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Mott transition in three-orbital Hubbard model with orbital splitting
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We study the Mott transition in the three-orbital Hubbard model. To investigate how the orbital level splitting
and the Ising-type Hund’s coupling affect the Mott transition in the case of two electrons per site, we use the
dynamical mean-field theory combined with continuous-time quantum Monte Carlo simulations. The calculation
of the double occupancy reveals that the critical interaction strength separating a metallic phase and two kinds of
insulating phases shows a nonmonotonic behavior as a function of the level splitting. We find that this behavior
is characteristic for 1/3 filling, in comparison with the preceding results for different fillings and for two-orbital
models. Strong competition between the two insulators results in an intriguing first-order transition to an insulating
phase having intermediate characters between Mott and band insulators. It is also found that the two insulators
show different behaviors in the phase boundary with the metallic phase in the interaction-temperature plane,
which is reflected in a difference in the quasiparticle behavior around the transition. We also discuss the orbital
selective Mott transition for larger Hund’s coupling, which is compared with previous study at zero temperature.
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I. INTRODUCTION

Strongly correlated electron systems with multiorbital
degrees of freedom have been studied extensively. In these
systems, orbital fluctuations enhanced by electron correla-
tions induce a variety of intriguing phenomena, such as
magnetic and/or orbital ordering, metal-insulator transition,
etc. One of the hot topics is the newly discovered iron-
based superconductors,1 for which the orbital degrees of
freedom play a key role in understanding the mechanism
of superconductivity. It has also been elucidated that the
Hund’s coupling affects the system considerably, and orbital-
dependent phenomena are essential in these systems.2–5

The orbital selective Mott transition (OSMT), where some
of the orbitals become localized while the others still remain
itinerant, is a typical phenomenon induced by the interplay
of multiorbital effects and strong electron correlations.6,7 The
dynamical mean-field theory (DMFT) has been applied to the
two-orbital Hubbard model with different bandwidths, and it
has been clarified that the Hund’s coupling plays an important
role in the OSMT.8–11 More recently, the OSMT has also been
addressed in the system with the same bandwidths;12,13 it has
been suggested that the OSMT may occur in a three-orbital
Hubbard model when the orbital degeneracy is lifted into
doubly degenerate orbitals and a single orbital. In the doubly
degenerate orbitals, a metallic state is expected to be further
stabilized by orbital fluctuations than in a nondegenerate
orbital. Therefore, separate transitions to the Mott insulating
phase could occur in this system. However, it is not clear
how the OSMT occurs in this system, and there are still
few theoretical studies on the models with more than two
orbitals.12–17 As regards the Mott transition in the multiorbital
systems,18–21 it is known that the orbital degeneracy causes
a sort of frustration and thus enhances orbital fluctuations,
making the metallic state more stable against the Mott
transition.22,23 It is thus important to figure out how the
orbital level splitting, which lifts the orbital degeneracy,24,25

affects the Mott transition. Another important effect of the
orbital level splitting is that it induces competition with the

Hund’s coupling26 and thereby changes the nature of the Mott
transition when the size of the splitting becomes comparable
to the Hund’s coupling. These facts naturally motivate us to
study the Mott transition in the three-orbital Hubbard model
by systematically changing the orbital level splitting and the
Hund’s coupling.

In this study, we investigate the Mott transition in the
three-orbital Hubbard model with particular focus on how the
Ising-type Hund’s coupling and the orbital level splitting affect
the Mott transition in the case of two electrons per site. For
this purpose, we use DMFT combined with a continuous-time
quantum Monte Carlo (CT-QMC) method as a solver of the
effective impurity problem.27–29 It is elucidated that the critical
interaction strength for the metal-insulator transition shows a
nonmonotonic behavior as the level splitting is changed. This is
caused by two effects due to the level splitting: the reduction
of orbital degeneracy and the competition with the Hund’s
coupling. We find that this behavior is characteristic for 1/3
filling, in comparison with the previous results obtained at
different fillings15 and for two-orbital models.24–26 In some
parameter regions, two kinds of insulating phases compete
with each other, resulting in an unusual first-order transition
to an insulating phase having intermediate characters between
the Mott insulator (MI) and the band insulator (BI): within
the insulating phase at finite temperatures, a crossover occurs
in the physical quantities between the two insulating phases.
By plotting critical interaction strength in the interaction-
temperature plane, we find that the two insulators show
different behaviors in the phase boundary with the metallic
state. This difference is reflected in the density of states
(DOS) for the metallic states around the transition. With
increasing temperature, the quasiparticle state around the
transition to the MI is suppressed, while the quasiparticle state
near the correlated BI is rather enhanced. We also discuss the
orbital selective Mott transition for larger Hund’s coupling,
comparing with the previous study at zero temperature.12

This paper is organized as follows. In the next section, we
introduce the three-orbital Hubbard model and briefly mention
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the method. In Sec. III, we explain the details of our results. A
brief summary is given in Sec. IV.

