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Effective field theory of fractional quantized Hall nematics
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We present a Landau-Ginzburg theory for a fractional quantized Hall nematic state and the transition to it
from an isotropic fractional quantum Hall state. This justifies Lifshitz-Chern-Simons theory—which is shown
to be its dual—on a more microscopic basis and enables us to compute a ground-state wave function in the
symmetry-broken phase. In such a state of matter, the Hall resistance remains quantized while the longitudinal dc
resistivity due to thermally excited quasiparticles is anisotropic. We interpret recent experiments at Landau-level
filling factor ν = 7/3 in terms of our theory.
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I. INTRODUCTION

A fractional quantized Hall nematic (FQHN) is a phase in
which a fractional quantized Hall conductance coexists with
the broken rotational symmetry characteristic of a nematic,
as in the model introduced in Ref. 1. The idea that a phase
of matter could have both topological order and conventional
broken symmetry is not new; for instance, Hall crystals2,3 and
quantum Hall ferromagnets4,5 are other examples. See Ref. 6
for a more recent discussion in a related system. However, the
FQHN has the unusual feature that the broken symmetry and
the topological order are equally important for determining
the system’s transport properties. Furthermore, the model
also predicts an unusual quantum critical point separating the
FQHN from an ordinary isotropic fractional quantum Hall
state.

Remarkably, a recent experiment may have observed a
FQHN.7 An in-plane magnetic field B‖ is applied to the
ν = 7/3 fractional quantum Hall plateau. When the angle θ

between the total magnetic field and the normal is zero, the
system is essentially isotropic: for T < 100 mK, Rxx ≈ Ryy .
At T = 15 mK, there is a well-developed Hall plateau with
Rxy = Ryx = 3

7
h
e2 . At T > 100 mK, there is a small (≈20%)

difference between Rxx and Ryy , which may be due to device
geometry, alignment of the contacts, or a small intrinsic
anisotropy acquired by the samples during the growth process.
For tilt angles θ > 19◦ and T < 50 mK, Rxy = Ryx = 3

7
h
e2

while Rxx − Ryy increases with decreasing temperature. In
fact, dRxx/dT < 0 while dRyy/dT > 0 at the lowest observed
temperatures. Thus, this experiment finds transport which is
reminiscent of the nematic phases found at half filling of higher
Landau levels, such as ν = 9/2,11/2, . . . without an in-plane
field8,9 and also at ν = 5/2 and 7/2 in the presence of an
in-plane field,10,11 except for one very striking difference: the
Hall resistance remains quantized in the anisotropic phase.

We interpret these observations as a slightly rounded
transition between an isotropic fractional quantum Hall phase
at θ < θc � 19◦ and a FQHN at θ > θc. The rounding of the
transition is caused by the in-plane field. We believe it to
be a weak rotational symmetry-breaking field because the
system is in an isotropic metallic phase for even larger tilts
at the nearby fraction ν = 5/2,12 and because the anisotropy
at 300 mK actually decreases as the tilt is increased from 44◦

to 76◦. We conjecture that the most important effect of the
in-plane field is to vary the effective interaction between the
electrons, thereby driving the (almost) spontaneous breaking
of rotational symmetry. We are thus led to apply our model1

to this experiment.
To this end, we give a more microscopic derivation of our

model as a Landau-Ginzburg theory. We thereby recover a
theory which is equivalent, through particle-vortex duality,
to the effective field theory introduced in Ref. 1. In order
to compare theory and experiment more closely, we extend
our previous analysis of zero-temperature, finite-frequency
transport to finite-temperature dc transport; in order to do
this, we must enlarge our model to include the effects of
gapped charged quasiparticles. The development of nematic
order induces strongly temperature-dependent anisotropy in
the quasiparticle effective masses. We predict that both
longitudinal conductances will eventually vanish at the lowest
temperatures, although one of them will have nonmonotonic
temperature dependence at slightly higher temperatures. We
finally make predictions for transport at and near the transition
point.

II. LANDAU-GINZBURG THEORY

A. Overview

One can map the problem of spinless planar electrons in
a transverse magnetic field B with Coulomb repulsion to an
equivalent system of a bosonic order parameter φ of unit charge
coupled to a Chern-Simons gauge field aμ.13 The action takes
the form

SLG =
∫

d2xdt

(
φ†i[∂t − i(At + at )]φ

− 1

2me

|[∂i − i(Ai + ai)]φ|2 + ν

4π
εαβγ aα∂βaγ

− 1

2

∫
d2y[φ†φ(x) − ρ̄]V (x − y)(φ†φ − ρ̄)

)
. (1)

Aμ is the background electromagnetic field satisfying
εij ∂iAj = B; ρ̄ is the mean charge density of bosons (or
equivalently electrons); me is the electron band mass; V(x)
is a general two-body potential; and the Chern-Simons gauge
field aμ attaches 2πν−1 units of statistical flux to each
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particle.14 In particular, for ν−1 an odd integer, the resulting
Aharonov-Bohm phases transmute the bosons into fermions.

We assume that the low-energy effective theory for dis-
tances longer than the magnetic length, obtained by integrating
out short-distance fluctuations of φ and aμ, has the same form
as the microscopic action (1), but with the bare microscopic
parameters 1/me and V (x − y) replaced by renormalized
ones, r̄ and Veff(x − y). Such an ansatz allows one to derive
many of the properties of the standard fractional quantum
Hall states.13,15 Here, we will make the same ansatz, but
without assuming that r̄ remains positive. We note that even
the “microscopic” action (1) must be viewed as an effective
low-energy action that describes the partially filled N = 1
Landau level with ν = 2 + 1/3. The electrons are confined to a
quantum well of finite width; a strictly two-dimensional theory
is an effective theory at energy scales far below the splitting
between energy subbands for motion perpendicular to the
plane. Thus, the application of the in-plane field B||, through
its modification of the motion perpendicular to the plane, will
modify the parameters in SLG. Consequently, the effective
parameters at distances longer than the magnetic length will
also be modified, but not in a simple or, at present, transparent
way. It is easy to check that reasonable local variations of Veff

do not cause qualitative changes to the physics of (1).15 We
leave to a future study the question of higher-body potential
terms resulting from a projection of the degrees of freedom
into a specific Landau level.

