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Phase transitions and spectral properties of the ionic Hubbard model in one dimension
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The ionic Hubbard model is investigated at half filling at zero temperature. We apply the cellular dynamical
mean-field theory to the one-dimensional ionic Hubbard model to compute local quantities such as double
occupancy and staggered charge density. Both quantities provide general transition behavior of the model from a
band insulating phase to a Mott insulating phase. The renormalized band gap is introduced as an efficient order
parameter for the transition from a band insulator. We also present the spectral properties of the ionic Hubbard
model, which exhibit characteristic features for both weak and strong interactions.
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I. INTRODUCTION

Strongly correlated electron systems have been one of
the most interesting problems in modern condensed-matter
physics. The interest in strongly correlated systems was
motivated by experiments on transition-metal oxides which
were inconsistent with the predictions of the conventional
band theory. Since the argument by Mott that the mutual
interaction between electrons can cause insulating behavior,
extensive research has been performed on the effects of the
interaction in the metal-insulator transition.' It is practically
impossible to include all the degrees of freedom in strongly
correlated systems, and the standard approach has been to solve
theoretical models constructed with essential ingredients. The
Hubbard model (HM) is one of the most popular models in
strongly correlated systems.? It includes only two essential
components: electron hoppings and local Coulomb interac-
tions. Although the model seems extremely simplified, it has
successfully described the metal-insulator transition caused by
the mutual interaction between electrons.

The ionic Hubbard model (IHM), an extended version of the
HM, was proposed to explain the neutral-ionic transition in the
quasi-one-dimensional charge-transfer organic materials.>”’
Unlike the original HM, this model is an insulator in the
absence of the mutual Coulomb interaction. It enables one
to examine an interesting insulator-insulator transition, from a
band insulator (BI) under weak interaction to a Mott insulator
(MI) under strong interaction. Accordingly the transition
nature in the IHM is expected to differ significantly from the
usual metal-insulator transition in the HM.

A more interesting feature of this model is the possibility
of a nontrivial intermediate state, sandwiched between the
two insulating phases. Extensive studies of the intermediate
state in the ITHM have been carried out in various spatial
dimensions. In the infinite dimensions, which can be treated
exactly by the dynamical mean-field theory (DMFT),® the
metallic phase is observed as an intermediate phase for the
weak alternating potential, whereas a direct insulator-insulator
transition is shown under a strong staggered potential.”~!!
The same conclusion has been obtained by a recent study
using a coherent potential approximation.'? In two dimensions,
on the other hand, there has been some controversy as to
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the nature of the intermediate phase in the IHM. Quantum
Monte Carlo calculations'>!'# showed that the metallic phase
exists, as is observed in the infinite dimensions. In contrast,
the cellular dynamical mean-field theory (CDMFT)"> as well
as the variational cluster approach'® predicts a bond-ordered
insulating phase as an intermediate state.

In one dimension, which is our main interest in this
paper, the possibility of an insulating intermediate state was
suggested by the bosonization method,!” which predicts a
spontaneously dimerized insulating (SDI) phase between BI
and MI phases. Many subsequent interesting works for the one-
dimensional (1D) THM have been reported.'®>3 Particularly
density matrix renormalization group (DMRG) calculations
have confirmed the existence of an SDI phase for intermediate
interaction strengths.?>?! However, the critical properties of
the transition between BI and SDI phases obtained by DMRG
calculations turned out not to be consistent with those of
two-dimensional (2D) Ising universality class predicted in
a bosonization method. For the transition between SDI and
MI phases, even the critical interaction strength has not been
identified clearly from finite-size scalings.

The main purpose of this paper is to investigate in detail
the nature of transitions in the 1D IHM at half filling. In
order to achieve this we use the CDMFT,%* which is one
of the cluster extensions>> of DMFT. While a single site
is chosen to construct the self-consistent equation in the
DMFT, the CDMFT picks up a cluster composed of several
sites in the spatial dimension of the system. This makes it
possible to include short-ranged spatial fluctuations inside the
cluster, which are expected to be important in low-dimensional
systems. The CDMFT turns out to be a very efficient method
even in one dimension,20~2° the worst case for a mean-field
theory. In particular, it has been shown that the CDMFT
of the 1D HM yields excellent agreement with the Bethe
ansatz exact solution.”’””?’ Such a good agreement in turn
reinforces our expectation of an accurate description by the
CDMFT method of the 1D IHM for which no exact solution
is available. We employ the exact diagonalization method
as an impurity solver to study the ground state of the 1D
IHM. The exact diagonalization method is powerful since it
deals with all the quantum fluctuations on an equal footing,
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although it limits the number of sites inside the cluster as
well as that of bath sites. Recent studies on correlated systems
show that single-site or cluster DMFT combined with the exact
diagonalization gives reliable results for finite temperatures as
well 3032

