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Quantum phase transition of the sub-Ohmic rotor model
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We investigate the behavior of an N -component quantum rotor coupled to a bosonic dissipative bath having a
sub-Ohmic spectral density J (ω) ∝ ωs with s < 1. With increasing dissipation strength, this system undergoes a
quantum phase transition from a delocalized phase to a localized phase. We determine the exact critical behavior
of this transition in the large-N limit. For 1 > s > 1/2, we find nontrivial critical behavior corresponding to an
interacting renormalization group fixed point, while we find mean-field behavior for s < 1/2. The results agree
with those of the corresponding long-range interacting classical model. The quantum-to-classical mapping is
therefore valid for the sub-Ohmic rotor model.
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I. INTRODUCTION

Quantum phase transitions are abrupt changes in the ground
state properties of a quantum many-particle system that occur
when a nonthermal control parameter is varied.1 In analogy
to thermal phase transitions, they can be classified as either
first-order or continuous transitions. Continuous quantum
phase transitions, also called quantum-critical points, are
characterized by large-scale temporal and spatial fluctuations
that lead to unconventional behavior in systems ranging from
strongly correlated electron materials to ultracold quantum
gases (for reviews see, e.g., Refs. 2–7).

Impurity quantum phase transitions8 are an interesting
class of quantum phase transitions at which only the degrees
of freedom of a finite-size (zero-dimensional) subsystem
become critical at the transition point. The rest of the system
(the “bath”) does not undergo a transition. Impurity quantum
phase transitions can occur, e.g., in systems composed of
a single quantum spin coupled to an infinite fermionic or
bosonic bath. Fermionic examples include the anisotropic
Kondo model9 and the pseudogap Kondo model.10

The prototypical system involving a bosonic bath is the
dissipative two-state system,11,12 also called the spin-boson
model, which describes a two-level system coupled to a single
dissipative bath of harmonic oscillators. Its ground-state phase
diagram depends on the behavior of the bath spectral density
J (ω) for small frequencies ω. Power-law spectra J (ω) ∝ ωs

are of particular interest. In the super-Ohmic case (s > 1),
the system is in the delocalized (disordered) phase for any
dissipation strength. In contrast, for sub-Ohmic dissipation
(0 < s < 1), there is a continuous quantum phase transition
from a delocalized phase at weak dissipation to a localized
(ordered) phase at strong dissipation.13 In the marginal Ohmic
case (s = 1), a quantum phase transition exists too, but it is of
Kosterlitz-Thouless type.11,12

The sub-Ohmic spin-boson model has recently attracted
considerable attention in the context of the so-called quantum-
to-classical mapping. This concept relates the critical behavior
of a quantum phase transition in d space dimensions to that
of a classical transition in d + 1 dimensions. The mapping
is usually established by comparing the order-parameter field
theories of the transitions: Imaginary time in the quantum
problem plays the role of the extra dimension in the cor-
responding classical system. In the case of the spin-boson

model, the classical counterpart is a one-dimensional Ising
model with long-range interactions that decay as 1/r1+s for
large distances r . In recent years, the applicability of the
quantum-to-classical mapping to the sub-Ohmic spin-boson
model has been controversially discussed after numerical
renormalization group results14 suggested that its critical
behavior for s < 1/2 deviates from that of the corresponding
Ising model. While there is now strong evidence15–18 that
this conclusion is incorrect and that the quantum-to-classical
mapping is actually valid, the issue appears to be still not
fully settled.19 Moreover, possible failures of the quantum-to-
classical mapping have also been reported for other impurity
models with both Ising20–22 and higher23,24 symmetries, and
the precise conditions under which it is supposed to hold are
not resolved.

In the present paper, we therefore investigate the large-N
limit of the sub-Ohmic quantum rotor model. Analogous
to the spin-boson model, this system undergoes a quantum
phase transition with increasing dissipation strength from a
delocalized phase to a localized phase.25,26 We exactly solve
the critical properties of this transition. Our analysis yields
nontrivial critical behavior corresponding to an interacting
renormalization group fixed point for 1 > s > 1/2, while we
find mean-field behavior for s < 1/2. All critical exponents
agree with those of the corresponding long-range interacting
classical model,27 implying that the quantum-to-classical
mapping is valid.

