |ψ(t)〉 = Ut |ψ(0)〉 starting
from an initial state |ψ(0)〉.

It is known that the Hamiltonian H described by Eqs. (1)–
(3) is equivalent to the Dirac equation in the continuum
limit.10,11 Recently, symmetries of the Hamiltonian, which
are relevant to classify topological phases,12,13 were examined
in Ref. 14, and it was found that the QW described by
Eqs. (1)–(3), which has been realized in many experiments,4–8

possesses chiral symmetry. Reference 14 clarified that the
Dirac equation derived from the 1D QW with chiral symmetry
gives a finite Berry phase and thus generates edge states
near boundaries, since 1D chiral classes can be characterized

by an integer topological number.12,13 The edge states in
the topological phase would also be useful for topological
quantum computation,15–17 if the system is described by
Majorana fermions, which is currently a subject of intensive
studies in condensed matter physics.

Understanding of the effects of the interaction with envi-
ronments giving rise to decoherence is a key issue in realizing
quantum computation.18 To this end, there are theoretical19–25

and experimental4,7–9 studies of discrete-time QWs taking ac-
count of spatial and/or temporal disorders. It is found that An-
derson localizations occur for QWs with spatial disorder while
QWs with temporal disorder approach classical random walks.

In this work, we investigate two-state discrete-time 1D
QWs described by Eqs. (1)–(3), which belong to the chiral
orthogonal class, interacting with spatially or temporally
random defects. In contrast to the previous studies, we
reveal that the QWs with spatial disorder exhibit delocalized
behaviors. This remarkable conclusion is drawn from extensive
numerical calculations and is further ensured by symmetry
arguments for the 1D chiral class. We also find that the edge
states in the topological phase are robust for spatial disorder
but not for temporal disorder.

This paper is organized as follows. In Sec. II, we give
general remarks on QWs without any disorder and demonstrate
that the edge states are induced by introducing a reflecting
coin operator. Our main results for the spatially or temporally
disordered QWs are presented in Sec. III. Section IV is devoted
to discussions and summary.

II. QUANTUM WALKS WITH REFLECTING
COIN OPERATORS

Let us first explain eigenstates of the QW. The eigenenergy
ωλ of the QW, which has periodicity of 2π , is defined
through the eigenvalue of the time-evolution operator by
U |ψλ〉 = eiωλ |ψλ〉, where |ψλ〉 is the corresponding eigenstate.
Hereafter, the subscript λ is written only when we need to
emphasize it. The dispersion relation resulting from Eqs. (1)–
(3) is given by cos(ω) = cos(k) cos(θ ), where k is the wave
number.11,14 Since the energy gap should exist to support edge
states in topological phases, edge states of the QW are able to
appear when θ �= 0,π .

To generate the edge states, a boundary should be prepared
for the QW. While a split-step method is proposed in Ref. 14,
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FIG. 1. (Color online) The QW with a reflecting coin operator at
the origin.

we employ a simpler method to make the boundary in terms
of a reflecting coin operator defined as

C±
R ≡

(
0 ∓1

±1 0

)
, (4)

so that a right walker is changed to a left walker and vice
versa. Thereby, C±

R realizes a hard-wall boundary. The sign of
the reflecting coin operator determines the presence or absence
of edge states.26,27 In the case of Hadamard walks (θ = π/4),
the edge states appear if C−

R is introduced at the boundary.
We now consider the Hadamard walks with C−

R at the origin
as shown in Fig. 1. The initial state is prepared as

|ψ(0)〉 ≡ |0〉 ⊗ (|R〉 + i|L〉)/
√

2 (5)

throughout the paper, so that the right and left walkers do
not mix with each other due to real-number elements of the
coin operator, and thus the probability distribution becomes
symmetric in the absence of spatial disorder. Figure 2(a) shows
the probability distribution Pn(t) at t = 80, which is defined
as

Pn(t) ≡
∑

σ=R,L

|〈n| ⊗ 〈σ |ψ(t)〉|2. (6)