Therefore, we conjecture that as the in-plane field B|| is
varied, the most significant variation is of the parameter r̄ . In
other words, we study the instabilities of (1) as the kinetic
structure of the theory is modified.

Since we will be considering r̄ < 0, we add the following
term with c > 0 to the action in order to maintain stability of
the vacuum:

δS = − c

2

∫
d2xdt |[∂i − i(Ai + ai)]

2φ|2. (2)

This theory exhibits a transition between an isotropic
fractional quantum Hall phase, when r̄ > 0, and an anisotropic
phase with well-quantized Hall conductance (after inclusion
of disorder or a lattice) when r̄ < 0, just as in Ref. 1. The two
phases are separated by a quantum critical point with z = 2
dynamical scaling, arising at r̄ = 0.

B. Kohn’s theorem

On might object to any variation of r̄ from its bare value
on the basis of Kohn’s theorem.16 (See Sec. 5 of Ref. 15 for
a discussion.) In a Galilean-invariant system of N identical
mutually interacting particles of unit charge and mass me

subject to a constant external magnetic field B, Kohn’s theorem
states that the density-density correlation function has the
low-momentum limit

lim
q→0

〈ρ(ω,q)ρ(−ω, − q)〉
q2

=
1

me

ω2 − ω2
c

. (3)

The locations of the two poles are determined by the cyclotron
frequency ωc = B/me. For fixed B, the cyclotron frequency
is determined by the bare mass of the particles, independent
of their relative interactions. The residues of the poles are

equal to ±1/2B. The form of this correlator is ensured by
a Ward identity and satisfies an f -sum rule. Kohn’s theorem
roughly states that the center of mass of the system always
decouples from the relative coordinate motion of the particles;
it effectively behaves as a single charge-N particle of mass
Nme, exhibiting circular motion at a frequency ωc in a
background magnetic field B. In quantum Hall systems, the
quantum well explicitly breaks translational symmetry in the
z direction (i.e., perpendicular to the plane). However, the
in-plane center-of-mass motion still decouples from the other
degrees of freedom, so long as the magnetic field is strictly
perpendicular to the plane. Thus, Kohn’s theorem holds even
in this case.

If we now compute the density-density correlator using
the action (1), we find precisely the form dictated by Kohn’s
theorem (3). However, the modification 1/me → r̄ would
change the location of the pole. This manifestly constitutes
a violation of Kohn’s theorem.

The experiment of Ref. 7, though, does not satisfy the
assumptions of Kohn’s theorem. The large in-plane field,
combined with the confining well potential (perpendicular to
the plane), manifestly breaks Galilean invariance and does
not allow a decoupling of the center-of-mass mode. The
in-plane field couples motion along the z direction to motion
in the plane, while the confining potential in the z direction
couples the z component of the center-of-mass position to
the z component of the relative coordinates. The N = 1
Landau level in the devices considered in Ref. 7 is particularly
susceptible to perturbations mixing planar and z-direction
motion because the gap to the N = 0 Landau level of the
next quantum well subband is small.12

In summary, our theory, in which r̄ is not fixed, applies
to situations, such as those in the experiment of Ref. 7,
in which Kohn’s theorem does not hold. Our theory cannot
describe a fictional system in which the two-dimensional layer
is infinitely thin and the transition is driven purely by tuning
the interelectron interaction (without any in-plane field) since
such a system would necessarily satisfy Kohn’s theorem. To
make our point more concrete, we show in the Appendix that,
as a result of the violation of the conditions of Kohn’s theorem,
the location of the cyclotron pole can vary as B|| is increased.

C. Duality

We have computed the long-wavelength transport proper-
ties of the various phases of (1) directly from the Landau-
Ginzburg (LG) theory and found them to exactly match the
response determined from the Lifshitz-Chern-Simons (LCS)
theory of Ref. 1. This is expected because there is a low-energy
equivalence between the (more) microscopic theory (1), (2)
and the LCS theory which we demonstrate by expanding about
the relevant ground state in the three cases r̄ > 0,r̄ = 0,r̄ < 0,
and mapping the low-energy theory to the action governing
the similar phase of the LCS theory, using particle-vortex
duality.17 For convenience, we assume a short-ranged repulsive
interaction Veff(x) = V0δ(x) with V0 > 0 throughout. This
choice is motivated by expected screening effects of the
microscopic electrons. Nevertheless, the precise form of Veff

plays very little role in the considerations below as long as it
is local.

195124-2



EFFECTIVE FIELD THEORY OF FRACTIONAL . . . PHYSICAL REVIEW B 84, 195124 (2011)

For r̄ � 0, there is a saddle point configuration given by
〈φ†φ〉 = ρ̄, 〈aμ〉 = −Aμ, with filling fraction ρ̄/B = ν/2π .
The low-energy action for fluctuations about this ground state
when r̄ > 0 is

Seff(r̄ > 0) =
∫

d2xdt

(
− δρ(∂tθ − δat ) − r̄

2
ρ̄(∂iθ − δai)

2

+ ν

4π
εαβγ δaα∂βδaγ − 1

2
V0(δρ)2

)
. (4)

δρ and θ govern the fluctuations of the norm and phase of the
bosonic order parameter φ, δaμ represents the fluctuation of the
Chern-Simons gauge field, and we have taken the background
field fluctuations to vanish. Seff(r̄ > 0) can be rewritten by
introducing the field Ji [the spatial components of the U (1)
current associated with the background gauge field]:

Seff(r̄ > 0) =
∫

d2xdt

(
− δρ(∂tθ − δat ) − Ji(∂iθ − δai)

+ 1

2r̄ ρ̄
J 2

i + ν

4π
εαβγ δaα∂βδaγ − 1

2
V0δρ

2

)
.