Our paper is organized as follows. We define the sub-Ohmic
rotor model in Sec. II. In Sec. III, we derive its partition
function, and we solve the self-consistent large-N constraint
at zero and finite temperatures as well as with and without
an external field. Section IV is devoted to a discussion of
observables and the resulting critical behavior. We conclude
in Sec. V.

II. SUB-OHMIC ROTOR MODEL

A quantum rotor can be understood as a point moving
on an N -dimensional hypersphere of radius N1/2. It can be
represented by an N -component vector S satisfying S2 = N .
The rotor has a momentum P; the position and momentum
components fulfill the usual canonical commutation relations
[Sα,Pβ] = iδαβ . In the large-N limit N → ∞, the hard con-
straint S2 = N can be replaced by one for the thermodynamic
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average 〈S2〉 = N , because fluctuations of the magnitude of
S are suppressed by the central limit theorem. The large-N
quantum rotor is thus equivalent to the quantum spherical
model of Ref. 28, which is given by the Hamiltonian

HS = 1
2P 2 + 1

2ω2
0S

2 − h S + μ(S2 − 1). (1)

Here, S and P represent the position and momentum of one
rotor component, μ is a Lagrange multiplier enforcing the
constraint 〈S2〉 = 1, and h is an external symmetry-breaking
field.29

We now couple (every component of) the rotor to a bath
of harmonic oscillators.30 In the conventional linear-coupling
form, the Hamiltonian describing the bath and its coupling to
S reads

HB =
∑

j

[
p2

j

2mj

+ mj

2
ω2

j q
2
j + λjqjS + λ2

j

2mjω
2
j

S2

]
, (2)

with qj , pj , and mj being the position, momentum, and mass
of the j th oscillator. The ωj are the oscillator frequencies
and λj the coupling strengths between the oscillators and S.
The last term in the bracket is the usual counter term which
insures that the dissipation is invariant under translations in
S.11 The coupling between the rotor and the bath is completely
characterized by the spectral density

J (ω) = π

2

∑
j

λ2
j

mjωj

δ(ω − ωj ), (3)

which we assume to be of power-law form

J (ω) = 2πᾱω1−s
c ωs, (0 < ω < ωc). (4)

Here, ᾱ is the dimensionless dissipation strength and ωc is a
cutoff frequency. We will be interested mostly in the case of
sub-Ohmic dissipation, 0 < s < 1.

III. PARTITION FUNCTION AND
CONSTRAINT EQUATION

A. Path integral formulation

We now derive a representation of the partition function
in terms of an imaginary-time functional integral. Because
the sub-Ohmic rotor model H = HS + HB is equivalent to
a system of coupled harmonic oscillators (with an additional
self-consistency condition), this can be done following Feyn-
man’s path integral approach31 with position and momentum
eigenstates as basis states. After integrating out the momentum
variables, we arrive at the partition function

Z =
∫

D[S(τ )]D[qj (τ )]e−AS−AB . (5)

The Euclidian action is given by

AS =
∫ β

0
dτ

[
1

2

(
Ṡ2 + ω2

0S
2) − hS + μ(S2 − 1)

]
(6)

AB =
∫ β

0
dτ

∑
j

[
mj

2

(
q̇2

j + ω2
j q

2
j

) + Sλjqj + λ2
j S

2

2mjω
2
j

]
,

(7)

where the dot marks the derivative with respect to imaginary
time τ , and β = 1/T is the inverse temperature.