We find a sharp peak at the origin due to edge states in
the topological phase and two smaller peaks near n ∼ ±50
commonly observed in QWs.2,3 Note that these observations

FIG. 2. (Color online) Probability distributions at t = 80 of the
QWs with δθs = 0 (a) and π/4 (b) with C−

R for a single sample. t

dependence of the survival probability P0(t) (c) and the variance v(t)
(d). In (c) and (d), the solid and dashed curves represent the QWs
with δθs = 0 and π/4, respectively. The two thin lines in (d) indicate
power law behaviors. The number of samples is 104 in the case of
disordered QWs.

are consistent with the recently derived limit measure27 at
t → ∞ for the 1D QW on a half line. The time dependence of
the survival probability

P0(t) ≡ Pn(t)|n=0 (7)

and the position variance of the QWs

v(t) ≡ 〈ψ(t)|n2|ψ(t)〉 − [〈ψ(t)|n|ψ(t)〉]2 (8)

are shown by solid curves in Figs. 2(c) and 2(d), respectively.
We confirm that the edge states are robust to time evolution
since P0(t) keeps its value unchanged and v(t) is proportional
to t2, which agrees with results for ordinary QWs.2,3

III. DISORDERED QUANTUM WALKS

Next, we consider disordered QWs. We assume that
disorder is introduced via fluctuations of θ in Eq. (1), which
do not break chiral symmetry. To this end, we redefine θ so
that θ is randomly distributed over positions n or time t as

θ ∈ [θ − δθs(t)/2 : θ + δθs(t)/2],

where θ represents the mean value of distributed θ and
δθs(t) indicates the strength of spatial (temporal) disorder. We
hereafter restrict our attention to QWs with θ = π/4 and with
either spatial or temporal disorder.

A. Spatially disordered quantum walks

Let us begin with the spatial disorder. The probability
distribution Pn(t) for spatially disordered QWs with C−

R after
80 time steps is shown in Fig. 2(b). The peak at the origin due
to the edge states seems to be robust for the spatial disorder.
The survival probability P0(t) indeed ensures this point: the
profile of P0(t) is almost unchanged from that for the clean
QW. On the other hand, the outer two smaller peaks existing
in Fig. 2(a) disappear in Fig. 2(b), implying that the QWs
suffer from the spatial disorder except for their edge states.
In this case, the Anderson localization would be important as
studied in previous work.9,20,21 If the Anderson localization
completely dominates the dynamics of QWs, the variance v(t)
should become a constant after many time steps. However,
v(t) for the spatially disordered QWs [Fig. 2(d)] exhibits a
power law behavior with a smaller exponent, suggesting that
the QWs show anomalous diffusion even in the presence of
spatial disorder.

To address the above point, we look into the density of states
(DOS) ρ(ω), which provides us with a clear-cut interpretation
of the seemingly peculiar dynamics of the QWs. Note that
a state |ψ(t)〉 is considered as the superposition of all the
eigenstates because we employ a δ-function-like initial state
|ψ(0)〉. The DOS for a clean QW with translational symmetry
is given by

ρc(ω) = sin ω

2π
√

cos2 θ − cos2 ω
for cos2 ω < cos2 θ. (9)

When cos2 ω = cos2 θ at θ �= 0,π , ρc(ω) diverges due to the
Van Hove singularity. For the QW with C−

R , we find that the
DOS consists of ρc(ω) and doubly degenerate states at ω =
0,π as shown in Fig. 3(a). According to the nature of |ψλ〉 for
ωλ = 0,π , these states are identified as the edge states in the
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FIG. 3. (Color online) DOS ρ(ω) for QWs with C−
R for δθs = 0

(a), δθs = π/8, π/4, π/2, and π (b), and 2π (c). N = 500 and the
number of samples is 105 for each δθs ( �= 0). (d) The enlargement
of the DOS around ω = π/2 for QWs with various δθs . (e) The
scaling collapses into Eq. (10) for the DOS near ω = π/2 for QWs
of the larger system N = 104 with 104 samples. The labels in (d)
represent values of δθs . In calculations of the DOS, periodic boundary
conditions are imposed on both edges of the 1D QW.

topological phase. In the clean QW, therefore, the edge states
appear not only at ω = 0 but also at ω = π . With increasing
δθs [Fig. 3(b)], the divergences in the DOS at ω = ±π/4 and
±3π/4 are rounded since the Van Hove singularity is not well
defined for disordered systems. Furthermore, we notice that the
energy gaps around ω = 0,π are reduced while the δ functions
due to edge states robustly remain.

