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We discuss entanglement entropy of gapped ground states in different dimensions, obtained on partitioning
space into two regions. For trivial phases without topological order, we argue that the entanglement entropy may
be obtained by integrating an “entropy density” over the partition boundary that admits a gradient expansion in
the curvature of the boundary. This constrains the expansion of entanglement entropy as a function of system size
and points to an even-odd dependence on dimensionality. For example, in contrast to the familiar result in two
dimensions, a size-independent constant contribution to the entanglement entropy can appear for trivial phases
in any odd spatial dimension. We then discuss phases with topological entanglement entropy (TEE) that cannot
be obtained by adding local contributions. We find that in three dimensions there is just one type of TEE, as
in two dimensions, that depends linearly on the number of connected components of the boundary (the “zeroth
Betti number”). In D > 3 dimensions, new types of TEE appear which depend on the higher Betti numbers of
the boundary manifold. We construct generalized toric code models that exhibit these TEEs and discuss ways to
extract TEE in D � 3.
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I. INTRODUCTION

In recent years, surprising connections have emerged
between error correction of quantum information and topo-
logical condensed-matter phases.1,2 At the same time, ideas
from quantum information have proved useful in defining
topological phases. Two-dimensional phases with topological
order, such as those realized in the context of the fractional
quantum Hall effect, are gapped phases for which the ground-
state degeneracy depends on the genus of the space on which
they are defined. Recent work has shown that they can be
identified by the entanglement properties of their ground-state
wave function.3–5 The entanglement entropy of a region with a
smooth boundary of length L takes the form SA = α1L − b0γ ,
where γ is the topological entanglement entropy, b0 is the
number of connected components of the boundary of region A,
and we have dropped the subleading terms. In gapped phases
without topological order, such as band insulators, γ = 0 for
a smooth boundary. These predictions have been verified in
the context of a number of specific D = 2 models6–10 and
in D = 3 Z2 toric code models.11 In this paper, we discuss
the general structure of entanglement entropy for gapped
topological and nontopological phases in D � 3.

One notices that in D = 2, the topological entanglement
entropy depends only on a topological property of the
boundary, in this case the number of connected components.
There are two equivalent ways of extracting the topological
entanglement entropy.4,5 First, via the scaling of the entropy
with boundary size for smooth boundaries, so as to extract the
constant term. The second is by considering a combination
of entanglement entropies of three suitably chosen regions
A,B,C, so that −γ = SA + SB + SC − SAB − SBC − SAC +
SABC .

Here we discuss analogous questions in D � 3. In partic-
ular, consider a gapped D = 3 phase and a region A with a
smooth boundary. (1) If the entanglement entropy SA contains
a constant term, does it necessarily reflect topological order?
(2) The boundary of A is a closed two-dimensional surface that
has two topological invariants associated with it: the number

of connected components and the genus (number of handles)
of each component. Does this imply there are two distinct
types of topological entanglement entropies (TEEs) and,
correspondingly, two varieties of topological order in D = 3?
The answer is no to both these questions, as we elaborate in
this paper. We show that even a trivial gapped phase, with
no topological order, one can have a constant term in the
entanglement entropy in D = 3 (and any other odd dimension).
Hence, this by itself does not signify topological order.
Moreover, this constant is generally genus dependent, ruling
out a topological origin for a genus-dependent entanglement
entropy. This reduces the number of possible TEE to the same
as D = 2. We discuss generalization of the Kitaev-Preskill
scheme5 to extract the TEE in D = 3 and why some naive
extrapolations fail.

A deeper understanding of TEE is obtained by considering
higher dimensions. We show that at least one new TEE appears
on going up every two dimensions. Thus, while D = 2 and 3
are similar, a new topological constant does appear in D = 4
(in D = 2n and 2n + 1, there are thus n constants). These
are related to the Betti numbers12 of the boundary. We
construct topological phases that manifest these new TEEs
and explicitly calculate their value. These are based on a
discrete gauge group G. In all dimensions, the TEE for discrete
gauge theories is −log |G| per connected surface component,
where |G| is the number of elements in G. These theories
capture both Abelian (like the Z2 toric code) and non-Abelian
phases and the ground state of these theories correspond
to condensate of closed loops. One can also consider more
general Abelian discrete gauge theories where the fluctuating
loops are readily generalized to fluctuating p-dimensional
surfaces. These manifest explicitly in the TEE, through the
appearance of new topological constants that depend on
higher Betti numbers. Furthermore, a previously discussed
duality between p and D − p theories in D dimensions13–15

is reflected in the structure of TEE.
To isolate topological contributions it is useful to know the

structure of entanglement entropy in trivial gapped phases.
Since correlations are local in such phases, we propose
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an expansion of entanglement entropy SA based on adding
individual contributions from patches on the surface of region
A: SA = ∑

i Si . The entropy densities Si will depend on local
properties, such as the local curvature of the surface. One can
then expand the entropy density in polynomials of curvature
and its derivatives, similar to the Landau expansion of free-
energy density.16 The contribution from higher-order terms to
SA is subdominant for large surfaces. Interestingly, not every
term is allowed in this expansion. When we divide space into
a region A (inside) and a region Ā (outside), the entanglement
entropy of both are equal; that is, SA = SĀ. This imposes a
Z2 symmetry on the expansion that is unique to ground-state
entanglement entropy.17 This has important consequences.
Consider, for example, D = 2. The entropy density is not
allowed to depend linearly on the boundary curvature κ , which
changes sign on interchanging inside and outside. Thus, the
expansion of entropy density for a trivial D = 2 phase is
Si = a0 + a2κ

2(ri) + · · · , which when integrated around the
boundary leads to SA = α1L + α3/L + · · · , where L is the
length of the boundary of region A. The first term is the area
law, and the next term is two orders of L down, due to the Z2

symmetry, which eliminates the constant term in total entropy
for smooth boundaries. Thus, the existence of a constant term
in a gapped D = 2 state implies a nontrivial phase that is,
topological order. In general, this method predicts that for
an isotropic, parity-invariant state without topological order,
the entanglement entropy in even (odd) spatial dimensions
depends only on odd (even) powers of L, the linear scale of
the boundary.

We assume it is possible to take the continuum limit for all
the phases that we consider in this paper. This assumption
excludes phases such as a layered Z2 topological ordered
phases in D = 3 whose topological entropy depends on the
local geometry of region A.

The paper is organized as follows. In Sec. II we discuss the
general structure of entanglement entropy for gapped phases
and explain the basic assumptions underlying our discourse. In
Sec. III we introduce the aforementioned curvature expansion
for entanglement entropy of trivial gapped phases and study its
consequences. In Secs. IV and V we study topological ordered
phases in D = 3 and D > 3, respectively, through extracting
the dependence of entanglement entropy of a region on the
topology of its boundary. We also generalize the constructions
for extracting topological entropy.4,5,11

II. STRUCTURE OF ENTANGLEMENT ENTROPY
FOR GAPPED PHASES

In this article, we assume that the entanglement entropy of
region A can be decomposed into two parts:

SA = SA,local + SA,topological. (1)

We postpone the underpinnings of this assumption to Sec. IV
when we study topologically ordered phases. Here Slocal is
defined by the property that it can be written as a sum over
contributions from patches located along the boundary of
region A:

SA,local =
∑

i

Si, (2)

FIG. 1. The local part of the entropy of region A is the sum of
contributions of small patches on the boundary.

where Si depends only on the shape of the patch i and not on
the rest of the surface or how it fits with other patches (see
Fig. 1), at least if the edge of the patch connects smoothly to
all other patches.

