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Topological phase in a one-dimensional interacting fermion system
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We study a one-dimensional (1D) interacting topological model by means of the exact diagonalization method.
The topological properties are first examined with the existence of the edge states at half-filling. We find that the
topological phases are not only robust to small repulsive interactions, but also are stabilized by small attractive
interactions, and also finite repulsive interaction can drive a topological nontrivial phase into a trivial one while
the attractive interaction can drive a trivial phase into a nontrivial one. Next we calculate the Berry phase and
parity of the bulk system and find that they are equivalent in characterizing the topological phases. With them
we obtain the critical interaction strengths and construct part of the phase diagram in the parameters’ space.
Finally we discuss the effective Hamiltonian at the large-U limit and provide an additional understanding of
the numerical results. These results could be realized experimentally using cold atoms trapped in the 1D optical

lattice.
DOI: 10.1103/PhysRevB.84.195107

I. INTRODUCTION

The finding of time-reversal invariant topological
insulators (TIs) has become an exciting event in condensed
matter physics. Since then many works have been carried
out theoretically and experimentally, predicting and verifying
the many exotic physical properties exhibited by TIs.!~3 The
key feature of TIs is the existence of the robust edge states
determined by the bulk topological property, which can be
described by Z,-valued topological invariants.*” The original
definition of TIs is for noninteracting band structures and the
relevant physics has been well understood. Thereafter one of
the subjects that needs to be explored further is the effects of
electron correlations on TIs.

In the situation where many-body interactions exist, the
definition of TIs from the topological field theory, which is
the presence or absence of a topological term in the effective
electromagnetic action, is generally valid.® In addition,
the method using the Green’s functions to construct the
topological invariants is also applicable.””'! Yet the main
difficulty is still to deal with the interactions properly. At
the mean-field level, it has been shown that interactions can
change the trivial insulators into nontrivial ones.'>”'* It is
also been proposed that TIs and new topological phases may
appear in the systems with considerable interactions such
as 4d or 5d transition metal oxides.'>'® Recently, several
numerical simulations and analytical works were performed
on the interacting two-dimensional Kane-Mele model and
studied the interplay of spin-orbit coupling and Coulomb
repulsion.!”> These studies showed that the Hubbard
repulsive interaction can transform the TI of the Kane-Mele
model to either the spin liquid phase or antiferromagnetic
insulating phase depending on the strength of the spin-orbit
coupling. A study using the Lanczos algorithm concludes that
the topological properties have already manifested themselves
in small systems and therefore can be studied numerically via
exact diagonalization (ED) and observed experimentally.!”

There also appeared works addressing the question of how
the presence of interactions changes the classification of the
topological phases. For noninteracting systems, five symmetry
classes are topologically nontrivial in each spatial dimension-
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ality. This classification has been expected to be also applicable
to interacting systems as long as the strength of the interactions
is sufficiently small as compared to the gap.?®>” However, re-
cent studies on a specific one-dimensional (1D) model showed
that the free-fermion classification breaks down in the presence
of interactions.?®? So it is most possible that the interaction
does not modify the topological nontrivial classes uniformly.
In this paper, we use the ED to study the effect of interac-
tions in a 1D lattice model which is known to have a topological
state in its free form. With the ground-state energies and wave
functions, we first calculate the energy and the distribution
of the quasiparticle added or removed from the system at
half-filling for open boundary conditions (OBC) and periodic
boundary conditions (PBC), then we identify the topological
phases with the existence of the edge states. The topological
features indeed have manifested themselves clearly in the small
sizes we can access. We consider both the repulsive and at-
tractive interactions and find the topological phase is robust to
repulsive interaction while stabilized by an attractive one when
the interaction strengths are small. For the repulsive interaction
we find that as its strength is increased, the system undergoes a
topological quantum phase transition (TQPT) into a trivial in-
sulator. For attractive interaction it can drive a trivial insulator
into a nontrivial one. Then we calculate the Berry phase and
the parity of the bulk system, which are equivalent in character-
izing the topological property of the system. When the system
is in the topological phase they have nontrivial values. With
them we obtain the critical interaction strengths and construct
part of the phase diagram in the parameters’ space. Finally,
we discuss the effective Hamiltonian at the large-U limit and
provide an additional understanding of the numerical results.