II. MODEL AND METHOD

We consider the three-orbital Hubbard model defined by

H = −t
∑

〈i,j〉,α,σ

c
†
iασ cjασ +

∑

i,α,σ

(−μ + �α)niασ

+U
∑

i,α

niα↑niα↓ +
∑

i,α �=α′,σ,σ ′
(U ′ − δσσ ′J )niασ niα′σ ′,

(1)

where c
(†)
iασ is an annihilation (creation) operator of an electron

with spin σ (=↑,↓) and orbital α (=1,2,3) at the ith site, and
niασ = c

†
iασ ciασ is the number operator. Here, t is the nearest-

neighbor-hopping integral, μ is the chemical potential, and �α

is the energy level for orbital α. In the interaction terms, U (U ′)
is the intraorbital (interorbital) Coulomb interaction, and J is
the Hund’s coupling. We impose the condition U = U ′ + 2J

as usual. For simplicity, we use an Ising-type Hund’s coupling,
not including the spin-flip and pair-hopping terms. We fix the
electron filling per site as n = 2 (referred to as 1/3 filling)
to focus on the Mott transition in the case of two electrons
per site. Orbital level splitting is given by �α and we set
�1 = �2 = 0, �3 = −� so that the energy level of doubly
degenerate orbitals 1 and 2 is higher than that of the single
orbital 3.

To investigate the Mott transition in this model, we use the
single-site DMFT.27 In the framework of DMFT, the lattice
model is mapped onto an effective impurity model, where
local electron correlations are taken into account precisely.
The lattice Green’s function is obtained via a self-consistency
condition imposed on the impurity problem. In this paper,
we use a semicircular DOS, ρ(ω) = (2/πD)

√
1 − (ω/D)2,

which corresponds to the infinite-coordination Bethe lattice.
We choose the energy unit as D = 1 (half bandwidth). To
solve the effective impurity problem, we use the hybridization
expansion CT-QMC method.28,29 This method allows us to
access the strong interaction regime in a wide range of
temperatures, especially down to a very low temperature.30–32

It is possible to determine the ground-state properties by
extrapolating the temperature dependence of the data.28,29

However, actual calculations have been done at finite but
very low temperature successfully in a number of previ-
ous CT-QMC studies.14–16,28,29 Therefore, we investigate the
Mott transition in our three-orbital model and discuss
the temperature dependence around the transition by using
the DMFT combined with the CT-QMC. We iterate the DMFT
self-consistent loop until the convergence is achieved within 40
times at most. In each iteration, we have typically performed
2 × 108 QMC samplings to reach sufficient computational
accuracy at a very low temperature, T/D = 0.02.

Let us here briefly comment on the Hund’s coupling in
the Hamiltonian (1), without spin-flip and pair-hopping terms.
Regarding the simultaneous Mott transition, which is mainly
discussed in our paper, we expect that these terms do not
qualitatively change the results for the following three reasons.
First, the order of the Mott transition does not depend on
whether the Hund’s coupling is Ising-type or isotropic.33

In previous studies of the two-orbital model with the same
bandwidths at half filling, the effect of the Hund’s coupling on
the Mott transition at zero temperature has been investigated
and it has been clarified that both types of Hund’s coupling
induce the first-order Mott transition.11,21,36–38,46 Second, the
effects of both types of Hund’s coupling on the critical
interaction of the Mott transition are qualitatively the same.
In the two-orbital Hubbard model, both of them suppress
it.38 In addition, in the triply degenerate Hubbard model, the
result for our model with the Ising-type Hund’s coupling is
consistent with that for the model with the isotropic Hund’s
coupling,13,39 as mentioned below. Third, in the two-orbital
Hubbard model, the effect of the competition between the
orbital level-splitting and the isotropic Hund’s coupling on
the critical interaction26 has been well reproduced by using the
Ising-type Hund’s coupling.40 Therefore, we expect that, for
our main purpose, to investigate the effects of the Hund’s cou-
pling and the orbital level-splitting on the simultaneous Mott
transition at finite temperatures, spin-flip and pair-hopping
terms are not important and do not qualitatively change our
results.