We calculate local quantities such as staggered charge
density and double occupancy, which have been reported to
be evaluated accurately in the CDMFT approach.?”-?® We also
introduce a renormalized band gap defined by the self-energy
corrected band gap and demonstrate that it plays the role of
convenient order parameter for the BI phase. Any indication
of the transition from an intermediate phase to an MI phase
is not observed in the local quantities, such as the abrupt
change in slope which was reported in the cellular dynamical
mean-field study of the two-dimensional IHM.'3 In order to
gain further insight into the transition nature we finally focus
on the spectral properties of the model. Computed spectral
weights reveal the spin-charge separation in an MI phase,
which is characteristic of the 1D system. Such spin-charge
separation has been reported by earlier studies through cluster
extensions of the DMFT only for the 1D HM.*>3 The
transition from an intermediate phase to an MI phase exhibits
rather a crossoverlike behavior, which may be a reason for
the difficulty in obtaining the transition point clearly in earlier
numerical investigations.

This paper is organized as follows. In Sec. II, we describe
the IHM and introduce briefly the procedure of the CDMFT.
The numerical results and discussions are presented in Sec. I11.
We give a summary in Sec. I'V.

II. MODEL AND METHOD
The Hamiltonian of the 1D IHM is given by

H=—t Z (cj(,cja +Hece)—n Znia
( io

i, j)o

+U2niTni¢—%Znia+%Zni0’ (1)

icA ieB

where c,-Ta (c;,) creates (destroys) an electron with spin o

at the ith site and n,, = c;rgcw. The hopping of electrons is
allowed only between the nearest neighbors. The parameters
t, U, and p are the hopping amplitude, the on-site Coulomb
repulsion, and the chemical potential, respectively. Throughout
the paper we will represent all the energies in units of . The
system is composed of two alternating sublattices A and B.
The potential energy difference between nearest neighbors is
A (>0) and every site belonging to the sublattice A (B) has
lower (higher) potential energy by A /2 than the chemical
potential. If A vanishes this model is restored to the original
HM. We set the chemical potential to be half the Coulomb
repulsion (1 = U/2) in order to maintain the half filling of
electrons over the system.

We use the CDMFT to study the 1D IHM. The infinite
lattice is reduced to a cluster of size N, which hybridizes with
the self-consistent electronic bath sites within the CDMFT.
We employ the exact diagonalization method as an impurity
solver. In order to obtain the cluster self-energy, we map the
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lattice model to the impurity Hamiltonian,

Himp = Z Euvcjwcva +U Z”MT”M

uvo u

+ Z(Vulaa;ocuo + V:ltrc:rl,oala)

ulo

+ ZelaalToaltr’ (2)
lo

where u,v = 1,2, ..., N, are the cluster site indices and [ =
1,2,...,N, label the bath sites. The matrix E contains the
hoppings, the staggered potential, and the chemical potential
inside the cluster, which is given explicitly by

—n—A/2 —t 0 0

—t -+ A2 —t 0
io|o ~t —p=A2 0

0 0 0 o=+ A/2

3)

[The circumflex over a symbol (°) represents a N, x N,
matrix.] The parameters {¢;,} and {V,,;,}, which respectively
denote the bath energy levels and hybridization strengths with
the clusters, are determined from the imposed self-consistency
conditions. From the impurity Hamiltonian we compute the
cluster Green function G as well as the cluster self-energy
$¢ =G — G, where G is the Weiss field describing the
noninteracting bath.

The Green function of momentum k in reduced Brillouin
zone is given by

G(k,iwy) = [M — i(k) — S(iw,)] ™", )

where M, = (iw, — E,,)0,.0, f(k) is the Fourier trans-
form of the hopping matrix, and w, = 2n + )n/B, n =
1,2, ..., Nmax are fictitious Matsubara frequencies. Here we
used B = 100 and Ny,,x = 400 and omitted the spin index o
for simplicity. The local lattice Green function Gloc is then
determined by

Groclion) = Y G(k.iwy). (5)
k

The new Weiss field C;new is obtained through the self-
consistent equation

Grobliwy) = GRliw,) + £ (iwy), (©6)

the best fit of which produces new bath parameters {€;5, V5 }.
The above procedure is repeated until the convergence is
reached. For a more detailed procedure, we refer the reader
to earlier works.?*

It is known that even the cluster of N, =2, which is
the minimal size describing the system within the CDMFT
approach, is sufficient to obtain an accurate estimation of the
local quantities in the 1D HM.?” Further, we have observed that
in the 1D IHM the local quantities obtained by the calculations
for various combinations of N, and N, are not significantly
dependent on the choice of N, and N,, although larger N,
has some tendency to improve the momentum resolution
of spectral weights. The number of sites in the impurity
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Hamiltonian is practically limited by N. + N, < 12. We use
N, =4 and N, = 8 for the presentations of most quantities
investigated in this paper, and other choices of N, and N;, will
be specified.