II. 1D MODEL WITH EDGE MODES

Our starting point is the 1D noninteracting tight-binding
model*’
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FIG. 1. (Color online) (a) The tight-binding band structure of
‘H(k). The low-energy excitation is located at k; (black line) or k,
(green line) depending on the parameters. (b) Edge modes in the
topological phase (M = —1) on a chain of length N = 20 with OBC.
(c) Berry phase of the occupied Bloch state of Eq. (1) at different M.
(d) The plot of the curve [d, (k),d, (k)] with k € [0,2r]. In all figures
B = 1isset.

where oy, o, are Pauli matrices and ¥; = (¢;4,¢; l)T with the
¢iy(ciy) electron annihilating operator at the site r;. The first
two terms represent the differences of the on-site potentials and
the hopping amplitudes between the up and down electrons,
and the third term is due to the spin-orbit coupling. In
momentum space Eq. (1) becomes Hy =), \I',]:H(k)\llk with
W, = (cky,cxy)! the Fourier partner of W; and

H(k) = [M + 2B — 2Bcos(k)]o, + 2Asin(k)oy.

The spectrum of H (k) consists of two bands,

EM = +\/[M + 2B — 2Bcos(k)]? + [2Asin(k)]2.

Usually the two bands are dispersive, but when the parameters
satisfy —M /2 = B = A the bands are flat. For M =0 (M =
—4B) bands 1 and 2 touch at the Dirac point k; = 0 (ky = 7),
while for other values a gap A =min{2|M|, 2|M + 4B|} opens
up at the Dirac point k; or k. At half-filling, depending on the
values of the parameters A, B, and M the system can be a
trivial insulator or a nontrivial insulator with edge modes. In
the following we take B positive and set A = 1 as the energy
scale.

The topological property of the system can be understood
in terms of the Berry phase in k space, whichis y = ¢ A(k)dk
with the Berry connection A(k) = i(uk|j—k|uk) and |u;) the
occupied Bloch state.*>33 The numerical result is shown
in Fig. 1(c). It shows the Berry phase y mod 2w gets a
nonzero value m for —4B < M < 0. We also have performed
a numerical diagonalization of Hy on a chain with OBC. In
accordance with the above argument, we find a pair of zero
modes appearing in the gap when the Berry phase of the system
is  [Fig. 1(b)].

We notice that when the Berry phase is 77 the masses at the
two Dirac points k; and k, have different signs [i.e., M(M +
4B) < 0]. This can also serve as a criterion of the topological
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property in the system. The reason can be understood from
the low-energy Hamiltonians governing the excitations in the
vicinity of the Dirac points.3%313435 By linearizing H(k) near
ki and k, we obtain two Dirac Hamiltonians

h; = 2Ac,k + Mo,

2)
hi = —2Ao.k + (M + 4B)o..

For —4B < M < 0 the masses at the Dirac points exhibit
opposite signs, while for M > 0 and M < —4B the masses
at the Dirac points exhibit the same signs. In the following we
show that the two cases correspond to two phases with different
topological properties. We consider a junction between the
two phases running along a line in real space (suppose
—4B <M < Oforx <0and M > 0 for x > 0). So the mass
of h,i necessarily undergoes a sign change across the x = 0
boundary. Such a soliton mass profile is known to produce a
massless state in the associated Dirac equation, localized near
the boundary. Specifically, a Dirac equation

[2A(=i)0y 0y + ozm(x)]¢(x) = E¢(x)

with m(x — —o00) < 0 and m(x — o00) > 0 has a gapless
solution
— e o m(x"dx’ 1

B(x) = e 22 o M) (z)
localized at the boundary with zero energy. Since the M > 0
phase can be continually connected to the M = oo phase
which is a trivial insulator, the phase for —4B < M < Ohasa
nontrivial topological property. The above argument is similar
when M < —4B for x > 0 in the junction. So through the
relative signs at the Dirac points we can obtain the same
condition for the nontrivial topological phase.