However, these terms are known to be important around the
OSMT at least in a two-orbital Hubbard model with different
bandwidths; some studies have indicated that the Ising-
type Hund’s coupling suppresses the orbital selective Mott
insulator (OSMI) phase,41,42 and some other studies have
investigated characteristic behavior of the OSMI phase in the
system with the Ising-type Hund’s coupling, non-Fermi-liquid
behavior,10,43,44 which has not been reported in the system with
the isotropic Hund’s coupling. In the three-orbital model with
the same bandwidths we have used in this study, the effects
of these terms on the OSMT have not been clarified so far.
Therefore, in the next section, we will compare our results
around the OSMT with that of the similar model with the
isotropic Hund’s coupling solved by the DMFT combined with
exact diagonalization.12 Still, in order to elucidate the effects
of the difference between the Ising-type and isotropic Hund’s
couplings on the OSMT, further investigations are required,
such as the introduction of the isotropic Hund’s coupling to
our framework, comparison of the Ising Hund’s coupling with
the isotropic one, etc.

III. RESULTS

A. Simultaneous Mott transition

Let us now investigate the Mott transition in the three-
orbital Hubbard model at 1/3 filling (two electrons per site).
In the main part of this section, we fix a strength of the Hund’s
coupling at J/U = 0.05. In Fig. 1(a), we show the double
occupancy Docc = 1

Ncom

∑
(α,σ )�=(α′,σ ′)〈nασ nα′σ ′ 〉 computed for

various � as a function of U at very low temperature T/D =
0.02. Here, Ncom is the number of possible combinations
of spin/orbital internal degrees of freedom. In our model,
electrons have six internal degrees of freedom, two (three)
for spin (orbital), therefore Ncom = 15. It is seen that the
double occupancy monotonically decreases with increasing
U . It shows coexistent solutions around the characteristic
value of interaction Uc and is almost independent of U for
larger interactions than Uc, indicating that the metal-insulator
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FIG. 1. (Color online) (a) Double occupancy Docc and
(b) renormalization factor in orbital α, Zα , as a function of interaction
strength U for several choices of level splitting � at temperature
T/D = 0.02. Hund’s coupling is fixed as J/U = 0.05. We find
hysteresis in Docc, indicating the first-order Mott transition.

transition occurs at Uc.34 We find hysteresis for �/D = 0, 0.4,
and 0.6, which characterizes the first-order Mott transition.

To clarify the quasiparticle properties around the Mott
transition, we also calculate the renormalization factor of or-
bital α, Zα , which is defined as Zα = [1 − ∂Im
α (iωn)

∂ωn
|ωn→0]−1.

We extrapolate Zα from the imaginary frequency data of
Im
α(iωn) for small n with the use of third-order polynomials.
In Fig. 1(b), the renormalization factors Z1(=Z2) and Z3

are shown as a function of U . To see the renormalization
of the quasiparticle in the metallic phase, we show Zα only
for interaction strengths smaller than Uc2 defined by the
metal-insulator transition with increasing U .34 The renormal-
ization factors monotonically decrease with increasing U . It
is seen that the difference between Z1(=Z2) and Z3 is not
relevant, resulting in a simultaneous Mott transition in this
case.

By plotting the characteristic interaction strength Uc2 as
a function of the level splitting �, we obtain the �-U phase
diagram shown in Fig. 2. In the phase diagram, a nonmonotonic
behavior appears in the � dependence of the critical interaction
strength. We will clarify the origin and some implications
of this characteristic behavior. For � = 0, the ordinary Mott
transition occurs, where two electrons are accommodated
equally in the triply degenerate orbitals.14,21 Finite � lifts
triply degenerate orbitals, leading to the suppression of the
metallic phase, which is accompanied by a slight decrease
in the critical interaction strength, as seen for �/D < 0.4.
In such a small � region, the Hund’s coupling dominates
the effect of �, resulting in a MI with the electron number
in each orbital (n1 + n2,n3) = (1,1), where nα denotes the
electron number in orbital α, to gain the energy due to
the Hund’s coupling with a parallel spin alignment. On the
other hand, for a large � region, another insulating phase is
stabilized, which is adiabatically connected to a BI specified by
(n1 + n2,n3) = (0,2). This insulating phase is referred to as a
correlated BI in this study. However, in the limit of large U , the
MI is realized in the entire � region, because J is large there
(recall the condition of J/U = 0.05). Filled triangles (open

FIG. 2. (Color online) �-U phase diagram for the three-orbital
Hubbard model at 1/3 filling (n = 2) with J/U = 0.05 and T/D =
0.02. The characteristic interaction strength Uc2 from the metal to
the MI (correlated BI) insulating state is denoted by filled circles
(triangles), and the crossover point from the correlated BI to the MI
is denoted by open squares. Solid lines are to guide the eye. Dotted
lines denote the phase boundaries obtained by simple estimations (see
text). Inset shows the phase diagram for the model with J = 0.