The bath action is quadratic in the qj ; we can thus exactly
integrate out the bath modes. After a Fourier transformation
from imaginary time τ to Matsubara frequency ωn, this yields∫

D[q̃i(ωn)] exp(−AB) = Z0
B exp(−AB ′), where Z0

B is the
partition function of the unperturbed bath and

A′
B = T

∑
ωn

∑
j

λ2
j

2mj

ω2
n

ω2
j

(
ω2

n + ω2
j

) S̃(ωn)S̃(−ωn). (8)

The sum over j can be turned into an integral over the spectral
density J (ω). Carrying out this integral gives

A′
B = 1

2
T

∑
ωn

αω1−s
c |ωn|s S̃(ωn)S̃(−ωn), (9)

with the dimensionless coupling constant α =
2πᾱ cosec(πs/2). Combining AS and A′

B yields the
effective action of the sub-Ohmic rotor model as

Aeff = −βμ + T

2

∑
ωn

(
ε + αω1−s

c |ωn|s
)
S̃(ωn)S̃(−ωn)

− T
∑
ωn

h̃(ωn)S̃(−ωn), (10)

where ε = ω2
0 + 2μ is the renormalized distance from quan-

tum criticality. The ω2
n term in AS is subleading in the limit

ωn → 0. It is thus irrelevant for the critical behavior at the
quantum critical point and has been dropped. The theory then
needs a cutoff for the Matsubara frequencies which we chose
to be ωc. Because the effective action is Gaussian, the partition
function Z = Z0

B

∫
D[S̃(ωn)] exp(−Aeff) is easily evaluated.

We find

Z = Z0
B exp(βμ)

∏
ωn

[
2π

T
(
ε + αω1−s

c |ωn|s
)]1/2

× exp

[
T

2

∑
ωn

h̃(ωn)h̃(−ωn)

ε + αω1−s
c |ωn|s

]
. (11)

B. Solving the spherical constraint

The spherical (large N ) constraint 〈S2〉 = 1 can be easily
derived from the free energy F = −T ln Z by means of the
relation 0 = ∂F/∂μ. In the case of a time-independent external
field h with Fourier components h̃(ωn) = δn,0h/T , this yields

T
∑
ωn

1

ε + αω1−s
c |ωn|s

+ h2

ε2
= 1. (12)

We now solve this equation, which gives the renormalized
distance from criticality ε as a function of the external
parameters α, T , and h, in various limiting cases.

1. T = 0 and h = 0

At zero temperature, the sum over the Matsubara frequen-
cies turns into an integral, and the constraint equation reads

1

π

∫ ωc

0
dω

1

ε + αω1−s
c ωs

= 1. (13)
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For sub-Ohmic dissipation s < 1, a solution ε � 0 to this
equation only exists for dissipation strengths α below a
critical value αc because the integral converges at the lower
bound even for ε = 0. The value of αc defines the location
of the quantum critical point. Performing the integral for
ε = 0, we find αc = 1/[π (1 − s)]. As we are interested in
the critical behavior, we now solve the constraint equa-
tion for dissipation strengths close to the critical one α �
αc. We need to distinguish two cases: 1 > s > 1/2 and
s < 1/2.

In the first case, the calculation can be performed by
subtracting the constraint equations at α and at αc from each
other. After moving the cutoff ωc to ∞, the resulting integral
can be easily evaluated giving

ε = αωcA
s/(s−1)(αc − α)s/(1−s) (s > 1/2), (14)

where A = −(1/s) cosec(π/s). In the case s < 1/2, Eq. (13)
can be evaluated by a straight Taylor expansion in αc − α,
resulting in

ε = αcωcB
−1(αc − α) (s < 1/2), (15)

with B = 1/[π (1 − 2s)]. For s < 1/2, the functional depen-
dence of ε on αc − α thus becomes linear, independent of s. As
we will see later, this causes the transition to be of mean-field
type.

For dissipation strengths above the critical value αc, the
spherical constraint can only be solved by not transforming
the sum over the Matsubara frequencies in Eq. (12) into the
frequency integral in Eq. (13). Instead, the ωn = 0 Fourier
component has to be treated separately.32 Alternatively, one
can explicitly introduce a nonzero average for one of the
N order parameter components (see, e.g., Ref. 1). Both
approaches are equivalent; we will follow the first route in
the next subsection.