Furthermore, we can write H(k) = d(k) - o, where d, (k) =
2Asin(k), dy(k) =0, and d.(k) = M + 2B — 2Bcos(k). The
pair [d,(k),d (k)] forms a closed loop in the plane when k
changes from O to 2. If the system has nontrivial topological
properties, the loop will contain the origin point of the plane
[Fig. 1(d)]. It is also consistent with the former arguments.

III. EFFECT OF THE HUBBARD INTERACTION

To study the effect of the interaction, we add the Hubbard
term Hy =U Zi nisn;y to Eq. (1). This term changes the
single electron Hamiltonian Eq. (1) to a many-body one.
For the noninteracting case, the topological property can be
directly read from the presence of the edge states in the gap of
the single electron energy spectrum. However, in the presence
of interaction, there is no longer a single electron state. Then
how can we identify the topological property of the system?

A. Existence of the edge states

Generally for a finite chain of N sites, the full Hilbert space
of the system has dimension 4". Since in the Hamiltonian
Hy + H, the total particle number is conserved, we can get the
ground-state energy and wave function of a system with a fixed
number of electrons using ED. Then we can define the energy
of the quasiparticle added to a system with n electrons as
AE, = E°, | — E?, where E? is the ground energy of a system

n+1
with n particles. Similarly to the noninteracting case, if the
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phase at U = 0 is topological (M = —1); (c)
the phase at U =0 is trivial (M = 1). The
critical interactions U, in (a) and (c) can be
accurately determined from the parity of the
ground-state wave function. Here B = 1.
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system has a nontrivial topological property, there appear states
in the gap of the quasiparticle energy spectrum (QPES) as the
boundary condition changes from PBC to OBC. Since this
definition can be continually connected to the single electron
case, we expect it to be valid at least for the small-U cases.

First we consider the effect of repulsive interaction.
Figure 2(a) shows the results of starting from a system with a
nontrivial topological property. Similar to the noninteracting
case, we are concerned about the electron added or removed
from the half-filling system. It shows that the energies of the
quasiparticles added or removed appear in the gap when U is
below a critical value U,. At small U the two in-gap modes
have exactly the same values. Due to the finite-size effect, when
U approaches the critical value, the energies of the two modes
is separated by a gap. When U is beyond U, the in-gap modes
disappear and evolve into the bulk ones. The result clearly
shows that the topological phase survives in the presence of
a small repulsive interaction and a TQPT is driven by a finite
repulsive interaction. We also study the case of starting from
a trivial insulator and find that no in-gap modes appear when
the repulsive interaction is added.

Next we turn to study the effect of attractive interaction.
The calculations are straightforward and the results are shown
in Figs. 2(b) and 2(c). In Fig. 2(b) the attractive interaction is
introduced into a system with a nontrivial topological property.
It shows that the existence of the in-gap modes persist to quite
large strengths. Then as the strength is further increased, the
in-gap modes continuously evolve into bulk ones. In Fig. 2(c)
we show the result of introducing the attractive interaction
to a trivial insulator. We find that when the strength reaches
a critical value U,, the in-gap modes begin to appear in the
gap of QPES, indicating that the attractive interaction can
drive a trivial phase into a nontrivial one. Then the in-gap
modes persist till the strength becomes very large when they
evolve into bulk ones. This behavior is very similar to that of
disorder.¢-37

Till now by identifying the in-gap states in the QPES,
we show the effects of the repulsive and attractive Hubbard
interactions in the topological phase. In the noninteracting
systems, the in-gap mode is also referred to as the edge mode
due to the fact that they mainly distribute near the edges of the
chain. Similarly in the interacting case we can also calculate
the distribution of the in-gap mode to study its nature. Using
the many-body wave functions, the distribution of the electron
added can be defined as An; = (Y0, 1A; ¥y, ) — (WOlAi|1¥0),

where 7; = c[TTciT + cjici J is the electron number operator

on site i and ¥ is the ground-state wave function of the
system with n electrons. The results at different U and M