III. RESULTS AND DISCUSSION

A. Local quantities

In order to examine how the system evolves with the
variation of the local interaction we first calculate two local
quantities: staggered charge density and double occupancy.
The staggered charge density is defined by the difference
between the number densities at two sublattices, n4 — np,
where the sublattice number densities can be calculated as

ng = Ni Z Z(nua)

¢ uea o

(¢ = A,B), @)

with the angular brackets being the expectation value over the
ground state of the impurity Hamiltonian. We also calculate
the double occupancy defined by

1
= —Z(nan), (8)

n

which is known to be a convenient measure in the transition
from metal to an MI phase.

In the ionic limit (A >> ¢,U), it is energetically favorable
that all the electrons are in the sublattice A, producing unity
of the staggered charge density. As U is increased, the energy
cost of two electrons to stay in the same site becomes large,
reducing the staggered charge. In the strong-coupling limit
(U > t,A), the staggered charge is expected to approach zero.

In the case that the system has neither the interaction nor
the staggered potential (U = A = 0), the double occupancy
is 1/4 since every site has an equal possibility to be occupied
independent of spin. The presence of the staggered potential in
the system tends to increase the double occupancy. In contrast,
the repulsion between electrons makes the doubly occupied
sites less favorable and results in the reduction of the double
occupancy.

The features of two quantities described in the above
reasoning are generally consistent with our numerical results
in Fig. 1, which shows (a) the staggered charge density and
(b) the double occupancy as a function of U. The staggered
charge is relatively large in the weak interaction regime and
monotonically decreases with increasing U’; it reveals that the
system exhibits a BI phase for weak interactions and that an
MI behavior turns up in the regime of strong interactions. In
our numerical work we have also confirmed that the system
with large A shows larger staggered charge density over the
whole region although the increment is reduced for stronger
interactions (not shown). The analysis of double occupancy
has drawn a similar conclusion. In the noninteracting system
(U = 0) the double occupancy is larger than the free-electron
value 1/4 and the system lies in a BI phase. The double
occupancy is reduced monotonically by the increase of U,
approaching zero, as is expected in an MI. Monotonic decrease
in both the staggered charge density and the double occupancy
demonstrates that the increase of the interaction strength drives
the system from a Bl into an MI. It is of interest to note that no

PHYSICAL REVIEW B 84, 195102 (2011)

0.8
0.6

nyng

0.4
0.2

0.3

FIG. 1. (Color online) (a) Staggered charge density ns — np.
(b) Double occupancy D as a function of U/t for A/t = 1. Both
quantities approach zero monotonically as U is increased, signifying
that the system exhibits a BI phase for weak interaction while an MI
is recovered in the limit of strong interaction. The lines are merely
guides to the eyes.

abrupt change is observed in the variation of both quantities
with an increase of the interaction strength.

B. Energy densities

In order to gain more insight on the transition between BI
and MI, we compute the energy density of the system. The
ground-state energy density of the system is calculated as

— = €g + €p + €y,
N K A U

2 1 . A~
€x = B E E [VCTr{t(k)G(k,iwn)}} ;
nok

ex = A(ny —np),
€y = UD,

(€))

where €k, €, and €y denote kinetic, potential, and correlation
energy densities, respectively. The factor 2 in ex comes from
spin degeneracy. Computed energy densities illustrate which
contribution plays a dominant role in each phase. In Fig. 2 we
have plotted various contributions to the energy density of the
1D IHM along with those of the 1D HM for comparison. Since
the HM does not have staggered potential, the contribution
from potential energy is zero and is not plotted in the figure.
In the region of weak interactions (U < 2f), we can see
that both the kinetic and the correlation energy densities are
higher than those of the standard HM. The energy gain in the
potential contribution compensates for the increase in other
energy densities, demonstrating the BI nature of the system
in this region. The increase of the interaction strength lessens
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FIG. 2. (Color online) Energy densities A/t =1 as a function
of U. The total, kinetic, potential, and correlation energy densities
are denoted by squares (0J), circles (), triangles (A), and diamonds
(0), respectively. The corresponding energy densities in the 1D HM
are given as lines for comparison except for the potential one which
is zero in the HM.

such a tendency gradually. In the strong-interaction region
(U Z 4¢) all the energy-density contributions are almost the
same as those of the HM and the energy contribution from the
staggered potential is almost zero, signifying that the system
is in an MI phase. As in the local quantities examined in the
previous sections, all the energy densities display continuous
variations with the increase of interaction strength.