2. T > 0 and h = 0

At small but nonzero temperatures, an approximate solution
of the spherical constraint (12) can be obtained by keeping the
ωn = 0 term in the frequency sum discrete while representing
all other modes in terms of an ω integral. This gives

T

ε
+ 1

π

∫ ωc

0
dω

1

ε + αω1−s
c ωs

= 1. (16)

We now solve this equation on the disordered side of the
transition (α < αc), at the critical dissipation strength αc, and
on the ordered side of the transition (α > αc). We again need
to distinguish the cases 1 > s > 1/2 and s < 1/2.

In the first case, we subtract the quantum critical (T =
0,h = 0,α = αc) constraint from Eq. (16). After evaluating
the emerging integral, the following results are obtained in the
limit T → 0 and |α − αc| small but fixed,

ε = α

α − αc

T (α > αc,s > 1/2), (17a)

ε = A−sαcω
1−s
c T s (α = αc,s > 1/2), (17b)

ε = ε0 + α

αc − α

s

1 − s
T (α < αc,s > 1/2). (17c)

Here, ε0 is the zero-temperature value given in Eq. (14),
and A = −(1/s) cosec(π/s) as above. For s < 1/2, we expand
(16) in α − αc and find

ε = α

α − αc

T (α > αc,s < 1/2), (18a)

ε = B−1/2αcω
1/2
c T 1/2 (α = αc,s < 1/2), (18b)

ε = ε0 + α

αc − α
T (α < αc,s < 1/2), (18c)

with ε0 given in Eq. (15) and B = 1/[π (1 − 2s)] as above.

3. T = 0 and h �= 0

At zero temperature, but in the presence of an external field,
the spherical constraint reads

1

π

∫ ωc

0
dω

1

ε + αω1−s
c ωs

+ h2

ε2
= 1. (19)

Proceeding in analogy to the last subsection, we determine
the distance ε from criticality in the limit h → 0 and |α − αc|
small but fixed. In the case 1 > s > 1/2, we obtain

ε =
(

α

α − αc

)1/2

h (α > αc,s > 1/2), (20a)

ε = (
A−sαcω

1−s
c h2s

)1/(s+1)
(α = αc,s > 1/2), (20b)

ε = ε0 + α

αc − α

s

1 − s

h2

ε0
(α < αc,s > 1/2), (20c)

where ε0 is the zero-field value given in Eq. (14) and A =
−(1/s) cosec(π/s) as above. For s < 1/2, the corresponding
results read

ε =
(

α

α − αc

)1/2

h (α > αc,s < 1/2), (21a)

ε = (
B−1α2

cωch
2
)1/3

(α = αc,s < 1/2), (21b)

ε = ε0 + α

αc − α

h2

ε0
(α < αc,s < 1/2), (21c)

with ε0 given in Eq. (15) and B = 1/[π (1 − 2s)] as above.

IV. OBSERVABLES AT THE QUANTUM PHASE
TRANSITION

A. Magnetization

After having solved the spherical constraint, we now turn
to the behavior of observables at the quantum critical point.
The magnetization M = 〈S〉 follows from Eq. (11) via M =
−∂F/∂h = T ∂(ln Z)/∂h. This simply gives

M = h/ε. (22)

To find the zero-temperature spontaneous magnetization in the
ordered phase, we need to evaluate Eq. (22) for T = 0, α > αc,
and h → 0. Using Eqs. (20a) and (21a), we find

M =
√

(α − αc)/α (23)

for the entire range 1 > s > 0. The order parameter exponent
β thus takes the value 1/2 in the entire s range. For T > 0,
ε does not vanish even in the limit h → 0. The spontaneous
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magnetization is therefore identical to zero for any nonzero
temperature, independent of the dissipation strength α.

The critical magnetization-field curve of the quantum phase
transition can be determined by analyzing Eq. (22) for T = 0,
α = αc, and nonzero h. In the case of 1 > s > 1/2, inserting
Eq. (20b) into Eq. (22) yields

M = (
Asα−1

c ω−(1−s)
c h1−s

)1/(1+s)
(s > 1/2), (24)

which implies a critical exponent δ = (1 + s)/(1 − s). For s <

1/2, we instead get the relation

M = (
Bα−2

c ω−1
c h

)1/3
(s < 1/2). (25)

The critical exponent δ thus takes the mean-field value of 3.