squares) in Fig. 2 denote the critical interaction strength of the
phase transition (crossover) from the metal to the correlated
BI (from the correlated BI to the MI). We find that, for
�/D > 0.4, the interaction strength of transition to the MI
(filled circles and open squares) is enhanced with � as a result
of the competition between the Hund’s coupling and the orbital
level splitting. In the atomic limit of the effective impurity
problem within DMFT, the energies of J -induced high spin
states with fourfold degeneracy and a �-induced singlet are
degenerate when 3J = �. We draw the line of 3J = � in
the phase diagram as a guide to the transition line between the
correlated BI and the MI. At lower temperatures, the crossover
observed at T/D = 0.02 is expected to change into a first-order
transition. For large � (�/D > 0.7), the critical interaction
strength of phase transition to the correlated BI decreases with
increasing �. In the limit of � → 2D (bandwidth), the phase
boundary is simply estimated by the mean-field theory at zero
temperature as U = (2 − �)/0.75, which is qualitatively in
good agreement with our results.

Summarizing, the level splitting � has two important
effects: (i) � lifts the degeneracy of triply degenerate orbitals
and (ii) it induces the competition with J . When these
effects are equally relevant, the first-order transition occurs
between the two insulating phases. Around this transition,
orbital fluctuations are effectively enhanced, and therefore the
metallic state is stabilized, giving rise to the nonmonotonic
� dependence of the critical interaction strength for the Mott
transition.

For comparison, we show the �-U phase diagram for J = 0
in the inset of Fig. 2. In this case, the splitting � simply lifts
the degeneracy of triply degenerate orbitals, leading to the
monotonic decrease of the critical interaction strength as a
function of �. Note that the correlated BI is realized in the
entire � regime except for � = 0, where the transition point
Uc2/D ∼ 4.4 is much larger than that for finite J (Uc2/D ∼
3.6 for J/U = 0.05) because of the high degeneracy due to
spin-orbital symmetry at U = U ′.
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Before closing this subsection, we briefly comment on the
filling dependence of the nonmonotonic behavior of Uc as
a function of �, which is induced by the two effects of �

as mentioned above. We have found that this behavior is
characteristic for 1/3 filling, in comparison with previous
results for different fillings and for two-orbital models. For
the three-orbital system with one electron per site (n = 1),15

the nonmonotonic behavior of Uc does not appear because the
Hund’s coupling is not important for n = 1 and the competition
between J and � does not occur. Therefore, the effect of �

is only the former one; � just lifts the orbital degeneracy
and Uc monotonically decreases with increasing �. This
behavior is qualitatively similar to that in the two-orbital
model at quarter filling, namely n = 1.24,25 For n = 3,15 at half
filling, the competition between Hund’s coupling and orbital
level splitting occurs but the phase diagram in the small �

region shows a different behavior from that for n = 2. At half
filling, the former effect of �, lifting the orbital degeneracy,
is completely obscured by the Hund’s coupling acting on
three electrons which occupy three orbitals. As a result, the
effect of � is only the latter one; � competes with J , which
results in the increase of Uc with increasing �, as shown
in the half-filled case in the two-orbital model.26 For n = 4,
the competition between � and J does not occur. For finite
�, the system is effectively reduced to a doubly degenerate
two-orbital model because the lowest orbital is almost fully
occupied by two electrons. Consequently, Uc monotonically
decreases with increasing �. For the model with n = 5, the
competition between � and J does not occur for the same
reason as in the case of n = 1, and Uc monotonically decreases
with increasing �. Therefore, in our model, the nonmono-
tonic behavior of Uc as a function of � only appears at
filling n = 2.

B. Temperature dependence

The two insulating states in Fig. 2, the MI and the
correlated BI, show different behaviors at finite temperatures.
In Fig. 3, we show the U -T phase diagram for several choices
of �. In Fig. 3(a), for � = 0, we can see a first-order
transition (filled circles) between the metal and the MI at low
temperatures, while it becomes a crossover (open circles) at
higher temperatures. Note that the coexistence region exists
between Uc1 and Uc2 at low temperatures.34 It is seen that the
metal rather than the MI is stabilized at low temperatures,
which is due to higher entropy of the MI with localized
spin and orbital degrees of freedom. This phase diagram is
similar to that for the single-band Hubbard model treated by
the DMFT,27 for which the insulating phase is stabilized at
lower temperatures.