L
7
0

are shown in Fig. 3. Since the electrons added or removed
at half-filling have exactly the same distributions, only one
of them is shown. In Fig. 3(a), we start from a system with
a nontrivial topological property. As expected at U = 0 the
in-gap state mainly distributes near the edges. As we increase
the strength of the repulsive interaction, the distribution begins
to evolve from the ends to the bulk. Though the result is greatly
affected by the finite-size effect, the distribution at U < U, is
still clearly distinct from that at U > U, (U, is about 3 ~ 4),
indicating the different topological properties existing in the
system. Next we add attractive interaction to the above system
and the result is shown in Fig. 3(b). As the strength increases,
the topological phase is first stabilized, manifested by the
increase of the components near the ends. Then the distribution
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FIG. 3. (Color online) The distribution of the quasiparticles added
or removed from the half-filling system with OBC. (a, b) M = —1;
(c) M =1 .Here B =1 and the system size N = 10.
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begins to oscillate between positive and negative values. The
occurrence of the negative value is due to the many-body effect.
The amplitude of the oscillation decays from the end to the
bulk and as the strength is further increased, the decay becomes
slower, so the in-gap state begins to disappear, indicating the
system is experiencing a TQPT. We also start from a trivial
insulator and the result is shown in Fig. 3(c). It shows that
in the presence of the repulsive interaction the distribution
still mainly concentrates in the bulk, while after the attractive
interaction is added the distribution begins to evolve from the
bulk to the ends. The dramatic change occurs at U = —3 when
the distribution shows a sign of edge one. The estimated critical
value —3 ~ —2 is in good consistent with U, in Fig. 2(c).
Then as the strength of the attractive interaction is further
increased the distribution shows a similar behavior as that in
Fig. 3(b). These results are consistent with those obtained from
the QPES.

B. Topological properties of the bulk system

Till now we have examined the topological phase in the
interacting system with the existence of the edge states. It
is known that their existence is due to the bulk topological
properties. So in the following we will calculate the Berry
phase of the ground state of the interacting system at half-
filling using the twisted boundary conditions.**=%3 It can be
defined as

) d
y = %lﬁ/felﬁll/fe),

where 6 is the twisted boundary phase which takes values from
0 to 27 and ¥y is the corresponding ground-state many-body
wave function at half-filling. To compare with the previous
results, we first study the Berry phases associated with Fig. 2.
We find that the Berry phase y mod 27 has the value 7 and 0
forU < U, and U > U, (see Fig. 2).

The Hamiltonian H(k) possesses the symmetry imple-
mented by a unitary transformation

o, H(k)o, = H(—k). 3)

The symmetry is similar to the inversion symmetry
except that there is an additional sign when it is performed
on the spin-down electron. Thus we can define the parity
of the wave function . In the basis of a fixed number
of electrons, w,? =Y . ¢|i) with |i) denoting the ith n-
electrons basis. Under the inversion transformation, Plﬂ,? =
Y diPli) =Y, di€ilj)i = £, where Pli) =¢|j); and
€; = =1 depending on the times of exchanging the fermion
operators. We calculate the parities of the ground- and the
first-excited states associated with Fig. 2 and the results are
shown in Fig. 4. It shows that at half-filling there is a gap
between the two states even in the presence of the interactions
and the gap may be eliminated at the critical strength U, where
the parity also changes its sign.

We also find that the parity is the same as the Berry phase
to characterize the bulk topological properties since they both
change their values at the same critical value U,.. From either
one the accurate values of the critical interactions can be
obtained, such as U, = 3.66 in Fig. 2(a) and U, = —2.86 in
Fig. 2(c). We want to mention that in some cases, such as at the
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FIG. 4. (Color online) The energies and parities of the ground-
and the first-excited states. (a) M = —1 and (b) M = 1. The red
(black) curve has the parity value —1(1). In both figures B = 1 and
N =38.

large attractive interaction though the in-gap states disappear,
the Berry phase or the parity of the ground state does not
change their values. These cases are beyond our discussion
because the ground states become degenerate and the systems
are not insulators any more.