B. Susceptibility

The Matsubara susceptibility can be calculated by taking
the second derivative of ln Z in Eq. (11) with respect to the
Fourier components of the field, yielding

χ (iωn) = 1

ε + αω1−s
c |ωn|s

. (26)

We first discuss the static susceptibility χst = χ (0) = 1/ε in
the case of 1 > s > 1/2. To find the zero-temperature, zero-
field susceptibility in the disordered (delocalized) phase α <

αc, we use Eq. (14) for ε, which results in

χst = α−1ω−1
c As/(1−s)(αc − α)−s/(1−s) (s > 1/2). (27)

The susceptibility exponent thus takes the value γ =
s/(1 − s).

For dissipation strengths α � αc, the susceptibility diverges
in the limit T → 0. The temperature dependencies follow from
substituting Eqs. (17a) and (17b) into χst = 1/ε. This yields

χst = α − αc

α
T −1 (α > αc,s > 1/2), (28a)

χst = ωs−1
c α−1

c AsT −s (α = αc,s > 1/2). (28b)

In the ordered (localized) phase, we thus find Curie behavior
with an effective moment of M2 = (α − αc)/α in agreement
with Eq. (23).

The static susceptibility in the case s < 1/2 is obtained
analogously. Using Eq. (15), the zero-temperature, zero-field
susceptibility reads

χst = α−1ω−1
c B(αc − α)−1 (s < 1/2), (29)

implying that the susceptibility exponent takes the mean-field
value γ = 1. From Eq. (18b), we obtain the temperature
dependence of χst at the critical damping strength,

χst = ω−1
c α−1/2

c B1/2T −1/2 (α = αc,s < 1/2). (30)

In the ordered phase, the behavior for s < 1/2 is identical to
that for s > 1/2 given in Eq. (28a).

We now turn to the dynamic susceptibility. To compute the
retarded susceptibility χ (ω), we need to analytically continue
the Matsubara susceptibility by performing a Wick rotation
to real frequencies, iωn → ω + i0. A direct transformation of
Eq. (26) is hampered by the nonanalytic frequency dependence
|ωn|s . We therefore go back to a representation of the dynamic
term in the susceptibility in terms of discrete bath modes [see

the action (8)]. As this representation is analytic in ωn, the
Wick rotation can be performed easily. We then carry out the
integration over the spectral density after the Wick rotation.
The resulting dynamical susceptibility reads

χ (ω) = 1

ε + αω1−s
c |ω|s[cos(πs/2) − i sin(πs/2)sgn(ω)]

.

(31)

At quantum criticality (α = αc, T = 0, h = 0), the real and
imaginary parts of the dynamic susceptibility simplify to

Reχ (ω) = cos(πs/2)

αcω
1−s
c |ω|s , Imχ (ω) = sin(πs/2)sgn(ω)

αcω
1−s
c |ω|s (32)

in the entire range 1 > s > 0. Comparing this with the
temperature dependencies (28b) and (30), we note that the
results for s < 1/2 violate ω/T scaling, while those for
1 > s > 1/2 are compatible with it.

C. Correlation time

To find the inverse correlation time (characteristic energy)
 = ξ−1

t , we parametrize the inverse susceptibility as ε +
αω1−s

c |ωn|s = ε(1 + |ωn/|s). This implies the relation

 = (
εα−1ωs−1

c

)1/s
. (33)

The dependence of the inverse correlation time on the tuning
parameter α at zero temperature and field in the case of 1 >

s > 1/2 is obtained by inserting Eq. (14) into Eq. (33). In the
disordered phase, α < αc, this gives

 = ωcA
−1/(1−s)(αc − α)1/(1−s) (s > 1/2). (34)

The correlation-time critical exponent therefore reads νz =
1/(1 − s). Note that this exponent is sometimes called just
ν rather than νz in the literature on impurity transitions. We
follow the general convention for quantum phase transitions
where ν describes the divergence of the correlation length
while νz that of the correlation time. By substituting Eq. (17b)
into Eq. (33), we can also determine the dependence of  on
temperature at α = αc and h = 0. We find  = A−1T . The
characteristic energy thus scales with T , as expected from
naive scaling.