We assume the other contribution Stopological is topologically
invariant, that is, it does not change as the boundary is
deformed unless the topology of the region changes. If such a
term is present and if it cannot be expressed in a local way, then
the phase has long-range entanglement, which is the hallmark
of topological order.2,4,5

Let us consider the assumptions under which the decom-
position [Eq. (2)] would be possible for a trivial (i.e., not
topologically ordered) gapped phase. The reduced density
matrix corresponding to region A for the ground-state wave
function may be written as

ρA = e−HA/Z,

where HA is the so-called entanglement Hamiltonian and
Z = tr(e−HA ) so that tr(ρA) = 1. Therefore, we can think of
ρA as the thermal density matrix at temperature T = 1 for
the Hamiltonian HA and the von Neumann entropy SA =
−tr(ρA logρA) as the thermal entropy for this system. Let
us define ρ̃A(T ) = e−HA/T /Z(T ), where Z(T ) = tr(e−HA/T ).
Clearly, ρA = ρ̃A(T = 1) and SA obeys the following
equation:

SA ≡ SA,local =
∫ ∞

1

dT

T

∂〈HA〉
∂T

, (3)

where 〈HA〉 denotes the thermal average of HA at temperature
T with respect to the density matrix ρ̃(T ). We claim that
the entanglement entropy would admit an expansion such as
Eq. (2) if the following conditions are satisfied.

(i) HA can be written as a sum of local operators O’s, that
is, HA = ∑

x O(x).
(ii) There is no phase transition for the Hamiltonian HA for

T � 1.
The first condition along with the fact that all correlations

of local operators are short-ranged in a gapped phase imply
that HA has nonzero support only near the boundary of region
A (within the distance of correlation length). In other words,
the degrees of freedom inside and outside of region A are
coupled only through operators that lie within a distance ∼ξ

from the boundary. This implies that 〈HA〉 = ∑
i hi , where

i denotes a point at the boundary of region A and the hi’s
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depend solely on the properties of the boundary in the vicinity
of point i. The second condition implies that the integral
in Eq. (3) does not admit any singularity so that all terms
Si in the Eq. (2) are finite. Physically, this means that the
actual system of interest is smoothly connected to its T = ∞
zero correlation length system, where Eq. (2) holds trivially.

III. ENTANGLEMENT ENTROPY OF TRIVIAL
GAPPED PHASES

In this section we focus on understanding the leading and
subleading dependence of SA,local on L for gapped trivial
phases of matter. Let us assume that the boundary of region
A is smooth, and further that the phase is isotropic and parity
invariant (consequences of the violation of these assumptions
are discussed at the end of this section and in Appendix B).
Then, as we see below, in the absence of topological order,
only alternate terms in the power series expansion of SA(L)
appear:

SA,local(L) = α1L
D−1 + α3L

D−3 + α5L
D−5 + · · · ; (4)

that is, only those with odd codimension exponent can appear.
This expansion implies a distinction between even and odd
dimensions: In even dimensions, any constant contribution to
the entanglement entropy must come from SA,topological and
thus indicates topological order. In odd spatial dimensions,
a constant term may appear in the local entropy, making
it more difficult, though still possible, to isolate topological
contributions (note that these conclusions apply only to smooth
boundaries in rotationally symmetric systems; a corner can
produce a constant term for even dimensions as well as odd
ones).

Let usconsider some instances of Eq. (4) that will motivate
its derivation. First, it is well known that in D = 2, a constant
term in SA(L) implies the presence of topological order.4,5 On
the other hand, in D = 3, a constant term can appear for a non-
topologically ordered phase, such as a gapped scalar field. Con-
sider for a moment18 a massless field, where it is known that the
entanglement scales as SA ∼ L2 + log(L) for a spherical ball
of radius L. Now providing a mass m to the scalar field would
cut off the log(L) term and instead lead to a constant con-
tribution proportional to log(1/m). We verified this explicitly
using a numerical calculation similar to Ref. 19. Interestingly,
when the surface of region A is flat, then there is no constant
contribution as we show in Appendix A (a flat boundary is
possible when the total system has the topology of a three torus
T 3; then A may be taken to have the geometry T 2 × l, where l

is a line segment). This indicates that the presence or absence
of a constant term may have something to do with the curvature
of the boundary of region A. In the next section, we make this
statement precise and explain the observations made above.

A. Entropy density functional

Let us consider a region in two dimensions for concreteness.
We postulate that the local entropy SA,local is given by the
following integral:

SA =
∑

i

Si =
∫

dσF (κ,∂κ, . . . ), (5)

where F (κ,∂κ, . . . ) is the “entropy density functional.” In
a gapped phase, the entropy Si of a patch larger than the
correlation length can depend only on the properties of the
patch, such as its length 	σi and curvature κi , as well
as derivatives of the latter, and must be proportional to
	σi . Hence, Si = 	σiF (κi,∂

nκi). Taking the limit where the
patches become microscopic compared to L (but greater than
ξ ) leads to Eq. (5).

The entropy density functional always satisfies a Z2

symmetry, which is the key to understanding the L dependence
of the entropy. The symmetry results from the fact that, if A

and B are complementary regions, then SA = SB . Therefore,
changing “inside” to “outside” keeps the entanglement entropy
invariant. Now, under this transformation, radii of curvature
clearly change sign κ → −κ , and this constrains the entropy
density functional (Fig. 2). As an illustration of this Z2

symmetry, consider the form of the functional F for a gapped
two-dimensional system. On a smooth boundary, one can
expand the function F in a Taylor series, retaining the first
few terms:

F
(
κi,∂

n
σ κi

) = a0 + a1κi + a2κ
2
i + b2∂σ κi + · · · . (6)

The first term gives the boundary law SA = a0L. The second
term, if it is present, would give a constant contribution∮

dσκ = 2π for the curve shown, which would be a nonuni-
versal constant contribution. However, such a term is, in fact,
forbidden by the Z2 symmetry, since the term is odd in κ .
The term κ2 gives the next contribution to the entropy that is
proportional to

∮
dσκ2. If the shape of region A is kept fixed,

then this contribution scales as 1/L. The term ∂σ κ is allowed
by the Z2 symmetry (since both the derivative and the radius of
curvature change sign, assuming that the direction of the curve
is set by a “right-hand rule,” whereby the arc length increases
along a specific direction), yet it still vanishes because it is a
total derivative. Generalizing these arguments, one finds that
SA = ∑∞

k=0 α2k+1L
1−2k .

In general dimensions, we find similar results if we continue
to assume rotational, parity, and translational symmetry. These
assumptions imply that F can depend only on the metric
tensor gαβ and on the extrinsic curvature of the surface.
The latter tensor does not appear when considering intrinsic
properties of a manifold (as in general relativity). However,
entanglement entropy does depend on the embedding of the
boundary ∂A since it is measuring the entanglement of the
degrees of freedom in the space around the surface. The
extrinsic curvature is a tensor καβ with two indices (see, e.g.,
Ref. 20 for requisite differential geometry). Thus, each term
in F contains some number of factors of καβ and its covariant

FIG. 2. Illustration of the Z2 symmetry for the curvature expan-
sion discussed in the text.
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derivatives, with all the indices contracted by factors of gγ δ (if
parity is broken, the antisymmetric volume tensor γ α1,...,αD−1

is allowed as well; Appendix B).
The inside/outside symmetry further limits the form of the

terms in F : It implies that each term in F includes an even
number of factors nκ of κ . The total order of all the derivatives
nD must also be even. This follows from rotational symmetry.
For rotational symmetry to be respected, one has to contract
all the lower indices with the tensor gγ δ . This leads to an
even number of lower indices, which includes the derivatives
as well as the curvature indices. Since the curvature tensor is
of even rank, the number of derivatives nD has to be even.
Putting everything together, one finds that the contribution to
the entropy density F scales as L−(nκ+nD ) that clearly has an
even exponent, explaining why only alternate terms appear in
the entropy [Eq. (4)].