From these calculations, we can get part of the phase
diagram in the parameters’ space, as shown in Fig. 5.
Figure 5(a) is in the (M, U) plane. It shows that at each value of
B the curve is symmetric about M = —2B and the behaviors
are similar as M is far from —2B. When M approaches
—2B, the property is different depending on the value of
B. For B < 1, the critical interaction gets its maximum at
M = —2B. While for B > 1 the results become complex and
depend greatly on the system sizes, so no definite conclusions
are made. Figure 5(b) is in the (M, B) plane. At U = 0 the
topological phase is in the area restricted by the lines M = 0
and B = —M /4. Its size is shrunk by the repulsive interaction
and broadened by the attractive one. Corresponding to the
results in Fig. 5(a) at a fixed B of each curve the sum of
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FIG. 5. (Color online) The phase diagram in (M,U) and (M, B)
planes. The system size N = 8.
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the two corresponding M’s is —4B and when U > 0 and
B <1 the tips of the curves fall on the line B = —M/2.
We notice that (M,B) = (—2,1) is a special point where the
noninteracting system exhibits flat bands. Here at the large
repulsive interaction the ground- and the first-excited states
also become degenerate and the Berry phase and parity of the
ground state keep the same value all the way.

C. Effective Hamiltonian at large-U limit

To understand the phase diagram better, it is helpful to study

the system at the large-U limit, when the effective Hamiltonian
£ 40
is

Hetr = = Z (Jsoi' oy + Jyoi oy + Jofofy,)
+ Y (M +2B)o7, (4)

1

where J, = (B> — A%)/U, J, =(B*>+ A%)/U, and J, =
—Ji. When A= B itis Hy =—J Y ;0/0],, +JgY  0f
with J = % and g = %, which is the quantum Ising
model.*! By tuning the dimensionless coupling g, H ; exhibits
a quantum phase transition and the critical point is exactly at

|g| = 1. For —2732 —-2B <M < % — 2B, the ground state
is twofold degenerate and possesses long-range correlations
in the magnetic order parameter o, while beyond the above
range of M it is in a quantum paramagnetic state. This
naturally explains the degeneracy at B = —M /2 = 1 for the

large repulsive interaction.

IV. CONCLUSION

To conclude, we study the effect of interactions in a 1D
topological model by means of the ED method. The topological
features have already manifested themselves clearly in the
small sizes the calculations can access. Our studies focus on
the half-filling system. We examine the topological phases
with the existence of the edge states, which are exhibited from
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the energy and distribution of the electron added to or removed
from a system at half-filling and with OBC. We show that the
topological phase is robust to small interactions and the finite
repulsive interaction can drive a topological nontrivial phase
into a trivial one while the attractive interaction can drive a
trivial phase into a nontrivial one.

We calculate the Berry phase and the parity of the ground-
state wave function to study the bulk topological properties.
The Berry phase and the parity have an intrinsic connection
and are equivalent to describe the topological properties due to
the symmetry in our model. In the cases where the edge state
exists, the Berry phase has nontrivial value 7. At the TQPT
points the Berry phase and the parity change their values. From
them we determine the critical interactions and construct part
of the phase diagrams in the parameters’ space.

These results demonstrate the existence of the topological
phases in 1D interacting fermion systems. Though the model
we use is artificial, it may be constructed experimentally using
cold atoms trapped in the optical lattice, which allows one
to directly simulate ideal and tunable models. At present
ultracold Fermi gases in a truly 1D regime can be realized
using strong optical lattices and the interactions can be
tuned between the repulsive and attractive ones by means of
Feshbach resonances.*? With these developments some of the
basic phenomena in the interacting fermion systems are being
studied. In addition, there have appeared some studies which
suggested methods to mimic the effect of spin-orbit coupling
and to produce topological states of matter in cold-atom
systems.**™* So it is very hopeful that these results are tested
in cold-atom experiments.
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