On the other hand, two separate phase transitions occur for
large level splitting, �/D = 0.8, as shown in Fig. 3(c); with
increasing U , the transition occurs first from the metal to the
correlated BI and then from the correlated BI to the MI. We
note that the former transition shows a different behavior from
that for � = 0 in Fig. 3(a); the correlated BI is stabilized at
lower temperatures. This is because the correlated BI, which
is adiabatically connected to a BI, has small entropy compared
with the metallic state.
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FIG. 3. (Color online) U -T phase diagram for the three-orbital
Hubbard model at 1/3 filling with J/U = 0.05 for several choices of
�. Filled (open) circles denote the first-order transitions (crossovers).
Lines are to guide the eye.

For the intermediate level splitting, as seen in Fig. 3(b)
for �/D = 0.6, a single metal-insulator transition with both
characteristics mentioned above appears; the transition at Uc2

with increasing U is from the metal to the MI, which is similar
to that in the single-band Hubbard model. On the other hand,
the phase transition at Uc1 with decreasing U shows a similar
behavior to that of the correlated BI-to-metal transition; the
insulating phase is located in the temperature regime lower
than the metallic phase. This is because the crossover occurs
in the insulating phase from the MI to the correlated BI as U

decreases (i.e., J decreases). For slightly larger U than Uc1 , the
system is in the correlated BI with small entropy, making the
slope featured by Uc1 quite different from that of Uc2 . Detailed
discussions on the physical quantities in this intermediate case
will be given in the next subsection.

Numerically, in the correlated BI in Fig. 3(c), it is hard
to perform the DMFT calculation within the same accuracy
as in the other phases, because the upper orbitals are almost
empty, n1(n2) ∼ 0, which reduces the accuracy of the Green’s
functions and the hybridization functions. Therefore, it is not
easy to figure out whether the hysteresis exists or not on both
sides of the correlated BI in Fig. 3(c), although we find that
the transitions at lower temperature are of first order.

To see how the quasiparticles around the transitions to
each insulator evolve with changing the temperature, we
also calculate the DOS in orbital α, ρα(ω) by applying the
maximum entropy method (MEM)45 to the imaginary-time
QMC data. In Figs. 4(a) and 4(b), we show the orbital-
dependent DOS for �/D = 0.4, U/D = 3.2 (�/D = 0.8,
U/D = 2.0), the metallic state around the transition to the MI
(correlated BI). Each DOS is shown for different temperatures,
at very low temperature, T/D = 0.02, the same as the
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FIG. 4. (Color online) Density of states for (a) �/D = 0.4,
U/D = 3.2 and (b) �/D = 0.8, U/D = 2.0 at different tempera-
tures T/D = 0.02,0.10 with J/U = 0.05.

temperature for the �-U phase diagram (Fig. 2), and rather
higher temperature, T/D = 0.10. For the metallic state around
the MI [Fig. 4(a)], it is seen that, at low temperature, the
DOS for both orbitals form heavy quasiparticle peaks around
the Fermi level, indicating the strongly renormalized state
around the Mott transition. With increasing temperature, these
quasiparticle peaks are suppressed. This behavior is consistent
with the phase boundary between the metal and the MI in
the U -T phase diagram [Fig. 3(a)]. On the other hand, for
the metallic state around the transition to the correlated BI
[Fig. 4(b)], it is seen that, at low temperature, sharp peaks
are formed near the Fermi level, but they seem to exhibit
gaplike behavior, which is expected to be a precursor to the
transition to the correlated BI. With increasing temperature,
these peaks are rather enhanced, differently from the behavior
around the MI. Note that the low-energy quasiparticle peak
is correctly computed by MEM while the distance of the two
Hubbard peaks at T/D = 0.02 is much less than U/D, which
might be an artifact due to MEM. We have confirmed that the
DOS at the Fermi level obtained by MEM is consistent with
that by the extrapolation of the Matsubara Green’s function,
ρα(ω = 0) ∼ − limωn→0 ImG(iωn)/π . Therefore, we believe
that our discussions about the low-energy behavior of DOS are
not influenced by an artifact due to MEM.

C. Effects of Hund’s coupling

To see the nature of the Mott transition for each � more
clearly, we calculate the electron number in each orbital α,
nα = ∑

σ 〈nασ 〉. In Fig. 5, we show the electron number in the
lower orbital 3, n3 = ∑

σ 〈n3σ 〉, as a function of U . Since the
total filling is fixed as n = 2, the electron number in degenerate
orbitals 1 and 2 satisfies n1 + n2 = 2 − n3. For � = 0, n3 is
constant (n3 = 2/3) because of triply degenerate orbitals. The
level splitting � increases n3 (decreases n1 + n2) at U = 0. For
small �, e.g., �/D = 0.2 and 0.4, n3 slightly increases with
U in the small U region. Around Uc, n3 shows a discontinuity,
and takes the value n3 = 1 beyond Uc, implying that the system
enters the MI. In Fig. 6, we show the spin-correlation function
〈S(U)

z S(L)
z 〉 between the upper two orbitals and the lower orbital

as a function of U . Here, S(U)
z = ∑

α=1,2(nα↑ − nα↓) and
S(L)

z = n3↑ − n3↓. It is seen that the spin correlation increases
with U and is enhanced near the Mott transition. In the triply
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FIG. 5. (Color online) Electron number in the lower orbital 3, n3,
as a function of U for several choices of � with J/U = 0.05 and
T/D = 0.02. Note that n1 + n2 = 2 − n3.