When rotational or inversion symmetries are broken spon-
taneously or by applying a field, additional terms appear in
the entropy, as summarized in Table I. We provide the details
leading to these results in Appendix B.

The local entropy can also contain topology-dependent
terms, for example, the term

∫
GdA = 4πχ in three di-

mensions where G is the Gaussian curvature which is the
determinant of the matrix καβ . Note that this term is compatible
with the symmetry κ → −κ , since G is quadratic in κ .
Hence, as mentioned earlier, the presence of a term in the
entropy that is proportional to the Euler characteristic does
not necessarily correspond to topological order. In general
dimensions,

∫
detκdA is topological, but it is only symmetric

in odd dimensions, where it is proportional to the Euler
characteristic of the boundary (in general, it is proportional
to the Euler characteristic of the region itself21).

IV. TOPOLOGICAL ENTANGLEMENT ENTROPY IN D = 3

We now turn to the topological part of the entanglement
entropy. Our starting point is Eq. (1), which we rewrite here
for convenience:

SA = SA,local + SA,topological. (7)

This decomposition is what enables the extraction of topolog-
ical entropy using Kitaev-Preskill5 or Levin-Wen4 construc-
tions for two-dimensional topological ordered phases. The
assumptions underlying this equation are somewhat tricky.
Though Eq. (7) holds for toric code models in all dimensions
and there is strong numerical evidence that it also holds for
many interesting two-dimensional topological ordered states
such as Z2 spin liquids, quantum dimer models, and various
quantum Hall states,6–10,22 Eq. (7) surreptitiously rules out a

layered Z2 topologically ordered state. Such a state would lead
to a correction in entanglement entropy 	SA = −γ2DLz, for
layering perpendicular to the z direction. Here γ2D is the TEE
associated with the theory living in each layer. Clearly, 	SA

is not topologically invariant. The assumptions underlying
Eq. (7) most likely also do not apply to the self-correcting
code state of Ref. 23; this state (whose ground state degeneracy
depends on the divisibility of system size by powers of 2, for
example) illustrates why we need to make an assumption of
this type. Nevertheless, we briefly discuss the TEE of layered
Z2 state in Appendix D.

Independent contributions to Stopological. The boundary ∂A

of a three-dimensional region A is a compact manifold that
is characterized by Betti numbers b0 and b1 (note that for
compact manifolds b2 = b0). As we show in Appendix E in
three dimensions SA,topological is a linear function of b0,b1, say,
Stopological = −γ0b0 − γ1b1 (we assume that the space in which
region A is embedded has the topology of R3; otherwise,
more complicated dependence is possible in principle). This
might lead one to suspect that there are two different kinds
of topological orders in three dimensions, namely, those
corresponding to a nonzero γ0 and γ1, respectively. However,
b0,b1 are related to the Euler characteristic χ through 2b0 −
b1 = χ . Thus, one may redefine S ′

A,local = SA,local + αχ and
S ′

A,topological = SA,topological − αχ without changing the entropy
and α may be adjusted so that the b1 dependence of Stopological

is canceled out. Here the term αχ may be thought of as both
local and topological. It is local, because the Euler’s formula,
χ = V − E + F , gives a local expression for this term, where
V , E, and F are the number of vertices, edges, and faces
into which ∂A is divided (alternatively, in a continuum theory,
αχ can be incorporated into the entropy density F since χ is
the integral of the Gaussian curvature). It is also topological,
because αχ is independent of how the surface is divided up
into regions. The upshot of this discussion is that there is only
one kind of topological entropy in three dimensions.

Z2 string and Z2 membrane models. As an alternative
way to understand the above result, let us study specific
models whose topological entanglement potentially depends
on different Betti numbers. Consider the following model of
Z2 gauge theories consisting of spin-1/2 degrees of freedom
that live on the links of a three-dimensional cubic lattice:

Hstring = −
∑
�

∏
l∈�

τz,l − h
∑

l

τx,l , (8)

where � denotes a plaquette of the cubic lattice and the
operators τx,l,τz,l live on the links l of the lattice. The above
Hamiltonian is supplemented with the constraint (“Gauss
law”)

∏
l∈ vertex τx,l = 1 to impose the absence of Z2 charges

TABLE I. Terms in the entropy forbidden by symmetries. The three columns describe systems with rotational and parity symmetry, no
spatial symmetry, and rotational but not parity symmetry. The entries list the scaling of terms Lk that are forbidden from appearing in the
entropy.

Full symmetry All symmetries broken Broken parity alone

D = 2 All even terms L0,L−2 Constant term All even terms
D � 3 odd All odd terms LD−2,LD−4, . . . Nothing forbidden Odd terms with positive exponents and also L−1 if D ≡ 3(mod 4)
D � 4 even Even terms LD−2,LD−4, . . . Nothing forbidden Even terms
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in the theory. Because of this constraint the gauge-invariant
degrees of freedom in this model consist of closed loops C
on the edges of the lattice. In the deconfined phase of the
gauge theory, |h| 
 1, the loops condense because they do not
cost much energy. The entanglement entropy of this model for
region A depends only on the Betti number b0 of ∂A, since each
component of the boundary places a separate constraint on the
loops that intersect the boundary ∂A. Let us take Kitaev’s
“toric code limit” of the above model2 by setting h = 0. In this
limit, the constraint commutes with the Hamiltonian and can
be included as a part of it. Hence, the model may be written as

Hstring,h=0 = −
∑
�

∏
l∈�

τz,l −
∑
vertex

∏
vertex∈ l

τx,l . (9)

Interestingly, the ground state of Eq. (9) may be reinterpreted as
a superposition of closed membranes. This is seen as follows.
The first term in the Hamiltonian may be regarded as the
constraint

∏
l∈� τz,l = 1. Now consider the dual lattice each

of whose plaquettes is pierced by a link “l” of the original
cubic lattice. A surface can be defined by the plaquettes of the
dual lattice pierced by τz,l = −1 bonds. Due to the constraint,
this surface is closed. Thus, there is no distinction between
condensed loops and condensed membranes in this case,13,15

consistent with the fact that in three dimensions there is only
one kind of TEE.

Discrete gauge theories in D = 3. Before moving on to the
discussion of topological entropy in general dimensions, let us
derive the entanglement entropy corresponding to a discrete
gauge theory with general gauge group G for Kitaev model2

on a cubic lattice24

H = −t
∑

p

δ(g1g2g3g4 = e) − V
∑
s,g

L1
gL

2
gL

3
gL

4
g. (10)

Here “p” stands for a plaquette, “s” for a star (i.e., six
links emanating from a vertex), while g’s are the elements
of group G with size of group being |G|. For non-Abelian
groups one needs to chose an orientation of the links so that
for opposite orientations, the group element on a link is g

and g−1. The operators Lg live on the links and and their
action is described by Lg1 |g2〉 = |g1g2〉 or Lg1 |g2〉 = |g2g

−1
1 〉,

depending on whether g1 points away from or toward the vertex
at which the action of Lg is being considered. The ground state
of |�〉 of H is given by

|�〉 =
∑

{g},g1g2g3g4=e ∀ plaquettes

|{g}〉. (11)

Let us divide the entire system into regions A and B and assume
that the boundary is made up of plaquettes of the lattice. The
links along the boundary are labeled by the group elements
h1,h2, . . . ,hn. The Schmidt decomposition of |�〉 reads

|�〉 =
∑
{h}

|φ〉{h}
in ⊗ |φ〉{h}

out, (12)

where

|φ〉{h}
in =

∑
{g},g1g2g3g4 = e ∀ plaquettes ∈ A,

gi = hi for i ∈ ∂A

|{g}〉 (13)

and |φ〉{h}
out is defined similarly. All the states in the Schmidt

decomposition enter with the same weight and are orthogonal;

therefore, the entanglement entropy is the logarithm of the
number of states. These may be counted by finding all the
configurations for {h} that satisfy the following constraint: The
product of the {h}’s around any closed loop on the boundary
must equal the identity.3,4 This includes contractible as well
as noncontractible loops on the surface, and each independent
loop reduces the total number of configurations by a factor of
|G|, leading to

S = log(|G|V −1) = V log(|G|) − γ, (14)

where V is the number of vertices on the boundary and γ =
log(|G|) is the TEE. This result for TEE is identical to that for
discrete gauge theories in D = 2.