(5)

Now, integrating out Ji trivially reproduces the previous
Lagrangian; but we can instead find a dual description of the
theory by keeping Ji in the Lagrangian and integrating out the
other degrees of freedom. θ appears linearly and functions
as a Lagrange multiplier ensuring conservation of Jμ. We
can guarantee this by rewriting Jμ = 1

2π
εμντ ∂νnτ . Writing the

theory in terms of n, and integrating out δaμ, we find

SLCS(r̄ > 0) =
∫

d2xdt

(
1

2g2
e

(∂int − ∂tni)
2

− 1

2g2
m

(∂inj − ∂jni)
2 + 1

4πν
εαβγ nα∂βnγ

)
.

(6)

This is Maxwell-Chern-Simons theory at level ν−1 with g2
e =

4π2r̄ ρ̄ and g2
m = 4π2

V0
. This matches the behavior of the LCS

theory of Ref. 1 in the fractional quantum Hall phase (r̄ > 0).
When r̄ = 0 (the z = 2 critical point), it is necessary to keep

the δS term. Nevertheless, the dualization proceeds almost
identically. The leading terms in the expansion of the action in
small fluctuations about the saddle point are

Seff(r̄ = 0) =
∫

d2xdt

[
− δρ(∂tθ − δat )

− Ji

∂2

(
∂i∂j (∂j θ − δaj ) − 1

2cρ̄
Ji

)

+ ν

4π
εαβγ δaα∂βδaγ − 1

2
V0δρ

2

]
. (7)

This is a formal expression because of the inverse Laplacian
in the second term. Current conservation, which is imposed
by the θ equation of motion, allows us to replace J with
the emergent gauge field n. Imposing the gauge conditions
δn0 = 0 and ∂ini = 0, and integrating out aμ, we obtain a

gauge-fixed version of the LCS Lagrangian. Covariantizing
the gauge-fixed action yields

SLCS(r̄ = 0) = 1

g2

∫
d2xdt

(
1

2κ2

1

∂2
(∂int − ∂tni)

2

− 1

2
(∂inj − ∂jni)

2 + g2

4πν
εαβγ nα∂βnγ

)
, (8)

where κ2 = 2cρ̄V0 and g2 = 4π2/V0. This is precisely the
theory governing the critical point in Ref. 1, with the ei field
integrated out. [The z = 2 nature of the ei field action ∼(∂iej )2

in that theory, gives rise to the peculiar inverse Laplacian in
the action above.]

Last, we discuss the anisotropic r̄ < 0 phase. The ground
state is still homogeneous, 〈φ†φ〉 = ρ ′ρ ′ = ρ̄ + |r̄|2/8cV0, but
anisotropic, since 〈aμ〉 = −Aμ − vμ, with v0 = 0 and v2

i =
|r̄|/2c. At this saddle point, the chemical potential is shifted
upward. The leading terms in the low-energy action, expanding
around the symmetry-breaking vacuum with the condensate
lying along the x axis, take the form (where again we have
introduced a current Ji)

Seff(r̄ < 0) =
∫

d2xdt

{
− δρ(∂tθ − δat )

− Jx

[(
(∂xθ − δax) − 1

4|r̄|ρ ′ J
2
x

)]

− Jy

∂2
y

[
∂2
y (∂yθ − δay) − 1

2cρ ′ J
2
y

]

+ ν

4π
εαβγ δaα∂βδaγ − 1

2
V0δρ

2

}
. (9)

The θ equation of motion imposes current conservation for the
density δρ and current Ji . Integrating out δaμ once more, we
obtain

SLCS(r̄ < 0) = 1

g2

∫
d2xdt

(
1

2κ2

1

∂2
(∂xnt − ∂tnx)2

+ g2

2|r| (∂ynt − ∂tny)2 − 1

2
(∂inj − ∂jni)

2

+ g2

4πν
εαβγ nα∂βnγ

)
, (10)

where κ2 = 2cρ ′V0, |r| = 4|r̄|ρ ′V0, and g2 is as above. This
agrees with the LCS theory in the anisotropic phase in
Ref. 1. It is gapless, as may be seen from the ni propagators,
which evince a contribution from the Goldstone mode for
spontaneously broken SO(2) rotational symmetry. Note that a
symmetry-breaking vacuum along the x direction of the LG
theory corresponds to a symmetry-breaking vacuum along the
y direction in the LCS theory.

The effects of disorder are implemented by allowing
spatially varying r̄(x) in the Landau-Ginzburg description.
The low-energy equivalence implies that introducing such
disorder in the LG theory will lift the Goldstone mode of
the spontaneously broken SO(2) symmetry and will lead to a
quantized Hall conductance, as it did in in the anisotropic
phase of the LCS theory.1 The pseudo-Goldstone mode
should be visible in low-energy Raman scattering experiments.
Alternatively, we could introduce a lattice by including terms
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in the action which explicitly lower the rotational symmetry
from SO(2) to D4. In this case, the third term in (9) takes,
instead, the form Jy[(∂yθ − δay) − 1

4|r̄ ′|ρ ′ J
2
y )], where r̄ ′ is

proportional to the effective lattice potential; consequently,
there is no Goldstone mode for rotational symmetry breaking.