degenerate case (� = 0), the value of 〈S(U)
z S(L)

z 〉 jumps to
2/3 at the transition point because of n1 = n2 = n3 = 2/3.
As small orbital splitting (�/D = 0.2 and 0.4) is introduced,
〈S(U)

z S(L)
z 〉 jumps to 1 at the transition point, indicating that

the ferromagnetic spin correlation due to the Hund’s coupling
is maximally enhanced in the MI. We find that the effect
of the Hund’s coupling is dominant in the vicinity of the
Mott transition, which causes the enhancement of the spin
correlation even in the metallic state.

For �/D = 0.8, transitions occur twice; with increasing
U , the transitions from the metal to the correlated BI and
from the correlated BI to the MI occur. Note that we do
not show data in the correlated BI phase because of the
difficulty in numerical computations, as mentioned in the
last subsection. In the metallic phase around the former
transition, n3 tends to approach 2, indicating that the system
goes to the fully orbital-polarized state. In this case, the spin-
correlation function [Fig. 6(e)] is not enhanced at all, which
is different from that in the transition to the MI. By further
increasing U , the crossover behavior between the correlated
BI and the MI appears in these quantities; n3 gradually
decreases and approaches 1, and 〈S(U)

z S(L)
z 〉 is enhanced to 1

[Fig. 6(f)].
For �/D = 0.6, where both J and � are relevant and

competitive with each other around the Mott transition, we
find a remarkable effect due to the competition. In Fig. 5,
for �/D = 0.6, it is seen that n3 increases with U , exhibits a
discontinuity, and then takes a noninteger value, which changes
continuously even in the insulating phase. Actually, the com-
petition between J and � realizes a nontrivial insulating state
with (n1 + n2,n3) �= (1,1) and (n1 + n2,n3) �= (0,2), which is
also reflected in the spin-correlation function. In Fig. 6, we can
see that 〈S(U)

z S(L)
z 〉 increases with U , jumps to a value smaller

than 1 at the transition, and then gradually approaches 1 with
further increasing U . These characteristic properties in the
insulating phase stem from a crossover between two distinct
insulating states at finite temperatures [see Fig. 3(b)]: at the
phase transition from the metallic side, the above physical
quantities exhibit discontinuous changes to the intermediate
values between those expected for the two insulating phases,
which can then change continuously according to the values
of U , J , �, etc.
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FIG. 6. (Color online) Interorbital correlation functions of spin 〈S(U)
z S(L)

z 〉 as a function of U for several choices of � with J/U = 0.05 and
T/D = 0.02.

D. Orbital selective Mott transitions

Finally, we investigate the Mott transition in the case
of larger Hund’s coupling. Remarkably, we find that the
introduction of large Hund’s coupling reveals an intriguing
feature in the Mott transition, i.e., OSMT.12 In Fig. 7, we
show the �-U phase diagram for J/U = 0.15. It is seen
that the large values of J stabilize the MI region, and the
orbital selective Mott insulator (OSMI) phase emerges in it.
In the phase diagram, the critical interaction of the first-order
transition (crossover) is denoted by filled (open) circles, which
is determined from the position of the jump or crossover in the
double occupancy with increasing U . Note that the crossover
behavior is due to the finite-temperature effects and all the
phase boundaries shown in the figure should be of first order
at zero temperature.

Let us start with the simple case of � = 0 (the triply
degenerate case) and discuss the J dependence of Uc. We
first compare the three distinct values for the transition point
at � = 0, shown in Figs. 2 and 7, where the system undergoes
a simultaneous Mott transition. By comparing the results in
Fig. 2 (finite J ) and the inset of Fig. 2 (J = 0) at � = 0, it is

FIG. 7. (Color online) �-U phase diagram for the three-orbital
Hubbard model at 1/3 filling with J/U = 0.15 and T/D = 0.02. The
characteristic interaction strength from the metal to the MI (correlated
BI) is denoted by circles (triangles). The critical interaction of the
first-order transition (crossover) is denoted by filled (open) circles.
We only show Uc2 for the first-order transition. Solid lines are to
guide the eye. Dotted lines denote the phase boundaries obtained as
a guide by similar estimations to the case for J/U = 0.05 (Fig. 2).