In the case of s < 1/2, the zero-temperature, zero-field
correlation time in the disordered phase behaves as [using
Eq. (15)]

 = ωcB
−1/s(αc − α)1/s (s < 1/2), (35)

resulting in the mean-field value νz = 1/s for the correlation
time critical exponent. The dependence of  on temperature
at α = αc and h = 0 follows from Eq. (18b); it reads
 = B−1/(2s)ω

(2s−1)/(2s)
c T 1/(2s). The characteristic energy thus

scales differently than the temperature, in disagreement with
naive scaling.

D. Scaling form of the equation of state

A scaling form of the equation of state for 1 > s > 1/2
can be determined by subtracting the quantum critical (T = 0,
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h = 0, α = αc) spherical constraint from the general constraint
(12). After performing the resulting integral, we find

αc − α

α
+ h2

ε2
+ T

ε
= Aε−1+1/sα−1/sω1−1/s

c . (36)

We substitute ε = h/M [from Eq. (22)], and after some
lengthy but straightforward algebra, this equation can be
written in the scaling form

X(M/r1/2,h/r (1+s)/(2−2s),T /r1/(1−s)) = 0, (37)

with X being the scaling function and r = (α − αc)/α being
the reduced distance from criticality. This scaling form can
be used to reproduce the critical exponents β = 1/2, γ =
s/(1 − s), and δ = (1 + s)/(1 − s) found above. For s < 1/2,
the same approach gives a scaling equation containing the
mean-field exponents β = 1/2, γ = 1, and δ = 3. Moreover,
an explicit dependence on the cutoff for the Matsubara
frequencies remains.

E. Entropy and specific heat

Within our path integral approach, thermal properties
are somewhat harder to calculate than magnetic properties
because the measure of the path integral explicitly depends
on temperature. As the spherical model is equivalent to a set
of coupled harmonic oscillators, we can use the “remarkable
formulas” derived by Ford et al.,33 which express the free
energy (and internal energy) of a quantum oscillator in a heat
bath in terms of its susceptibility and the free energy (and
internal energy) of a free oscillator. For our spherical model,
they read

FS = −μ + 1

π

∫ ∞

0
dω Ff (ω,T ) Im

[
d

dω
ln χ (ω)

]
, (38)

US = −μ + 1

π

∫ ∞

0
dω Uf (ω,T ) Im

[
d

dω
ln χ (ω)

]
. (39)

Here, Ff (ω,T ) = T ln[2 sinh(ω/2T )] and Uf (ω,T ) =
(ω/2) coth(ω/2T ). The extra −μ terms stem from the
spherical constraint. Note that the free energy in Eq. (38)
is the difference between the free energy of the coupled
rotor-bath system and that of the unperturbed bath, FS = F −
F 0

B = −T ln(Z/Z0
B). The same holds true for the internal

energy US = U − U 0
B .

The frequency derivative of ln χ (ω) can be calculated from
Eq. (31), giving

Im

[
d

dω
ln χ (ω)

]

= εsαω1−s
c ωs−1 sin(πs/2)[

ε + αω1−s
c ωs cos(πs/2)

]2 + [
αω1−s

c ωs sin(πs/2)
]2 .

(40)

To calculate the impurity entropy SS = (US − FS)/T , we
insert Eq. (40) into Eqs. (38) and (39) and perform the resulting
integral. In the disordered phase α < αc, the entropy behaves
as

SS = D α ω1−s
c T s/ε0 (41)

in the limit T → 0 for all s in the sub-Ohmic range 1 > s > 0.
Here, ε0 is the zero-temperature renormalized distance from

criticality given in Eq. (14), and D is an s-dependent constant.
Upon approaching criticality α → αc, the prefactor of the
T s power-law diverges, suggesting a weaker temperature
dependence at criticality. The specific heat can be calculated
from CS = T (∂SS/∂T ), it thus behaves as Dsαω1−s

c T s/ε0.
We now turn to the critical dissipation strength α = αc, For

1 > s > 1/2, we find a temperature-independent but nonuni-
versal (s-dependent) entropy in the limit of low temperatures.
For s < 1/2, the impurity entropy diverges logarithmically as
ln(ω0/T ) with T → 0. In the ordered phase α > αc, we find
a logarithmically diverging entropy for all s between 0 and 1.