A. Extracting topological entanglement entropy in D = 3

In the spirit of Refs. 4 and 5 we would like to combine the
total entanglement entropies of certain regions in such a way
that the local part of the entropy cancels out while topological
part survives.

The Kitaev-Preskill construction, which succeeds in this
task in two dimensions can be modified so that it works for
three dimensions as well (Ref. 11 describes an extension of
the Levin-Wen scheme to D = 3). The construction involves
three regions A,B,C embedded inside region D:

−γtopo = SA+SB+SC − SAB − SBC − SCA + SABC. (15)

In two dimensions, the regions are taken to be three 120◦ seg-
ments of a circle. In three dimensions, a direct generalization
of the two-dimensional construction [dividing a cylinder into
three sectors as in Fig. 3(c)] fails to be topologically invariant
because the changes in the entropy near the points at the top
and bottom of the cylinder where A, B, C, and D all meet
do not cancel. However, the regions such as the two shown
in Figs. 3(a) and 3(b) can be used where such points do not
exist. For example, if one deforms the circle at which regions
A,B,D all meet (in either geometry), then

	γtopo = −[	(SA−SCA)+	(SB −SBC)+	(SABC − SAB)]

= 0. (16)

The last equation follows because each of the three terms in
the brackets could be thought of as the difference between
entropies of two regions that differ by addition of region C

(that is located far from the point where A, B, and D meet).
Since each region has a single boundary component, γtopo =
Stopological. In Appendix C, we detail the general requirements
for a construction that would always yield a topological
invariant.

Based on our earlier discussion of curvature expansion for
entanglement entropy, we note that in the special case of a
completely flat boundary between a region and the rest of
the system, the constant term in the entanglement entropy
corresponding to that region can indeed be identified with
TEE.25 This can be realized by taking the total system to be
T 3 and region A as T 2 × l, where l is a line segment (similar
to the calculation of entanglement entropy for a free scalar in
Appendix A).
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FIG. 3. Panels (a) and (b) show two valid ABC constructions
[Eq. (15)] in three dimensions that can be used to extract the TEE. In
(a) the cross section of a torus has been divided into three tori A, B, and
C, while in (b) a torus that has been divided into three cylinders A, B,
and C. Panel (c) shows an invalid construction as explained in the text.
In all three figures, we define region D to be the rest of the system.

V. TOPOLOGICAL ENTANGLEMENT ENTROPY IN D > 3

Independent terms in Stopological in arbitrary dimensions.
Following our discussion of TEE in D = 3, in this section we
study the independent contributions to Stopological in a general
dimension D > 3. The boundary ∂A of a D-dimensional
region A is a compact manifold that is characterized by
Betti numbers, b0, . . . ,bD−1 that describe various orders of
connectivity of the surface (see, e.g., Ref. 26).

We assume a linear relationship, SA = −∑D−1
k=0 γkbk . In

principle, in higher dimensions the entanglement entropy
could depend on more subtle topological properties of the
boundary, but we focus only on this form. Further, as we see
below, this form turns out to be sufficient for Kitaev models that
describe discrete p-form gauge theories (p � 1) in arbitrary
dimensions.

To see how many types of topological entropy can exist
in higher dimensions, first note that for compact manifolds,
the Betti numbers have a symmetry, bk = bD−1−k and hence
the sum may be cut short, at k = �D−1

2 �. Furthermore, owing

to the relation χ = ∑D−1
k=0 (−1)kbk , in all odd dimensions a

part of the topological entropy may be absorbed into the local
entropy, reducing the number of coefficients by one more.
Hence, there are n topologically nontrivial contributions to the
entanglement entropy in 2n and 2n + 1 dimensions:

SA,topological

=
{−γ0b0 − γ1b1 − · · · − γD

2 −1bD
2 −1, if D is even,

−γ0b0 − γ1b1 + · · · − γD−3
2

bD−3
2

, if D is odd.

(17)

Precisely such a hierarchy of states associated with different
Betti numbers has been arrived at by Ref. 13 by constructing

a sequence of Kitaev “toric-code” type models where the
ground state is a superposition of all p-dimensional manifolds
on a lattice (for 1 � p � D − 1). This state is dual to the
superposition of all q = D − p dimensional manifolds, so the
number of distinct models is �D

2 �, the same as the number of
types of topological entropies.

Stopological for gauge theories in arbitrary dimensions.
Similar to three dimensions, one may study models of discrete
gauge theories to understand these results. For example, on a
hypercubic lattice in D = 4, the string and membrane theories
describe very different ground states14 and unlike D = 3, the
membrane theory is now dual to itself, not to the string phase.
Explicitly, in the “toric code limit”2,14 these two theories are
given by

Hstring = −
∑
�

∏
l∈�

τz,l −
∑

vertices

∏
vertex∈ l

τx,l , (18)

Hmembrane = −
∑

l

∏
l∈�

σz,� −
∑
cubes

∏
�∈ cube

σx,�. (19)

As we show now, the entanglement entropy of the model in
Eq. (18) in four dimensions depends on the Betti number b0

of ∂A, while that corresponding to the model in Eq. (19)
depends on the difference b1 − b0. For the sake of generality,
let us derive the entanglement entropy of a generalized toric
model in arbitrary spatial dimensions D whose ground state is
given by sum over all closed dg dimensional membranes. This
ground state describes deconfined phase of a dg-form Abelian
gauge theory. These membranes intersect the boundary ∂A of
region A in closed membranes of dimension dg − 1, with the
restriction that these intersections are always boundaries of
a membrane of dimension dg contained in ∂A. For example,
consider the entanglement of membrane model in Eq. (19) in
D = 3 when the boundary of region A is a torus T 2 (note that
the form of Hamiltonian for membrane theory is identical in
D = 3 and D = 4). When a closed membrane intersects ∂A =
T 2, one sees that one can only obtain an even number of closed
loops along any noncontractible cycle of T 2, which would
therefore form the boundary of two-dimensional membrane.
Returning to the general case, let us denote the number of
independent n-dimensional membranes that belong to ∂A

by Cn and those that are boundary of a n + 1-dimensional
membrane by Bn.

Using the definition of Betti numbers26 and simple linear
algebra, one finds that the entanglement entropy SA

SA ∝
dg−1∑
n=0

(−)dg−1+nCn −
dg−1∑
n=0

(−)dg−1+nbn. (20)

Since the Cn are expressed in terms of local quantities such
as the number of edges, vertices, etc., that lie on the boundary
without any additional constraint, we identify the first sum as
Slocal and the second as Stopological. The proportionality constant
depends on the gauge group and akin to three dimensions
equals log(|G|), where |G| is the number of elements in the
Abelian gauge group (note that the calculation of TEE in D = 3
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[Eq. (14)] applies to Abelian as well as non-Abelian discrete
gauge theories). Therefore,

Stopological = −log(|G|)
dg−1∑
n=0

(−)dg−1+nbn. (21)

Extracting topological entropy in four dimensions. We restrict
our discussion of extracting Stopological to four dimensions. For a
given region A, from Eq. (17) one has SA = SA,local − b0γ0 −
b1γ1 and one would like to have a construction similar to
Levin-Wen4 and/or Kitaev-Preskill5 that enables one to extract
the topological numbers γ0 and γ1.