seen that the introduction of J suppresses Uc2 . This is because
J lifts the high degeneracy due to spin-orbital symmetry
(U = U ′), driving the system to the MI in Fig. 2, where
a high-spin state with a parallel spin alignment is realized
due to the Hund’s coupling, as shown in the spin-correlation
function (Fig. 6). However, further increase in J (J/U = 0.15
in Fig. 7) makes Uc2 larger again. This may be caused by the
reduction of the Hubbard gap, which is roughly proportional
to U ′ − J . This kind of nonmonotonic behavior in Uc is
qualitatively consistent with results for the similar model
with the isotropic Hund’s coupling, including spin-flip and
pair-hopping terms.13,39 The transition temperature seems to
be suppressed by the effect of J , and actually the crossover
behavior emerges for J/U = 0.15 at T/D = 0.02 in Fig. 7.

For finite � (0.2 < �/D < 1.5), we find that the transition
(or crossover) occurs twice at U = U (L)

c and U = U (U)
c ;

i.e., the OSMT emerges. U (U)
c (U (L)

c ) is the characteristic
interaction for the first (second) Mott transition.34 Note that
the Mott transition in the lower orbital occurs first at the
smaller interaction, U (L)

c < U (U)
c , where the upper orbital is

still metallic. As seen in the phase diagram in Fig. 7, U (L)
c

is in good agreement with the line J = 3� drawn as a
guide to the transition between the MI and the correlated
BI, indicating that U (L)

c is indeed caused by the competition
between J and �, similar to the case for J/U = 0.05. On the
other hand, the characteristic interaction U (U)

c for the second
Mott transition (upper orbitals) is almost independent of �.
Actually, in the limit of large �, the second transition can
be described effectively in terms of the two-orbital Hubbard
model at quarter filling, where the Mott transition may be
triggered by the reduced interaction ∼U ′ − J .35 However, we
find that the characteristic interaction U (U)

c /D ∼ 3.4 is much
smaller than that expected for the two-orbital model at quarter
filling for the same parameters (J/U = 0.15, T/D = 0.02),
U (2orb)

c2
/D ∼ 4.6. This discrepancy is attributed to the Hund’s

coupling between electrons in the upper orbitals and the
lower orbital, which substantially suppresses spin fluctuations
in the upper orbitals and consequently reduces the value of
U (U)

c . For larger � (�/D � 1.4), the two separate transitions
merge together again, leading to the simultaneous first-order
transition.

To see how the quasiparticles evolve around the OSMT, we
show the orbital-dependent DOS in Fig. 8 for J/U = 0.15,
�/D = 0.8. We show the DOS for three phases: the metal,
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FIG. 8. (Color online) Density of states in (a) orbital 1 and
(b) orbital 3 for several choices of U at T/D = 0.02 with �/D = 0.8
and J/U = 0.15.

the OSMI, and the MI. In the metallic phase (U/D = 2.0),
the quasiparticle peaks appear around the Fermi level in both
orbitals. With increasing U , the system enters the OSMI phase
(U/D = 2.8), where the DOS for the lower orbital 3 opens
a gap while the DOS for the upper orbitals 1 and 2 are still
metallic with the quasiparticle peak. In the MI phase (U/D =
3.8), the DOS for both orbitals open gaps. In Fig. 9, we show
the imaginary part of the self-energy in the metallic and OSMI
phases. In the metallic phase, the limωn→0 Im
(iωn) goes to
0 and shows Fermi-liquid behavior. On the other hand, in
the insulating phase, Im
(i0) diverges. In the OSMT phase,
Im
(i0) for orbital 1 tends to remain finite, indicating the
non-Fermi-liquid behavior. This tendency is consistent with
the previous study.12

In Fig. 10(a), we show the electron number of orbital 3, n3,
as a function of U for several choices of �. For finite �, we can
see that n3 dramatically increases or decreases toward a value
of commensurate condition, n3 = 1, and eventually has the
fixed value n3 = 1 beyond U (L)

c . We observe a discontinuity
in n3 at the first-order transition for �/D = 1.5 (though very
small) and a continuous change characteristic of the crossover
for �/D = 0, 0.2, 0.8, and 1.2. In order to clarify how strongly
the renormalization of the system parameters occurs around
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FIG. 9. (Color online) Imaginary part of self-energy in (a) orbital
1 and (b) orbital 3 for several choices of U at T/D = 0.02 with
�/D = 0.8 and J/U = 0.15.
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FIG. 10. (Color online) (a) Electron number in the lower orbital
3, n3, (b) effective level splitting �eff, (c) squared onsite spin moment
in the lower band 〈(S(L)

z )2〉, and (d) squared onsite orbital moment
in the upper bands 〈(τ (U)

z )2〉 as a function of interaction strength U

for several choices of level splitting �. Other parameters are set as
J/U = 0.15 and T/D = 0.02.