Remarkably, there appear additional divergences in the
DOS at ω = ±π/2 for spatially disordered QWs [Fig. 3(b)].
We give attention to the divergences in ρ(ω) at ω = ±π/2
by showing an enlarged picture of the DOS near ω = π/2 in
Fig. 3(d). We find that the divergence becomes stronger with
increasing δθs and the DOS for the smallest disorder (δθs =
π/8) shows oscillating behavior. This oscillation reminds us of
the DOS derived from chiral random matrix theories.28 Indeed,
a system belonging to the 1D chiral class is known to show
an Anderson transition at zero energy, which is accompanied
by a divergence in the DOS.29 Although the energy at which
the DOS diverges is different from what we observed for the
QW, we claim that an Anderson transition in the 1D chiral
class occurs in a spatially disordered QW at ω = ±π/2. This
is supported by the following symmetry arguments. Chiral
symmetry gives the constraint that eigenenergies appear in
pairs of opposite sign, and this makes the zero-energy states in

chiral classes singular. In QWs, chiral symmetry leads to the
eigenvalues of U appearing in pairs as e±iωλ . In addition, since
S in Eq. (2) gives only nearest-neighbor hopping, U in Eq. (3)
has a bipartite structure and the eigenvalues of U also appear in
pairs as ±eiωλ .30 Thereby, there are four eigenenergies related
to each other,

(ωλ, − ωλ,ωλ + π, − ωλ + π ).

Redefining ωλ as ωλ = ω′
λ + π/2, we rewrite these eigenen-

ergies as

(ω′
λ + π/2, − ω′

λ − π/2,ω′
λ + 3π/2, − ω′

λ + π/2).

One finds that the first and fourth (second and third) eigenener-
gies appear in pairs with respect to ω = π/2(−π/2),31 making
ω = ±π/2 special energies as in the zero energy of ordinary
chiral classes. We therefore come to the conclusion that the
Anderson transition of the 1D chiral class should occur at
ω = ±π/2 even if there are energy gaps and the edge states
exist at ω = 0,π .

According to universality, the same critical behaviors near
zero energy studied with a tight-binding Hamiltonian in Ref. 29
should be observed in the discrete-time QW near ω = ±π/2.
Thereby, we write down the modified formulas for divergences
of the DOS ρ and the localization length ξ , defined as the
inverse of Lyapunov exponents, at ω = ±π/2 as

ρ(ω) = ρ0[δωτ | ln3(δωτ )|]−1, (10)

ξ (ω) = ξ0| ln(δωτ )|, (11)

respectively, where δω ≡ |ω ∓ π/2| represents the distance
from the critical points ω = ±π/2. τ denotes the mean free
time and ρ0 and ξ0 are constants. As shown in Fig. 3(e), we
verify that the DOS near ω = π/2 obeys Eq. (10) fairly well.

We also calculate the localization length ξ of the spatially
disordered QW near ω = π/2 by using the transfer matrix
method.20,32 By rearranging the wave function amplitudes
around the position n of the eigenvalue equation U |ψ〉 =
eiω|ψ〉, we obtain the iterative relation(

ψn+1,R

ψn,L

)
= Tn

(
ψn,R

ψn−1,L

)
, (12)

Tn =
(

e−iω/ cos θn − tan θn

− tan θn eiω/ cos θn

)
, (13)

where ψn,σ=R,L represents the wave function amplitude of
the right or left walker at the position n and θn denotes θ at
the position n. The huge system length N = 108 allows us to
evaluate accurate numerical values of ξ .