D. Ground-state wave function in the r̄ < 0 phase

We now compute the ground-state wave function in the
r̄ < 0 phase following the method described in Ref. 15. For
D4 symmetry, which is more experimentally relevant, it takes
the form

�(zi) =
∏
i<j

(zi − zj )1/v

(
1 + δr̄

|r̄|ν
(zi − zj )2 + (z̄i − z̄j )2

|zi − zj |2
)

.

(11)

In (11), zi = xi + iyi , δr̄ = r̄ − r̄ ′, and we have suppressed
both higher-order terms in δr̄/r̄ and the exp(−∑

i |zi |2/4�2
0)

Gaussian factor where �2
0 = h̄/B. The wave function becomes

identical to the Laughlin wave function in the absence
of symmetry breaking, δr̄ = 0. It would be interesting
to understand if there is any relation between (11) and
Ref. 18.

III. FINITE-TEMPERATURE TRANSPORT

We now compute the contribution to the finite-temperature
dc conductivity tensor from thermally excited charged quasi-
particles. The LCS theory is more convenient than the equiva-
lent Landau-Ginzburg description because (massive) charged
quasiparticles are vortices of the Landau-Ginzburg theory and
fundamental particles of the LCS theory. This computation
demonstrates that highly anisotropic finite-temperature trans-
port can result from our model but is not an attempt to give a
precise fit to experimental data, which would require a more
careful analysis of the effects of disorder, the lattice, and
subleading interactions.

We include the effects of the massive quasiparticles by
adding to the “first-order” form of the LCS action,

SLCS = 1

g2

∫
d2xdt

(
ei∂tni + nt∂iei − r

2
e2
i − κ2

2
(∂iej )2

− 1

2
(εij ∂inj )2 + g2

4πν
εμνλnμ∂νnλ − λ

4

(
e2
i

)2

+ α

4

(
e4
x + e4

y

) + 1

2π
εμνλAμ∂νnλ

)
, (12)

the matter action,

Smatter =
∫

d2xdt�∗(i∂t + nt − � + (i∂i + ni)
2

+u e2
x (i∂x + nx)2 + u e2

y (i∂y + ny)2
)
�. (13)

Thus, we study the total action S = SLCS + Smatter. In SLCS,
we have not integrated out the ei field. At tree level, the
quartic e4 terms in SLCS are marginal; the operator with
coefficient λ preserves the full spatial SO(2) symmetry, while
the operator with coefficient α explicitly breaks it down to D4.
We assume α is small and positive, reflecting a small explicit
breaking of SO(2) inherent in the real material. The last term in
SLCS is the coupling to the external electromagnetic field Aμ.

The statistical gauge field endows the massive quasiparticles
represented by � with their fractional statistics. The irrelevant
energy-energy coupling parametrized by u is the leading term
that directly communicates the D4 spatial rotational symmetry
breaking of the r < 0 ground state to the matter field. By
ignoring a possible e2

i |�|2 coupling, we are assuming that the
magnitude of the symmetry-breaking order parameter 〈ei〉 in
the r < 0 regime is much less than the quasiparticle gap �.

We concentrate on the finite-temperature dc conductivity
when r < 0; however, the actual expressions obtained are valid
for all r , if interpreted appropriately. (The functional form of
the optical conductivity was already determined in Ref. 1; it
differs in the two phases, and shows striking features at the
critical point.) Let us assume that 〈ex〉 is nonzero in the r < 0
regime at zero temperature. To quadratic order, Smatter becomes

Smatter =
∫

d2xdt{�∗(i∂t + n0 − �)�

+�∗[(1 + u〈ex〉2)(i∂x + nx)2 + (i∂y + ny)2]�}.
(14)

At temperatures less than �, we can integrate out the
quasiparticles and write an effective action solely in terms
of the fields appearing in SLCS. It is convenient to express the
resulting effective action in Fourier space, obtaining

S = SLCS + 1

2

∫
d2qdω nμ(−ω, − q)�μν(ω,q)nν(ω,q).

(15)

The kernel �μν appearing in the second term contains the
quasiparticle contribution to the conductivity, σ

qp
ij ,

σ
qp
ij = lim

ω→0

1

iω
〈ji(−ω,0)jj (ω,0)〉 = lim

ω→0

1

iω
�ij (ω,q = 0),

where ji(ω,q) = δSmatter
δni (−ω,−q) is the quasiparticle current opera-

tor. Computing the dc conductivity from (15), we find

σij = 1

2π
lim
ω→0

εikεjl

(
kεkl + 2πσ

qp
kl

)−1
. (16)

This implies that ρxy = −ρyx = k while ρxx = 2πσ
qp
yy and

ρyy = 2πσ
qp
xx . Thus, we see that one of the most remarkable

features of the experimental results in Ref. 7 has a natural
explanation in our model: ρxy remains quantized while ρxx and
ρyy can be temperature dependent if σ qp is diagonal. Second,
we note that the anisotropy in the dc resistivity comes entirely
from the induced anisotropy in the quasiparticle kinetic energy.
By contrast, the transport due to the fluctuations in SLCS

showed frequency-dependent anisotropy that resulted from
subleading terms in the gauge field action.1 So there is ad-
ditional anisotropy in the ac transport that is not present in the
dc transport. In particular, ac transport shows low-frequency
conductivity that vanishes linearly and cubically along the
two orthogonal directions. The two types of anisotropy
come from different physical mechanisms—anisotropy in the
gauge field kinetic energy versus anisotropy in the quasi-
particle kinetic energy—although the ultimate cause is the
same.