the transition point, we calculate the effective level splitting
�eff, defined as

�eff = μ3 − μ1, (2)

μ1 = Z1[μ − Re
1(ω = 0)], (3)

μ3 = Z3[μ + � − Re
3(ω = 0)], (4)

where μα is the effective chemical potential for the quasi-
particles of orbital α, which incorporates the self-energy
shift due to the interactions. We obtain Re
α(ω = 0) from
the imaginary frequency data Re
α(iωn) for small n with
a quadratic-function extrapolation scheme. In Fig. 10(b), we
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show the U dependence of the computed �eff. Note that we
show �eff only for interaction strengths smaller than U (L)

c ,
since we are interested in the renormalization effects in the
metallic phase. It is seen that �eff increases or decreases
around U (L)

c , giving rise to the increase or decrease in the
electron number n3. From these results, we can say that
the transition at U = U (L)

c is mainly driven by the strong
renormalization of the level splitting, resulting in a kind of
filling-control Mott transition. On the other hand, the phase
transition between the OSMI phase and the MI phase is driven
by an interaction-control mechanism, and can be described
effectively by a two-orbital Mott transition at quarter filling.
As a result, the transition point is almost independent of �,
though the value of the critical interaction is reduced by the
Hund’s coupling between different orbitals.

To characterize the OSMT, we further calculate the local
moment of the spin and orbital. In Figs. 10(c) and 10(d), we
show the squared spin-moment in the lower orbital 〈(S(L)

z )2〉
and that of the orbital moment in the upper orbitals 〈(τ (U)

z )2〉,
respectively. Here, S(L)

z = n3↑ − n3↓, τ (U)
z = ∑

σ (n1σ − n2σ ).
S(L)

z (τ (U)
z ) is expected to take values close to 1 when the lower

orbital (upper orbitals) becomes the Mott insulator with n3 = 1
(n1 + n2 = 1). It is shown that 〈(S(L)

z )2〉 is enhanced around the
first transition at U = U (L)

c and indeed takes a value close to
1 beyond U (L)

c , which is consistent with the behavior in the
electron number n3 and the effective level splitting �eff. On
the other hand, for �/D = 0.8 and 1.2, where OSMT occurs,
the value of 〈(τ (U)

z )2〉 is still less than 1 even at U = U (L)
c ,

but increases with further increasing U , and finally takes the
value close to 1 beyond U (U)

c (the second transition point). This
implies that, in the OSMI phase, the orbital fluctuations play
an important role in stabilizing the coexistence of metallic and
insulating states.

IV. SUMMARY

We have studied the Mott transition in the three-orbital
Hubbard model. By using the DMFT combined with CT-QMC,
we have investigated how the orbital level splitting and the
Ising-type Hund’s coupling affect the Mott transition in the
case of two electrons per site. It has been found that the critical
interaction strength shows a nonmonotonic behavior as a
function of the level splitting. We have found that this behavior
is characteristic for 1/3 filling, in comparison with the previous
results at different fillings15 and for two-orbital models.24–26

In some parameter regions, the two distinct insulating states,
i.e., the MI and the correlated BI, strongly compete with

each other, and the metallic state is stabilized there. It can
trigger a nontrivial first-order metal-insulator transition, where
the insulating state has the intermediate characters between
MI and BI. We have also found that the two insulating
phases show different behaviors in the phase boundary with
the metallic state in the interaction-temperature plane. This
difference is reflected in the quasiparticle behavior around
the transition. The quasiparticle state around the transition to
the MI is suppressed with increasing temperature, while the
quasiparticle state near the correlated BI is rather enhanced.

For larger Hund’s coupling, we have also investigated the
OSMT, where a part of the bands becomes insulating while
the others are still metallic. In the transition from the metal to
the OSMI phase, the strong renormalization of the orbital level
splitting occurs, making its character similar to that of a filling-
control Mott transition. On the other hand, the phase transition
between the OSMI phase and the MI phase can be simply
described by an effective two-band Hubbard model at quarter
filling, where the interaction strength of the phase transition is
almost independent of �, but is substantially reduced by the
Hund’s coupling between the different orbitals. In the OSMI,
the tendency to the non-Fermi liquid has been seen in the
self-energy, which is consistent with the previous study at
zero temperature.12

We have neglected the possibility of magnetic/orbital
ordering for simplicity in this paper. It is interesting and
important to elucidate how such orderings are incorporated
in the metal-insulator transitions discussed here, which is now
under consideration.
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