Figure 4(a) shows the δω dependence of ξ for various
δθs . We confirm that ξ for any δθs shows the diverging
behavior in the vicinity of δω = 0 while ξ for δω �= 0
is finite, resulting in Anderson localization. Although the
numerical restriction of δω � 10−16 prevents us from reaching
ξ → ∞ with accuracy, we confirm that ξ follows Eq. (11)
as shown in Fig. 4(b). This scaling collapse gives evidence
that ξ diverges at δω = 0 for any δθs . In this case, the
transport property is anomalous because it involves algebraic
decays instead of exponential ones.34 Hence, the walkers can
move around through these delocalized states at ω = ±π/2
and then v(t) indicates anomalous diffusion as shown in
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(a)

(b)

FIG. 4. (Color online) (a) Dependence on δω of the localization
length ξ of the QWs with δθs = π/8, π/4, π/2, π, and 2π from the
top to the bottom. (b) The scaling collapse into Eq. (11) for ξ in (a).
The parameters ξ0 and τ are obtained by fitting. The dotted thin line
represents Eq. (11).

Fig. 2(d). Interestingly, three kinds of state (edge, localized,
and delocalized states) simultaneously appear in dynamics of
spatially disordered QWs with C−

R . This coexistence occurs
not only for the specific initial state, Eq. (5), but also for
general δ-function-like initial states, so that the dynamics of
QWs is described by all the eigenstates. We mention that,
since the coin operator of previous work9,19–21 for 1D spatially
disordered QWs does not retain chiral symmetry, the Anderson
transition is not found and only the Anderson localized states
are confirmed.

It is known for zero-energy states of chiral classes33 and
various topological insulators, such as the integer quantum
Hall transition, that topologically protected edge states stably
exist unless the bulk band gap is closed. When a symmetry-
preserving perturbation collapses the bulk gap, the delocalized
states which can be coupled with the edge states so that
the topological number is changed should appear even in
1D disordered systems. In other words, the existence of
delocalized states due to the Anderson delocalization is
essential to topological phases in disordered systems. It is
naturally expected, then, that the 1D QW with chiral symmetry
also follows a similar fashion under spatial disorder of θ .

Here, we clarify how the strong spatial disorder δθs induces
delocalized states at ω = 0,π as a consequence of the gap
closing. Figure 3(b) indicates that the bulk gaps around
ω = 0,π become smaller with increasing δθs , although there
still remain the edge states at δθs = π . Unfortunately, it is
difficult to find the gap closing from the DOS since the
finite system calculation keeps the mean level spacing finite.
Alternatively, we calculate the localization length ξ at ω = 0
for the QW without C−

R for various δθs by using Eqs. (12) and
(13). Note that when the bulk gap around ω = 0 is finite, the
localization length is interpreted as that of an exponentially
decaying evanescent mode. Figure 5 clearly shows that the

FIG. 5. (Color online) δθs dependence of the inverse of the
localization length at ω = 0. The length of the system is N = 108.
Inset: Enlargement of ξ−1 near δθs = 2π .

localization length ξ at ω = 0 increases with increasing δθs

and finally diverges at δθs = 2π , where θ is fully distributed in
2π rad. This suggests that the bulk gap around ω = 0 is closed.
Figure 3(c) shows the DOS ρ(ω) at δθs = 2π . We confirm that,
instead of the δ functions of the edge states, divergences in the
DOS, which are the same as those at ω = ±π/2, appear even
at ω = 0,π . Therefore, Anderson transitions occur at ω = 0,π

as well as ±π/2 at δθs = 2π , and the coexistence of edge and
delocalized states does not occur.