It remains to calculate �μν . We summarize the calculation
of �ii for spatial i below. We introduce dissipation by
assuming the quasiparticles have an elastic scattering lifetime
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equal to τ and a single-particle gap �/2. Due to the anisotropy
introduced by 〈ex〉 in Smatter, the longitudinal current-current
correlation functions along the two spatial directions are
related,

〈jx(ωn,0)jx(−ωn,0)〉 = (1 + u〈ex〉2)
1
2 f (iωn,T ),

〈jy(ωn,0)jy(−ωn,0)〉 = (1 + u〈ex〉2)−
1
2 f (iωn,T ),

where

f (iωn,T ) = T

π

∑
m

∫
dqq3G(iωn+m,q)G(iωm,q) (17)

and after rescaling qx we obtain the rotationally invariant form

G−1(iωm,q) = iωm − �/2 − q2 + i

πτ
Arg(�/2 − iωn).

(18)

Here, we use the fact that the imaginary part of the correlation
function (which gives the real part of the conductivity) is
cutoff independent so that the rescaling of the cutoffs can be
neglected. The diamagnetic contribution to the sum vanishes.

Replacing the sum over Matsubara frequencies, ωm =
2πT , by a contour integral, we have Imf (ω + iδ,T ) =
π
4 ωT τe−�/2T , where we have made use of the large-τ limit.
Therefore, the longitudinal quasiparticle dc conductivities

σ qp
xx,yy = π

4
(1 + u〈ex〉2)±1/2T τe−�/2T , (19)

where the + (−) refers to σ
qp
xx (σ qp

yy ). Inserting these expressions
into (16), we find that

ρxx − ρyy ≈ π

4
u〈ex〉2T τe−�/2T + O(e−�/T ). (20)

(19) and (20) are assumed to be valid at temperatures T <

�/2, but high enough such that variable-range hopping can
be ignored. Thus, we have demonstrated theoretically the
existence of a fractional quantum Hall effect that has both
anisotropic zero-temperature ac transport as well as anisotropic
finite-temperature dc transport.
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FIG. 1. (Color online) Longitudinal resistivities ρxx,yy along the
easy x axis (red) and hard y axis (blue) obtained from the conductiv-
ities in (19) plotted versus temperature. The microscopic parameters
entering the expressions in (19) are found phenomenologically from
the resistances measured in Ref. 7 as explained in the main text.

The dc resistivities are plotted in Fig. 1. The precise
temperature dependence of the dc resistivity is determined
by the behavior of 〈ex〉 and the quasiparticle scattering time
τ . At temperatures near the rounded finite-temperature phase
transition, 〈ex〉 can be identified with the order parameter of
the particular finite-temperature phase transition. We expect
this classical phase transition to be described by a theory
lying on the Ashkin-Teller half-line or, equivalently, the
moduli space of the c = 1 Z2 orbifold theory. All theories
along the line possess a global Z4 symmetry and an order
parameter for the Z4-broken phase with critical exponent
1/16 < β < ∞.19,20 Since the Kosterlitz-Thouless (KT) criti-
cal point lies at the boundary point of this half-line, we expect
the particular critical theory governing the transition to be
largely determined by the degree of SO(2) rotation symmetry
breaking in the experimental system. Since the in-plane field
appears to be a weak symmetry-breaking field, as discussed
in the Introduction, we expect the transition to be fairly
sharp.

For definiteness below, we take the transition to be in
the universality class of the critical four-state Potts model
which lies at the boson radius r = 1/

√
2 on the orbifold

line. In Fig. 1 are plotted the resistivities ρxx,yy . The order
parameter for this transition 〈O〉 ∼ 〈ex〉 ∼ (−t)1/12, where t =
(T − Tc)/Tc.21 [There is not a significant qualitative difference
in the plots if the system has the full SO(2) rotation symmetry
so we have suppressed a separate discussion of the KT
transition.]

The microscopic parameters in (19) are determined using
the resistance measurements performed in Ref. 7 as follows.
For simplicity, we assume rotationally invariant relations
between resistivities and resistances, ρxx = f (Lx,Ly)Rxx

and ρyy = f (Lx,Ly)Ryy , where f (Lx,Ly) is some function
depending on the sample lengths Lx,y . In other words, we
ignore possible geometrical enhancements that may be present
in translating between these two sets of quantities. (See Ref. 22
for a discussion of the importance of this distinction in the
context of anisotropic transport in ν = 9/2,11/2, . . . half-
filled Landau levels.8) The measured temperature dependences
of ρxx and ρyy at zero in-plane field are fitted well by Arrhenius
plots ρxx,yy = A exp(−�/2T ), with � = 225 mK and A =
10−2h/e2. We continue to use these values in the anisotropic
regime, which we identify with the region r̄ < 0, when the
in-plane field is of sufficient magnitude. The temperature-
independent value of A over the temperature range 50 < T <

150 mK implies a quasiparticle scattering lifetime τ ∼ 200
T

.
An estimate of 5.6 × 10−3h/e2for the maximum value of Rxx

observed at a tilt angle of 66◦ and achieved as T → 15 mK
from above implies u〈ex〉2 ∼ 50(−t)1/6 with Tc = 50 mK. We
stress that the fitting of parameters used to obtain Fig. 1 is
meant to be as optimistic as possible so as to determine the
microscopic parameters of our theory if it is to apply to the
experiment.

The height of the peak observed in Fig. 1 de-
pends sensitively on the temperature-independent value of
(u〈ex〉2)/(−t)1/6 = (ur)/[(λ − α)2(−t)1/6]. In Fig. 2, we plot
ρyy for three different values of this parameter, starting with the
value used in Fig. 1. As the figure indicates, the peak decreases
as this parameter is lowered.
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FIG. 2. (Color online) Longitudinal resistivity ρyy along the hard
y axis for three separate values of the parameter m = u〈ex〉2/(−t)1/6.
From top to bottom (blue, red, yellow), m = 50,10,1.