At first glance, these logarithmic divergencies appear to
violate the third law of thermodynamics. We emphasize,
however, that the impurity entropy represents the difference
between the entropy of the coupled rotor-bath system and
that of the unperturbed bath. Because the bath is infinite, the
entropy thus involves an infinite number of degrees of freedom
and does not have to remain finite. Whether the logarithmic
divergence occurs only in the large-N limit or also for finite-N
rotors remains a question for the future.

We note in passing that the entropy of classical spherical
models27,34 also diverges in the limit T → 0 (even when
measured per degree of freedom). In these models, the diverges
occurs because the classical description becomes invalid at
sufficiently low temperatures. It can be cured by going from
the classical spherical model to the quantum spherical model.28

This implies that the diverging entropy in the ordered phase of
the sub-Ohmic rotor model is caused by a different mechanism
than that in the classical spherical model.

V. CONCLUSIONS

In summary, we have investigated the quantum critical
behavior of a large-N quantum rotor coupled to a sub-
Ohmic bosonic bath characterized by a power-law spectral
density J (ω) ∼ ωs with 0 < s < 1. As this model can be
solved exactly, it provides a reliable reference point for the
discussion of more complex and realistic impurity quantum
phase transitions. We find that all critical exponents take their
mean-field values if the bath exponent s is below 1/2. In
contrast, for 1 > s > 1/2, the exponents display nontrivial,
s-dependent values. A summary of the exponent values in
both cases in shown in Table I. The exponent η sticks to
its mean-field value 2 − s in the entire region 1 > s > 0,
in agreement with renormalization group arguments on the
absence of field renormalization for long-range interactions.35

The fact that the order parameter exponent β is 1/2 in the entire
range 1 > s > 0 is a result of the large-N limit; it generically
takes this value in spherical models.

TABLE I. Critical exponents of the sub-Ohmic quantum rotor
model.

1 > s > 1/2 s < 1/2

β 1/2 1/2
γ s/(1 − s) 1
δ (1 + s)/(1 − s) 3
νz 1/(1 − s) 1/s

η 2 − s 2 − s
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Moreover, the behaviors of the dynamic susceptibility
and inverse correlation time are compatible with ω/T

scaling for 1 > s > 1/2, while they violate ω/T scaling
for s < 1/2. We conclude that the quantum phase tran-
sition of the sub-Ohmic quantum rotor model is con-
trolled by an interacting renormalization group fixed point
in the case 1 > s > 1/2. In contrast, the transition is
controlled by a noninteracting (Gaussian) fixed point for
s < 1/2.

We now turn to the question of the quantum-to-classical
mapping. The classical counterpart of the sub-Ohmic quantum
rotor model is a one-dimensional classical Heisenberg chain
with long-range interactions that decay as 1/r1+s with distance
r . The spherical (large-N ) version of this model was solved by
Joyce;27 its critical exponents are identical to that of the sub-
Ohmic quantum rotor found here. The quantum-to-classical
mapping is thus valid.

The properties of our quantum rotor model must be
contrasted with the behavior of the Bose-Kondo model which
describes a continuous symmetry quantum spin coupled to
a bosonic bath. For this system, the quantum-to-classical
mapping appears to be inapplicable.23 A related observation
has been made in a Bose-Fermi-Kondo model.24 The main
difference between a rotor and a quantum spin is the presence
of the Berry phase term in the action of the latter. Our results
thus support the conjecture that this Berry phase term, which is
complex and has no classical analog, causes the inapplicability
of the quantum-to-classical mapping.
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