We extract γ1 by a generalization of the construction in
Ref. 4. Let region A have the topology of B2 × S2. Region B

is A with a channel cut in it and has topology of B4. Finally,
region C has a second identical channel cut out opposite to the
first one and has topology S1 × B3.

Now SA − 2SB + SC is topologically invariant just as in two
dimensions and the Betti numbers of the bounding surfaces are

b0(∂A) = 1, b1(∂A) = 1,

b0(∂B) = 1, b1(∂B) = 0,

b0(∂C) = 1, b1(∂C) = 1.

Hence, (SA − SB) − (SB − SC) = −2γ1. Since γ1 �= 0 for the
membrane Kitaev model Hmembrane [Eq. (19)] while it is
zero for the string model Hstring [Eq. (18)] in d = 4, this
construction measures membrane correlations.

To isolate γ0, the analogous procedure, but with A being
B3 × S1, suffices. The combination (SA − SB) − (SB − SC)
gives γ0 + γ1, and this may be combined with the previous
construction to extract both γ0 and γ1. This construction
selectively measures string correlations since γ0 + γ1 is zero
for Hmembrane.

The Kitaev-Preskill construction of dividing a disk into
three triangles that meet at the center is readily extended to
any even dimension. In D = 4 consider dividing the ball B4

into five “pentahedra” that meet at the center. The combination

	({S}) =
∑

i

Si −
∑
i<j

Sij + · · · + S12345 (22)

is topologically invariant and gives −γ0. Here Si1i2,...,in denotes
the entanglement entropy corresponding to the region Ai1 ∪
Ai2 · · · ∪ Ain .

VI. DISCUSSION AND CONCLUSION

In this paper, we discussed the qualitative structure of the
entanglement entropy for gapped phases. We introduced the
concept of “entanglement entropy density” whose integral
over the boundary of region A yields the entanglement
entropy of region A. For gapped trivial phases the symmetry
constraints on the entropy density, including the inside-outside
exchange symmetry SA = SA, naturally lead to the leading and
subleading dependence of the entanglement entropy on the
linear size of a given region.

In the second half of the paper, we studied the TEE Stopological

of topologically ordered systems in various dimensions. A
key result was that in D = 3 there is a single category of
TEE, as in D = 2, that depends linearly on the number of

connected components of the boundary. This constrains the
possible forms of topological order in D = 3.

We briefly discussed TEE in higher dimensions, using
generalized Kitaev toric code like models (i.e., deconfined
phases of p-form discrete gauge theories) to realize various
topologically ordered phases. In D = 4 we find two categories
of TEE. In general, one new category of TEE appears each
time the dimension is raised by two. This even-odd effect is
understood as follows. Stopological depends on the Betti numbers
of the boundary of region A. In odd spatial dimensions, the
Gauss-Bonnet theorem relates Betti numbers to the curvature
of the boundary of region A. This implies that there is one
linear combination of Betti numbers that can be expressed as an
integral of a local property of the boundary (such as curvature)
and is thus not an independent topological contribution to
the entanglement entropy. We also mentioned how to extract
Stopological by a generalization of the D = 2 Kitaev-Preskill and
Levin-Wen constructions.

Potentially, in D � 4, Stopological may depend not only on
Betti numbers of the boundary manifold, but on more subtle
topological properties such as its homotopy group. If such
phases do exist, then entanglement entropy could shed light
on the classification of manifolds. Lattice three-dimensional
models realize a richer variety of topological phases than
the isotropic phases considered here. For example, there
exist layered Z2 topologically ordered phases, which retain
a two-dimensional character despite coupling between layers.
Another example is the self-correcting quantum memory of
Ref. 23. For these, the separation between the topological
and the local part of the entanglement entropy is not obvious.
General statements about entanglement in such topological
phases remain for future work.

One might also consider a curvature expansion for the
fluctuations of a conserved quantity such as particle number
or total spin inside region A. Intuitively, these would be
a property of the boundary of region A.27–30 Indeed, akin
to entanglement entropy, one has FA = FA, where FA =√〈(∑r∈A Or )2〉 − 〈∑r∈A Or〉2 is the variance of O inside
region A. Therefore, a curvature expansion for FA would
inherit many of the arguments we used to derive the leading
and subleading behavior of the quantity FA and can provide a
framework to understand known results.27–32

Finally, it may be possible to learn more about the systemat-
ics of the size dependence of entanglement entropy in gapless
phases by a generalization of the curvature expansion under
certain conditions. Many gapless systems such as massless
scalar/Dirac fermion also follow an area law and have an
expression for entropy with interesting parallels to Eq. (4).
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APPENDIX A: ABSENCE OF A CONSTANT TERM FOR
MASSIVE SCALAR IN THE ABSENCE OF CURVATURE

We are interested in the entanglement entropy of a massive
scalar field in three dimensions when region A has a geometry
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T 2 × l, where the torus T 2 extends along the directions 1,2
while l is a line segment of length l along the direction
3. In particular, we want to show that the constant part of
the entanglement entropy is, in fact, exactly zero; that is,
S = AL2 + O(1/L). This is consistent with the curvature
expansion of entanglement entropy [Eq. (5)] since now region
A does not have any extrinsic curvature.

The Euclidean action S is given by

S =
∫

|φ(k1,k2,k3,ω)|2{m2 + ω2

+ γ 2[3 − cos(k1) − cos(k2) − cos(k3)]}, (A1)

where we impose periodic boundary conditions in all direc-
tions and we have set the lattice spacing to unity. Periodic
boundary conditions imply momenta k1,k2 remain good
quantum numbers even after making the partition. The total
entanglement entropy may therefore be written as

S =
∑
k1,k2

S1D(M(k1,k2,m)), (A2)

where S1D(M) is the entanglement entropy of a
one-dimensional massive scalar theory with mass
M =

√
m2 + γ 2[2 − cos(k1) − cos(k2)]. Using33 S1D(M) ∝

−log(M2),

S ∝ −
∑
k1,k2

log{m2 + γ 2[2 − cos(k1) − cos(k2)]}. (A3)

Using Euler-Maclaurin formula, one finds the following
expression for S, correct to O(L0):

S ∝ I1 + I2, (A4)

where

−I1 � L2log(m2) + L2
∫ 1

0
dt log{1 + γ 2/m2[1 − cos(2πt)]}

and

−I2

� 2πγ 2L2
∫ 1

u=1/L

∫ 1

t=0

tsin(2πt)

m2 + γ 2[2 − cos(2πt) − cos(2πu)]

+ 2πγ 2L

∫ 1

0

tsin(2πt)

m2 + γ 2[1 − cos(2πt)]

� 2πγ 2L2
∫ 1

u=0

∫ 1

t=0

tsin(2πt)

m2 + γ 2[2 − cos(2πt) − cos(2πu)]
.

Clearly, neither I1 nor I2 contribute to a constant term in
the entanglement entropy. Therefore, as anticipated from the
curvature expansion, the entanglement entropy S = I1 + I2

does not contain a constant term for the T 2 × l geometry and
is proportional to L2 up to O(L0).