B. Temporally disordered quantum walks

Finally, we consider QWs with temporal disorder where
θ in Eq. (1) is shuffled in each time step. It is known
that, since the temporal disorder gives rise to decoherence,
the QWs approach the classical random walks where the
probability distribution of QWs becomes Gaussian and the

(a)

(b)

FIG. 6. (Color online) Probability distributions at t = 80 for a
single sample (a) and sample-averaged probability distributions at
t = 104 (b) of temporally disordered QWs. The solid and dashed
curves represent QWs with δθt = π/8 and π/4, respectively, and
the thick and thin curves distinguish QWs with and without C−

R ,
respectively. The number of samples is 104.
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(a)

(b)

FIG. 7. (Color online) t dependence of the survival probability
P0(t) (a) and the variances v(t) (b). The solid and dashed curves
represent QWs with δθt = π/8 and π/4, respectively, and the thick
and thin curves distinguish QWs with and without C−

R , respectively.
The number of samples is 104. The dotted line in (b) indicates v(t) ∝ t .

position variance v(t) is proportional to t .22–25 We study how
the edge states of the QWs with C−

R are affected by the
temporal disorder. The probability distribution Pn(t) after 80
time steps in Fig. 6(a) demonstrates that the peaks due to
the edge states are substantially reduced with increasing δθt .
For longer time steps t = 104, the sample-averaged Pn(t) with
temporal disorder [Fig. 6(b)] become Gaussian, indicating that
the QWs approach classical random walks. Tiny peaks at the
origin, which are the remnants of the edge states, are found
for the QWs with C−

R . In Fig. 7(a), the survival probabilities
P0(t) of QWs with C−

R are compared with those without C−
R .

We find that P0(t) of the former QWs behaves differently from
that of the latter during rather short time steps, while at longer
time steps they converge to the same curve, which means that
the edge states gradually disappear. The position variance v(t)
in Fig. 7(b) increases linearly in time for longer time steps,
clarifying that the QWs with edge states are also transformed
into classical random walks.

IV. DISCUSSION AND SUMMARY

In this work, we have focused only on discrete-time QWs.
Here some comments are in order on the relevance of our
results to continuous-time QWs with spatial disorder. While
the 1D continuous-time QW with on-site random potentials has
been studied previously,35,36 the corresponding Hamiltonian

does not retain chiral symmetry. We note that the Hamiltonian
of the 1D continuous-time QW possessing chiral symmetry
is the tight-binding model with only nearest-neighbor random
hopping terms. Indeed, the latter model is consistent with the
one studied in Ref. 29, and the Anderson transition is possible
only at zero energy, in contrast to the discrete-time QWs
studied in the present work. Therefore, the coexistence of edge
states and the Anderson transition is peculiar to discrete-time
QWs.

We also mention that, although we have been concerned
with QWs with C−

R here, our conclusion can be directly applied
for QWs without C−

R , except for the argument on edge states
at ω = 0,π .

In summary, we have investigated two-state discrete-time
QWs belonging to the 1D chiral orthogonal class in the
presence of spatial or temporal disorder. We have elucidated
that Anderson transitions in the 1D chiral classes occur at
ω = ±π/2 in QWs with any strength of spatial disorder and
thereby the QWs can avoid complete localization. We note
that, while the currently available experiments on discrete-time
QWs can accomplish only a few tens of time steps and it
may be difficult to completely eliminate the temporal disorder
giving rise to decoherence in spatially disordered QWs, the
delocalization behavior found in the present work will be
observed when the technology of QWs is further developed
in the applications of quantum computers.

Furthermore, we have shown that the coexistence of
edge, localized, and delocalized states is realized in the
time evolution of a spatially disordered QW with C−

R . This
characteristic nature of the QWs is supported by chiral
symmetry of H and bipartite structures of U . We predict
that delocalization of QWs with spatial disorder should be
observed in a wide variety of 1D QWs belonging to other chiral
classes14 and to classes D and DIII which are described by
Majorana fermions, since these universality classes also show
the Anderson transition in 1D.37,38 QWs for which tuning of the
system parameters and observation of walkers’ probabilities
are possible in experiments would provide an intriguing arena
in which to study topological phases for systems with defects
and decoherence.

Note added. We recently became aware of Ref. 39 in which
the edge states of QWs are observed in experiments.
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