We expect the in-plane magnetic field B|| to act as a small
symmetry-breaking field on this finite-temperature transition.
This will lead to a rounding of the resistivity curves in Fig. 1.
The order parameter now behaves as

〈ex〉 ∼ B
1/δ

|| g±

(
(±t)β

B
1/δ

||

)
, (21)

where the ± is determined by the sign of t , and the critical
exponents β = 1/12 at the four-state Potts point and δ = 15
along the orbifold line. Integral expressions for the scaling
functions g± are known;23 a precise functional form, however,
is not. Scaling dictates that g−(x = 0) = g+(x = 0) are finite
and nonzero, g−(x) ∼ x as x → ∞, and g+(x) = 0 for x >

xcrit ∼ 1.
Since we do not have an explicit functional form for g±,

let us simply model the transition using mean-field theory
in order to obtain a qualitative picture for the rounding of
the transition. (We do not mean to imply that the crossover
function for the Z4 transition is in any way similar to a φ4

mean-field crossover function. Rather, we only want a picture
for how the transition might be rounded.) The φ4 mean-field
critical exponents β = 1/2 and δ = 3. Specification of the free
energy F = 1

2Tctφ
2 + 1

4φ4 − φh allows the calculation of g±
via minimization of F with respect to φ. We select the root

〈φ〉 = h1/3

(∓2(3)1/3x2 + 21/3(9 + √
81 ± 12x6)2/3

62/3(9 + √
81 ± 12x6)1/3)

)
, (22)

where x = |T − Tc|1/2/h1/3 and where the upper sign is
chosen for positive t and the lower for negative t . It satisfies
the scaling requirements detailed in the previous paragraph.
Substituting u〈ex〉2 = 7〈φ〉2 at h = 1 into our expressions for
the resistivities using the same values for the overall scale of
the resistivity and behavior of the scattering time τ as above,
we find Fig. 3.

When r � 0, the form (16) and (19) of the finite-
temperature dc conductivity matrix still holds. However, 〈ex〉 is
zero and the longitudinal conductivity along the two directions
coincides. Note that nonzero ac conductivity at the r = 0
critical point requires disorder exactly like that in the r < 0
regime.1
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FIG. 3. (Color online) In-plane field rounded longitudinal resis-
tivities ρxx,yy along the easy x axis (red) and hard y axis (blue)
obtained from the conductivities in (19) plotted versus temperature.
A mean-field crossover function has been used in the expression for
the resistivities.

IV. DISCUSSION

In this paper, we have given an explanation of one of the
most striking aspects of the data of Ref. 7: the anisotropy
of the longitudinal resistances coexisting with quantized Hall
resistance. Our theory further predicts that, while one of
the resistances will increase with decreasing temperature at
temperatures just below the (rounded) finite-temperature phase
transition at which nematic order develops, as observed,7

both longitudinal resistances will, eventually, go to zero at
the lowest temperatures, which is yet to be observed. It
is an interesting question to consider the complementary
experimental possibility of a state that is metallic along one
direction and insulating along the other, but with fractionally
quantized Hall conductance. Our theory does not apply to
such a state. Transport beyond the linear regime, the nature
of the massive quasiparticles in the anisotropic phase, and a
more complete determination of the values of the parameters
in the effective Lagrangian in terms of microscopic variables
are interesting open problems.
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APPENDIX

In this Appendix, we show that, as a result of the violation of
the conditions of Kohn’s theorem, the location of the cyclotron
pole can vary as B|| is increased. [It is also possible that
additional spectral weight shows up at O(q2), but we shall not
study this possibility in any detail.] We do this by identifying
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the leading pole in the density-density response with the gap
between the lowest and first excited states in the center-of-mass
part of the quantum mechanical many-body wave function.
This identification is correct for vanishing in-plane field B||
and we believe it holds for perturbatively small values of B||
as well, where separation of variables into center-of-mass and
relative coordinates is well defined. Of course, this simple
example can, at best, give us a few clues about the real system,
which is far more complicated. One of these is that the pole
moves toward the origin (at least initially) as B|| is increased
from zero. This justifies our study of the model (1) with
varying r̄ .

We begin with the quantum mechanics problem of two mu-
tually interacting three-dimensional electrons in a background
magnetic field. This can be easily generalized to an arbitrary
number of particles. We take their motion along the x-y plane
to be unconstrained but subject to a confining potential along
the z direction. The Hamiltonian is

H =
∑
i=1,2

[
1

2me

(
∂2
xi

+ [
i∂yi

− (Bxi + B||zi)
]2 − ∂2

zi

)

+A0(zi)

]
+ V (|x1 − x2|), (A1)

where xi = (xi,yi,zi) labels the position of the two particles.
(The gauge chosen for the vector potential is consistent with
a spatial geometry that is of a finite length along the x,z

directions, and infinite along the y direction. Note, however,
that we are essentially ignoring the finite length along the x

direction in the discussion below, so we can think of it as being
large compared to the length scale provided by the confining
potential along the z direction.)