APPENDIX B: ADDITIONAL TERMS IN ENTANGLEMENT
ENTROPY IN THE ABSENCE OF ROTATIONAL/PARITY

SYMMETRY

A. Broken rotational symmetry

When rotational symmetry is broken, all powers of L (after
the area-law term) are present, except in two dimensions. In

two dimensions, there is no constant term when the boundary
of the region is smooth. So if rotational symmetry is broken,
it is not as easy to recognize a topological phase in even
dimensions higher than two without resorting to the ABC

construction [Eq. (15)] or its analogs.
In one dimension, when symmetry is broken, it is con-

venient to express the entropy in terms of x(s) and y(s),
the parametric equation for the boundary. Because rotational
symmetry is broken, there is no requirement that these
terms appear symmetrically. However, because of translational
symmetry, the entropy is a function only of the derivatives
of these functions. The only requirement is that the entropy
density must be symmetric under s → −s. Otherwise, the
entropy depends on whether s is measured clockwise or
counterclockwise around the region, and this violates the
symmetry between the inside and outside. (Clockwise is
defined relative to a choice of the region’s inside, as is familiar
from using residues to evaluate integrals in the complex plane.)
The expression

∫
( d2x

ds2 )3ds is symmetric and it scales as 1
L2 . One

can check that the integral is nonzero for an ellipse (assume
the ellipse has a small eccentricity so that the integral can
be evaluated; one can then expand it to first order in the
eccentricity).

To see that there is no scale-independent term, notice that
such a term would have to result from integrating an entropy
density with units of 1/L. Such terms are of the form

F (s) = f

(
dx

ds
,
dy

ds

)(
d2x

ds2

)
+ g

(
dx

ds
,
dy

ds

)
d2y

ds2
, (B1)

where s is the arclength.
These terms are total derivatives: Let α define the angle

of the tangent vector. Then dx
ds

= cos α,
dy

ds
= sin α. The term

equals [−f (cos α, sin α) sin α + g(cos α, sin α) cos α] dα
ds

.
Now the total entropy,

∫
F (s)ds can be rewritten as an

integral with respect to α:

∫
[−f (cos α, sin α) sin α + g(cos α, sin α) cos α]dα. (B2)

By the symmetry s → −s, f and g must be even functions of
cosine and sine. Therefore, the integral is equal to zero since
the contributions from α and α + π cancel one another.

While there are no constant terms for smooth regions in two
dimensions, shapes with corners do have scale-independent
terms that can be attributed to the corners (this can happen
even if the rotational symmetry is not broken, as shown for the
quantum Hall state in Ref. 22).

The first anomalous term in two dimensions scales as 1
L2 ;

one example of such a term is

∫
ds

(
∂2x

∂s2

)3

. (B3)

This expression does not vanish identically, as can be seen
by an example of a region which is nearly circular, that is,
described by the polar coordinates

r = 1 + ε(θ ), (B4)
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where ε 
 1. Evaluating the integral to linear order in ε, one
obtains∫

ds

(
∂2x

∂s2

)3

≈ −
∫

ds(cos3 θ )[1 − 6ε(θ ) − 3ε′(θ ) tan θ ],

(B5)

which is nonzero for ε(θ ) ∝ cos 3θ .
In higher dimensions, the entropy can have terms that de-

pend on ∂xi

∂uα and higher derivatives. When rotational symmetry
is broken, the Cartesian indices do not have to be contracted
but the indices for the coordinates on the surface still do,
because the entropy has to be independent of the coordinate
system. The first allowed correction to the entropy scales as
LD−1

L
and a simple term in the entropy density that leads to such

a correction (
D2x

DuαDuβ
gαβ

) (
∂x

∂uγ

∂x

∂uδ
gγ δ

)
. (B6)

The first factor gives the proper scaling, 1
L

. The other factors
ensure that the expression is not a total derivative in dimensions
above two. (The simplest term that scales as 1

L
, D2x

DuαDuβ gαβ =
∇2x, is a total derivative.) The indices are all contracted in
pairs so the expression is coordinate invariant.

Once a term of order LD−2 has appeared, one would expect
that all terms of lower orders appear too, and that is what
one finds. Since the L0 term is especially important, we
checked explicitly that in even dimensions greater than two,
a scale-invariant term L0 is allowed as long as there is no
symmetry. As an example, take Eq. (B6) and multiply it by
a power of the mean curvature, (gαβκαβ)D−2. This has the
units L1−D; therefore, it gives a scale-invariant contribution
when integrated (note that since D is even, there are an
even number of powers of κ as required). Both Eq. (B6)
and this term with the extra factors of κ give a nonzero
entropy for a generic region. As an example, consider the
D-dimensional surface of revolution obtained by rotating
Eq. (B4) (which can be regarded as a curve in the x1,x2

plane in D-dimensions) around the x1 axis [explicitly, x1 =
r(θ ) cos θ,

√
(x2)2 + · · · + (xD)2 = r(θ ) sin θ ]. Both integrals

are nonzero for ε(θ ) ∝ cos 3θ.

B. Broken parity symmetry

Breaking just parity can also lead to terms whose exponents
deviate from Eq. (4) even if rotational symmetry still exists,
when the dimension is odd. However, these additional terms
all vary as a negative power of L. In even dimensions, parity
does not lead to any additional terms.

The extra terms arise from an additional tensor, γ , that is
allowed when parity is broken. This tensor is related to the
antisymmetric tensor ε:

γ α1,...,αD−1 = 1√
g

εα1α2,...,αD−1 , (B7)

where
√

g is the square root of the determinant of the metric.
(This coefficient is necessary for ensuring that γ transforms as
a tensor.)

To understand these results, first note that the γ tensor,
like the κ tensor, depends on how one chooses the normal to

FIG. 4. Defining the orientation of a hypersurface from an
orientation of space, illustrated in three dimensions. A pair of
axes on the surface â,b̂ is defined to be right-handed if the
triad â,b̂,n̂ is right-handed. Formally speaking, γ is defined by
contracting the D-dimensional epsilon tensor with the normal n̂

and then transforming to curvilinear coordinates, γ α1α2,...,αD−1 =
nid εi1i2,...,id

∂xi1

∂uβ1
· · · ∂xiD−1

∂uβD−1
gα1β1gα2β2 · · · gαD−1βD−1 .

the surface. The sign of γ depends on how the orientation
of the surface is chosen, and this, in turn, depends not only on
the orientation of space (which is determined by the parity-
violating ground state) but also on the normal to the surface
(see Fig. 4). Since γ is odd under changing the sign of n̂, if a
factor of γ appears in the entropy density, an odd number nκ

of factors of κ must appear as well,

nκ ≡ 1(mod 2). (B8)

Now the requirement that all the indices of the κ’s and its
derivatives can be contracted with the upper indices of the g’s
and the factor of the γ still implies that nD , the number of
covariant derivatives is even if D is odd, because then γ has an
even number of upper indices. So a term that includes a factor
of γ has units of L−nκ−nD , which is an odd power of 1

L
.

In an even number of dimensions, the entropy still goes
down by two powers of L at a time because in this case, there
must be an odd number of derivatives as well as an odd number
of factors of κ to respect both the rotational symmetry and the
Z2 symmetry between the inside and the outside of the region.

The first anomalous term in the entropy is, however, very
small, and scales as 1

L
or 1

L3 depending on whether the
dimension of space is 1 or 3 modulo 4, respectively. All the
terms between the area law term, LD−1, and the constant term
go in steps of L2. This is essentially because the anomalous
terms include factors of γ , which has D − 1 upper indices
which all need to be contracted with something, forcing the
term to have at least D factors of κ or covariant derivatives.
(One might think that D

2 factors of κ should be enough since
each κ has two indices; however, since κ is symmetric and
γ is antisymmetric, contracting both indices of κ with γ gives
0.)

For illustration, here are some examples of nonzero terms:

I3 =
∫

dAgστ γ α1α2Dα1κα2σ ∂τ (tr κ)2,

I5 =
∫

dAgσ1σ2γ α1α2α3α4Dα1κα2σ1Dα3κα4σ2 tr κ,
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for three and five dimensions, respectively, where tr κ is the
mean curvature times D − 1, gαβκαβ . These both scale as 1

L3 .
Both expressions can be generalized to higher dimensions by
introducing extra factors of Dαk

καk+1σ k+1
2

and adding factors of

gσiσj to contract all the σ ’s.

APPENDIX C: VALID CONSTRUCTIONS TO EXTRACXT
TOPOLOGICAL ENTROPY IN D = 3

Let us define D[X(A,B,C)], where X denotes some
property of a manifolds A,B,C to be

D[X(A,B,C)] = XA + XB + XC

−XAB − XBC − XCA + XABC.

For example, in this notation γtopo = D[S(A,B,C). We note
that there is one obvious constraint for the Eq. (15) to be useful,
which is that the number D[b0(∂A,∂B,∂C)] �= 0. This is
because γtopo ∝ D[b0(∂A,∂B,∂C)] where the proportionality
constant is the universal topological constant associated with
the phase of matter.

We claim that in D = 3, Eq. (15) still holds as long as the
following condition is satisfied:

D[χ (∂A,∂B,∂C)] = 0, (C1)

where χ denotes the Euler characteristic. This is because
this Eq. (C1) guarantees that any dependence on local
curvature cancels out on the right-hand side of Eq. (15).
Since χ = 2 − 2g, the above equation may be reexpressed
as D[g(∂A,∂B,∂C)] = 1. Just to illustrate this point, consider
the case when A ∩ B ∩ C �= 0. Generically, three regions in
D = 3 would intersect along a line. Therefore, there are two
possibilities: The region C wraps around the surface defined
by A ∩ B or it does not. First consider the former possibility.
In this case, one may easily check that

g[∂(AC)] = g(∂A) + g(∂C) − 1,

g[∂(BC)] = g(∂B) + g(∂C) − 1,

g[∂(ABC)] = g[∂(AB)] + g(∂C) − 1.

This implies that D[g(∂A,∂B,∂C)] = 1 and therefore this
is a valid construction. An example is provided by the
construction in Fig. 3(a). On the other hand, when C does
not wrap around A ∩ B, then

g[∂(AC)] = g(∂A) + g(∂C),

g[∂(BC)] = g(∂B) + g(∂C),

g[∂(ABC)] = g[∂(AB)] + g(∂C),

and therefore D[g(∂A,∂B,∂C)] = 0, which implies that this
is an invalid construction.

APPENDIX D: ENTANGLEMENT ENTROPY OF LAYERED
Z2 TOPOLOGICAL PHASES

Here we briefly discuss the layered topologically ordered
states mentioned at the beginning of Sec. II. These phases
would lead to a correction 	SA = −γ2DLz, for layering
perpendicular to the z direction, where γ2D is the TEE

FIG. 5. Extracting entanglement entropy when a three-
dimensional topological ordered state coexists with a layered two-
dimensional topological order. (a) The ABC construction for this
geometry yields γ = Lzγ2D . (b) The ABC construction for this
geometry yields γ = γ3d .

associated with the theory living in each layer. For a generic
geometry, the total TEE γ may be written as

γ (Lz) = 2γ2DLz + γ3D. (D1)

Here Lz is the dimension of regions A,B,C in the z direction.
Figure 5 shows two different geometries for which the
application of ABC formula [Eq. (15)] yields γ2D and γ3D

separately.

APPENDIX E: LINEAR DEPENDENCE OF Stopo ON BETTI
NUMBERS IN THREE DIMENSIONS

Recapitulating the results from the previous section, in
D = 3, the topological part of the entanglement entropy is
proportional to b0 and is independent of b1 since the genus
dependence can be obtained by patching local Gaussian cur-
vature. Implicit in these statements is an important assumption
which is that entanglement entropy depends linearly on b0,b1.
This form for the entropy also assumes that the entropy does
not depend on knotting or linking of the toroidal surfaces.
In this section we provide a proof of these two statements.
Our only assumption is that the space in which region A is
embedded is flat (i.e., has the topology of R3).

We begin by proving the linearity of the entropy for the
simplest geometries shown in Figs. 6(a) and 7(a). Figure 6(a)
can be used to show that the entropy is linear in b1. Consider
first the decomposition shown in Fig. 6(b), where the boundary
of region A is a k torus (i.e., a torus with genus k) and
B and C are three-balls B3 that join together so that the
boundary of region B ∪ C is a torus with genus one. We
denote by Stopo(k) the topological part of the entanglement
entropy corresponding to a region whose boundary has genus
k. Now apply the strong subadditivity inequality, SA∪B +
SB∪C � SA∪B∪C + SB . The local parts of these entropies
satisfy an equality, Slocal(A ∪ B) + Slocal(B ∪ C) = Slocal(A ∪
B ∪ C) + Slocal(B) for the configuration shown, and any
configuration where A and C do not meet. The reason is that
each patch on the boundaries of the regions occurs an equal
number of times on both sides of the equation. Hence, the
topological parts of the entropy also satisfy

Stopo(k) + Stopo(1) � Sstopo(k + 1) + Stopo(0). (E1)
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FIG. 6. Illustration for proving that the entanglement entropy is
linear in the first Betti number. Panel (a) shows a genus k + 1 torus
(k = 3), and (b) and (c) give two ways of dividing it up into A, B,
C regions. In (b) A is a k torus, B is a ball, and C is also a ball that
has been stretched out. In (c) A is a k-torus, B a 1 torus, and C a ball
filling up the hole of the 1 torus. Applying strong subadditivity to both
configurations gives a recursion formula for S(k + 1) in terms of S(k).
Strong subadditivity gives inequalities, but the left- and right-hand
sides of the inequality in (b) and (c) are reverses of one another,
leading to an exact relation.

Similarly, we construct a different geometry as shown in
Fig. 6(c) where region A is the same as in Fig. 6(b), region B

has a boundary with genus one, and region C is topologically
a ball B3. For this topology, adding C to A ∪ B decreases the
number of handles from k + 1 to k, so the strong subaddivity
inequality yields the opposite conclusion:

Stopo(k + 1) + Stopo(0) � Stopo(k) + Stopo(1). (E2)

The above two equations imply that Stopo(k + 1) − Stopo(k) is
independent of k and hence Stopo is linear in k. This genus
dependence can be traded for a nontopological contribution
plus a b0 dependence.

To prove that the topological term is linear in the Betti
number b0 (= number of connected components of the
boundary) we repeat the above argument by replacing k

tori with a region with k spherical cavities cut in it (see
Fig. 7). This yields the result that Stopo = αb0 + β. Since Stopo

should vanish for b0 = 0, this suggests that Stopo is strictly
proportional to b0.

Now we show that the entropy of any three-dimensional
region, no matter how knotted, is given by the same formula
in terms of the Betti numbers. First, we assume that b0 = 1.
The theory of surfaces shows that every connected surface
embedded in three space is topologically equivalent to one
of the k-holed tori. This torus may be built up by attaching
handles repeatedly to increase the genus. However, there are
many ways to attach a handle. For example, one could add a
knotted handle, like in Fig. 8(a). The argument in Fig. 6(c)
does not apply to this handle because there is no way to define
region C; for the argument above to work it should fill in the
hole in the handle so that the genus decreases by 1, but this is
not possible since the handle is knotted through itself.