We consider the component of the magnetic field lying
along the x direction to be a perturbation to the system. It
is convenient to switch coordinates to the center-of-mass and
relative coordinate frame. Choosing

X = 1
2 (x1 + x2), ρ = x1 − x2, (A2)

the Hamiltonian becomes

H = 1

2(2me)

( − ∂2
Xx

+ [
i∂Xy

− 2(BXx + B||Xz)
]2 − ∂2

Xz

)

+ 1

2(me/2)

(
− ∂2

ρx
+

[
i∂ρy

− 1

2
(Bρx + B||ρz)

]2

− ∂2
ρz

)

+
∑
±

A0

(
Xz ± 1

2
ρz

)
+ V (|ρ|). (A3)

Aside from the confining potentials A0(z1,2) = A0(Xz ± 1
2ρz),

the center-of-mass and relative coordinates are decoupled.
At B|| = 0, motion in the z direction decouples from the

motion in the plane and we are left with a collection of two-
dimensional electrons indexed by their band or energy along
the z direction. (Here, we are assuming that the pair potential
depends only on the separation of the electrons in the x-y plane;
the well width is assumed small compared to the magnetic
length B−1/2. This is not the case in the experiments of Refs. 12
and 7, so the violations of Kohn’s theorem will be larger than in
our simple model.) Given a z eigenfunction, the center-of-mass
part of the wave function executes oscillatory motion at the
cyclotron frequency 2B/(2me). This is the generalization of

Kohn’s theorem to the situation where electrons are confined
along the direction parallel to the magnetic field. When the
spacing between the energy levels of the zi eigenfunctions
greatly exceeds the cyclotron frequency, it is possible to ignore
higher subbands when considering low-energy properties of
the system. However, this is not the case in the experiments of
Refs. 12 and 7.

Now consider B|| �= 0. There is now a direct mixing
between motion in the z direction and motion in the plane. This
mixing mediates a coupling at higher orders in B|| between
the planar center-of-mass and relative degrees of freedom.
Thus, there there is no requirement of a pole at the cyclotron
frequency in the density-density correlator. This follows from
the fact that the full three-dimensional Galilean symmetry
(except for Xy,ρy translations) is broken when there is both
an in-plane field and a nonzero confining potential along the
direction normal to the plane. If either the confining well or
in-plane field is removed, there will be a Kohn pole at ωc.

We would like to better understand departures of the pole
from the cyclotron frequency in this more general situation
with nonzero in-plane field. Namely, we would like to know
how the location of the pole varies with B||. We can obtain some
intuition by studying a special case for the form of the confining
potential. Take the confining potential to be quadratic, A0(z) =
λ2

2 z2. Then, because

A0
(
Xz + 1

2ρz

) + A0
(
Xz − 1

2ρz

) = λ2
(
X2

z + 1
4ρ2

z

)
, (A4)

the center-of-mass and relative coordinate motions are still
decoupled. This decoupling is not generic; a quartic potential,
for example, couples Xz and ρz together. However, we will
argue that some conclusions drawn from the quadratic case
are general.

We know that at B|| = 0 the Kohn pole corresponds to the
splitting between the ground and first excited states of the
center-of-mass motion. The relative coordinate is irrelevant
both when B|| = 0 and for a quadratic electric potential, and
so we drop it from our discussion. Thus, the Hamiltonian we
study perturbatively in B|| is

H = H0 + H1, (A5)

where

H0 = 1

2(2me)

( − ∂2
Xx

+ (
i∂Xy

− 2BXx

)2 − ∂2
Xz

) + λ2X2
z ,

(A6)

H1 = B||B
me

(
i∂Xy

− 2BXx

)
Xz + O(B2

||).

First, we note that translation invariance along the Xy direction
allows us to replace derivatives with respect to Xy with the
momentum ky along this direction. Next, we shift the Xx

coordinate by defining X̃x = kyc

2eB
− Xx . The Hamiltonian has

the form

H = 1

4me

( − ∂2
X̃x

+ 4B2X̃2
x − ∂2

Xz
+ 4meλ

2X2
z

)
+ B||B

me

X̃xXz + O(B2
||), (A7)

where terms proportional to B|| are taken to be a perturbation.
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Our goal is to determine the spectral flow as a function
of B|| of the ground and first excited energy levels. Divid-
ing out by the irrelevant Xy factor (which determines the
degeneracy of the Landau levels in a rectangular sample,
but is inconsequential here), the eigenfunctions of the above
coupled harmonic oscillator Hamiltonian at B|| = 0 take the
form

�(X̃x,Xz)m,n = cm,n exp

(
− Mωc

2
X̃2

x

)
exp

(
− Mωz

2
X2

z

)

×Hm(
√

MωcX̃x)Hn(
√

MωzXz), (A8)

where ωc = B/me, ωz = λ/
√

me, M = 2me, Hn(X) denote
Hermite polynomials, and the cm,n are normalization constants.
We assume that ωc < ωz < ∞.

(For electrons moving in a Ga-As quantum well at ν = 7/3,
we can estimate ωc and ωz. Given a band mass me ∼ 0.07mf ,
where mf is the free-electron mass, and transverse magnetic
field of 2.82 T, we estimate an ωc ∼ 3 × 10−3 eV ∼ 30 K.
λ has engineering dimension equal to [Mass]3/2 so we take
it to be proportional to 1/w3/2, where w is the well width,
which is 40 nm for the experiment in Ref. 7. We fix the
order of the proportionality constant via the estimate of the
Landau level subband gap given in Fig. 2 of Ref. 12. We
find ωz ∼ x/w3/2, where x = 10−3. Thus, ωz/ωc ∼ 2. As the
filling fraction is lowered, the ratio ωz/ωc is increased and so
the discussion below becomes less relevant as the two scales
are too far apart. Note also that this ratio approaches unity as the
proportionality constant between the band and free-electron
masses is lowered.)