To generalize the argument we therefore construct a proof
of the upper bound that does not require filling the hole in.
We choose regions A,B,C that are all subregions of the initial

FIG. 7. Linear dependence of the Betti number on b0. (a) A
spherical region with k + 1 hollow cavities in it (b0= k + 2 including
the outer surface). (b),(c) Two sets of regions for applying strong
subadditivity in order to prove that the entropy for k + 1 holes minus
the entropy for k holes is a constant. (b) The region is divided up
into C, containing k − 1 of the cavities, a slab B, and a region A

containing the remaining cavity. (c) C again contains k − 1 of the
holes, B is the rest of the region, and A is a solid sphere that fills one
of the cavities.

region and the handle itself, so that the argument works if there
is some linking.

Ways of building up a region. First we describe all the ways
a region whose boundary is a connected genus k surface can
be built up starting from a sphere R0, so we can be sure that

FIG. 8. Illustration of gluing and drilling. (a) Gluing on a general
handle: The torus region is Rk , and the region H is the handle. The
handle meets the boundary of region R in two disks. Attaching the
handle gives Rk+1 = Rk ∪ H . (b) Drilling a hole: The initial region
here, Rk , is a solid sphere, and H is a knot that is hollowed out from
the inside of the ball to obtain Rk+1 = Rk − H . The boundary of this
region is topologically a genus one torus, although it is not possible to
continuously deform it into one. Hence drilling increases the genus
by one just as adding a handle does.
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our argument applies to all of them. Given a region Rk whose
boundary is a k torus, one may either glue on a handle H

as illustrated in Fig. 8(a) or drill out a hole, as in Fig. 8(b).
A handle is a solid cylinder outside region Rk whose two
ends are on the boundary of Rk . Attaching H means defining
Rk+1 = Rk ∪ H .

At some stages it may be necessary to drill a hole out
of the region instead. Drilling a hole is an inverted version
of the previous process [see Fig. 8(b)]: Let H also have the
topology of a cylinder, but H ⊂ Rk , with its circular faces on
the surface of Rk . Then drilling the hole H is passing from
Rk to Rk+1 = Rk − H . For example, applying this process to
a ball, as in Fig. 8(b), gives a “knot complement,” a manifold
that is very interesting to knot theorists, since it encodes the
structure of the knot.

FIG. 9. Figure for the proof that links passing through the handle
do not affect the entropy. Panel (a) shows region Rk and the handle (in
gray) that is added to it to get Rk+1. As in Fig. 6, the goal is to relate
the entropy of a k + 1-holed torus to a k-holed one, where k = 3. The
dotted circle indicates the portion of the figure that is enlarged in the
later panels of this figure. The portion of Rk that passes through the
hole is not shown in the subsequent frames for clarity. Parts (b) and (c)
show the two decompositions that are used to prove the lower bound
on Stopo(Rk+1) − Stopo(Rk). In (b), there are three regions: Region B

(checkered) is Rk . The handle is flattened so that it is ribbonlike,
and then striplike regions A and C are demarcated along its edges.
These together form A ∪ B ∪ C := Rdouble which has the topology of
Rk with two handles attached. In (c) we decompose Rk+1 into A, the
center of the ribbon, B (checkered), the border of the ribbon closed
up with parts of Rk to form a loop, and C, the rest of Rk . In this figure,
B ∪ C = Rdouble. Part (D) shows the decomposition used to prove the
upper bound, which corresponds to the division in Fig. 6(b).

We now prove that Stopo(Rk+1) − Stopo(Rk) =
Stopo(torus) − Stopo(sphere) for the general case. We
focus on the case where Rk+1 is constructed by adding a
handle. (The other case is similar: If Rk+1 is obtained by
drilling, then the complements, Rc

k+1 and Rc
k , are related

by handle adding, so we can apply our arguments to these
complements instead.)

Change of entropy on adding a handle not affected by links
passing through H . We first show that the entropy changes by
Storus − Sball even if the handle H is linked with other portions
of Rk . In this argument, we assume that the handle is not
knotted with itself; the next argument shows that knotting
does not affect the entropy.

Consider the regions in Fig. 8(a). We first prove this
inequality:

Stopo(Rk+1) − Stopo(Rk) � Storus − Sball, (E3)

where Storus and Sball are the topological entropies of an
unknotted torus and a ball, respectively. Begin by sliding the
two ends of the handle along the surface of Rk so that they are
right next to each other, as shown in the Fig. 8(a). The proof
of this inequality has two steps, using the decompositions
illustrated in Figs. 9(b) and 9(c).

First, as in Fig. 9(b), let B = Rk , and let A and C be narrow
strips along the left and right side of H . A ∪ B and C ∪ B are
two regions that can both be deformed into the same topology

FIG. 10. Showing that the entropy of a knotted handle is the same
as if it were an unknotted. (a) Shows the knotted handle H (the gray
region) that is attached to region Rk (the white region). Passing one
strand through the other so the topology changes to panel (e) causes
the handle to become unknotted: The loops in (e) can be untwisted,
giving a simple handle. Any knot can become unknotable if the
right strands are passed through each other. The intermediate panels
show that this process does not change the entropy. Panel (b) is a
magnification of panel (a). In panel (c) the topology is changed so that
one strand passes through an eyelet in the other. This configuration is
obtained by adding a handle along the dotted lines in (b); hence, the
entropy changes by Storus − Ssphere (the handle is unknotted). Panel
(d) is obtained by removing a handle from (c); the entropy therefore
decreases back to its original value. Thus, the change from (a) to (e)
does not affect the topological entropy.
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(Rk+1); altogether, A ∪ B ∪ C forms a region Rdouble with two
handles attached to Rk . The strong subadditivity implies

2Stopo(Rk+1) � Stopo(Rk) + Stopo(Rdouble). (E4)

Next, as in Fig. 9(c), let A be the interior of the strip H .
Let B be the border of this strip, marked with a checkered
pattern in the figure. This border is closed by adding some
small parts of Rk so that it surrounds region A completely. Let
C be the rest of Rk . In this decomposition, C ∪ B = Rdouble,
while A ∪ B ∪ C = Rk+1, and A ∪ B and B are a ball and a
torus, respectively. Then

Stopo(ball) + Stopo(Rdouble) � Storus + Stopo(Rk). (E5)

Adding the previous two equations and canceling Rdouble gives
Eq. (E3).

In this argument it has not been necessary to add on regions
external to the handle, so the argument still works if parts of
Rk are linked through it.

Now the reverse inequality Stopo(Rk+1) � Stopo(Rk) +
Storus − Sball is proved just as in the argument for the simple
k tori using the division shown in Fig. 9(d), which is no
different than the original construction in Fig. 6(b). Hence,

Stopo(Rk+1) − Stopo(Rk) = Storus − Sball, and we conclude that
Stopo(Rk) = kStorus − (k − 1)Sball; that is, the entropy is linear
in the genus of the surface.

For the case where the surface has more than one boundary
component we just start with a region whose boundary has
many components, which are all spheres. The entropy of this
region is proportional to b0 by an argument similar to the one
illustrated in Fig. 7 (this applies even when the spheres are
nested in each other). It is known that any region may be built
up from such a region by either attaching handles or drilling
holes. It is even possible to choose the handles and holes so
that each one starts and ends on the same component of the
boundary of Rk . Then the calculation of the entropy as the
handles are attached proceeds just as above.

Change of entropy not affected by knotting of the handle. If
the handle is knotted, this argument does not immediately
work, because the entropy change Storus − Sball could be
different when the torus is knotted. However, a knotted handle
may be transformed to an unknotted one by repeatedly adding
and then removing of unknotted handles as illustrated in
Fig. 10. By the previous argument, the entropy returns to
its original value after this is done. Hence, the knotted and
unknotted handles have the same entropy.
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