The perturbative shift in the energy of a state to second
order in H1 is given by the formula

Em,n = E(0)
n,m + 〈m,n|H1|m,n〉 +

∑
|k〉�=|m,n〉

|〈k|H1|m,n〉|2
E

(0)
m,n − E

(0)
k

,

(A9)

where E(0)
m,n is the unperturbed energy of the state

�(X̃x,Xz)m,n := |m,n〉. We are interested in the difference
E0,0 − E1,0. At zeroth order, this difference is equal to the
cyclotron frequency, ωc. The first-order term on the right-hand
side of (A9) vanishes because the perturbation is linear in
both X̃x and Xz (the ground state is nodeless). Now consider
the second-order term. The state (or collection of states
since we are ignoring the ky dependence) mixed with the
ground state |0,0〉 by the perturbation is |1,1〉, while |0,1〉
is the state mixed with |1,0〉. Because the wave functions
factorize,

|〈1,1|H1|0,0〉| = |〈|0,1|H1|1,0〉|; (A10)

however,∣∣E(0)
0,0 − E

(0)
1,1

∣∣ = ωc + ωz > ωz − ωc = ∣∣E(0)
1,0 − E

(0)
0,1

∣∣, (A11)

with both energy denominator differences being negative. So
while both E0,0 and E1,0 are shifted downward, the ground
state is shifted less than the first excited state because of
the difference in magnitude of the energy denominators.
This implies that the location of the would-be Kohn pole
is decreased from the cyclotron frequency. (There is no
contradiction with general level repulsion expectations as we
are studying a systems with more than two states.) Notice
that this result requires mixing between the different Xz bands
and is not present if we take the gap between these energy
levels to infinity. Contributions from other excited states occur
only at higher orders in perturbation theory. Note also that
we dropped a term in the perturbing Hamiltonian quadratic in
B|| and so it could, in principle, compete at the same order
as the second-order result above. However, this term has no
consequence on the energy difference as it shifts both energies
by the same amount.

The above analysis implies that the location of the leading
pole in a small-momentum expansion of the density-density
correlator moves toward the origin as an in-plane field is
applied. This conclusion was drawn using a certain form
of confining potential in the direction transverse to the x-y
plane. How general are these results? If we consider a more
general form of the confining potential, there will be a coupling
between the center-of-mass and relative degrees of freedom.
Nevertheless, for small B||, our results hold generally. In this
limit, we can ignore the coupling between the center-of-mass
and relative degrees of freedom. The perturbation couples the
planar and z motions of the center-of-mass at leading order
while the coupling between the planar center-of-mass and
relative degrees of freedom occurs only at higher order in
perturbation theory in B||. Although the Xz eigenfunctions will
take a different functional form and the spacing between these
eigenfunctions will no longer be in regular multiples of ωz, the
above argument goes through unchanged as long as the gap
between the lowest and first excited Xz eigenfunction is greater
than ωc. If B|| is not small, then we cannot ignore the coupling
between the center-of-mass and relative degrees of freedom.
This can further modify the distribution of spectral weight, but
we do not have any simple argument for whether this coupling
will move the pole, broaden the pole into a Lorentzian, or
change its spectral weight. At any rate, we can say that the
coupling between the center-of-mass and relative degrees of
freedom will almost certainly cause further deviations from
expectations based on Kohn’s theorem. Happily, the effective
field theory (1) describes a system where the would-be Kohn
pole is different from the bare cyclotron frequency through the
variation of r̄; we pursue its study in the body of the paper.
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3Z. Tešanović, F. Axel, and B. I. Halperin, Phys. Rev. B 39, 8525
(1989).

4S. L. Sondhi, A. Karlhede, S. A. Kivelson, and E. H. Rezayi, Phys.
Rev. B 47, 16419 (1993).

195124-8

http://dx.doi.org/10.1103/PhysRevB.82.085102
http://dx.doi.org/10.1103/PhysRevB.82.085102
http://dx.doi.org/10.1103/PhysRevB.36.1620
http://dx.doi.org/10.1103/PhysRevB.36.1620
http://dx.doi.org/10.1103/PhysRevB.39.8525
http://dx.doi.org/10.1103/PhysRevB.39.8525
http://dx.doi.org/10.1103/PhysRevB.47.16419
http://dx.doi.org/10.1103/PhysRevB.47.16419


EFFECTIVE FIELD THEORY OF FRACTIONAL . . . PHYSICAL REVIEW B 84, 195124 (2011)

5S. E. Barrett, G. Dabbagh, L. N. Pfeiffer, K. W. West, and R. Tycko,
Phys. Rev. Lett. 74, 5112 (1995).

6D. A. Abanin, S. A. Parameswaran, S. A. Kivelson, and S. L. Sondhi,
Phys. Rev. B 82, 035428 (2010).

7J. Xia, J. P. Eisenstein, L. N. Pfeiffer, and K. W. West, e-print
arXiv:1109.3219.

8M. P. Lilly, K. B. Cooper, J. P. Eisenstein, L. N. Pfeiffer, and K. W.
West, Phys. Rev. Lett. 82, 394 (1999).

9E. Fradkin, S. Kivelson, M. Lawler, J. Eisenstein, and A. Mackenzie,
Annu. Rev. Condens. Matter Phys. 1, 153 (2010).

10W. Pan, R. R. Du, H. L. Stormer, D. C. Tsui, L. N. Pfeiffer, K. W.
Baldwin, and K. W. West, Phys. Rev. Lett. 83, 820 (1999).

11M. P. Lilly, K. B. Cooper, J. P. Eisenstein, L. N. Pfeiffer, and K. W.
West, Phys. Rev. Lett. 83, 824 (1999).

12J. Xia, V. Cvicek, J. P. Eisenstein, L. N. Pfeiffer, and K. W. West,
Phys. Rev. Lett. 105, 176807 (2010).

13S. C. Zhang, T. H. Hansson, and S. Kivelson, Phys. Rev. Lett. 62,
82 (1989).

14One can rewrite this action in terms of ãμ = ν−1aμ so that the
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