C. Local density of states

The local density of states (LDOS) provides more detailed
information on the single-particle properties. Within the
CDMEFT approach, the LDOS is given by

p) =Y Atk,o), (10)
k

where A(k,w) is a spectral weight with the energy w and the
momentum vector k in the full Brillouin zone. We restore the
translational symmetry broken in the CDMFT formalism by
the periodization of the Green function for each sublattice,

2 . N
Galk.0) = 3 > e NGk (@ =A.B), (1)
H,VEX
where G(k,w) is given in Eq. (4). Then we can compute the

total spectral weight A(k,w) as

1
Alkw)=—-= Y ImG,k.0+ie).
T

a=A,B

12)

where G, is the periodized Green function of the sublattice
o and ¢ is a small broadening factor. In this work we used
e =0.05.

The LDOS is shown in Fig. 3 for several values of U.
In the noninteracting system (U = 0), the LDOS can be
computed analytically and is composed of two bands which are
separated by a band gap A due to the staggered potential. The
CDMEFT results generally reproduce the analytical LDOS for
a noninteracting system, as demonstrated in Ref. 35. Turning
on the interaction does not change the LDOS very much
from the noninteracting LDOS, and the two-band structure
is retained. For weak interactions the increase of interaction
strength reduces monotonically the band gap around a Fermi
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FIG. 3. (Color online) Local density of states p(w) for A/t = 1.0
and U/t = 0.3, 2.4, 6.0, 8.0, and 10.0 from top to bottom. In the
weak-coupling regime the system displays a two-band structure and
the gap between the two bands is reduced gradually with the increase
of U. In the strong-coupling limit, on the other hand, the two bands
move away from the Fermi level and each band seems to be split into
two subbands. A broadening factor ¢ = 0.05 is used.

level. Around a certain value Uy ~ 2.4t the LDOS displays
a minimum spectral gap and prominent long tails show up
at the outer edges of the bands. Further increase of U above
Uy in turn enlarges the gap between the two bands. Each
band is apparently split into two subbands and the LDOS
is composed of four bands for strong interactions. Such a
four-band structure is also observed in the original HM,
where it is caused by spectral weights concentrated on the
spinon-holon continuum.? In the IHM the gap between the
subbands is distinguished more clearly than in the HM and it
is found to be proportional to A. We will give more detailed
discussions on this topic in the section that deals with the
spectral weights.

D. Spectral gap and renormalized band gap

For a quantitative analysis of the gap around a Fermi level,
we investigate the spectral gap §, which is defined as the energy
difference between the highest filled and the lowest empty
levels in the LDOS. Since the IHM always displays a minimum
gap at k = 7 /2 the spectral gap can be conveniently obtained
from the spectral weight at the Fermi point k = 77/2 within the
CDMEFT. Since the system has a particle-hole symmetry, we
estimate the spectral gap § to be twice the difference between
the Fermi level and the peak of A(k,w) closest to it for positive
. The measured gap is plotted as a function of the interaction
strength U for various A in Fig. 4. The overall behaviors
of the spectral gap are consistent with those observed in the
LDOS. The spectral gap is equal to A in the noninteracting
system (U = 0). It is reduced from the noninteracting value
A by weak interactions, reaches a minimum at U = Uy, and
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FIG. 4. (Color online) Spectral gaps 6 as a function of the
interaction strength U for various A/t. The spectral gaps for the
system with A/t =1,2,3, and 4 are denoted by diamonds (),
squares (0J), circles (O), and triangles (A), respectively. With the
increase of U the spectral gap decreases for weak interactions while
it grows larger in the regime of strong interactions.

increases with U in the regime of strong interactions above
Up. Our CDMFT results of the system with various A in
Fig. 4 have shown that Uy increases with the bare band
gap A.

In a BI quasiparticle excitations are well defined and we can
interpret the spectral gap as the energy difference between the
lowest quasielectron and quasihole excitations. By expanding
the self-energy for each sublattice around the Fermi level we
can estimate the position of the poles of the Green function on
the real frequency axis near the Fermi level. We then define
the renormalized band gap A, by the difference between the
poles of the Greens function of the sublattice A and B which
are the closest to the Fermi level, which is expected to be the
same as the spectral gap in a BI phase. By definition A,
equals a bare band gap A in the noninteracting system since
the self-energy vanishes and the poles of the Green function
are identical to the bare dispersion of the system. Indeed A, is
a band gap with a self-energy correction. On the other hand, in
correlated phases such as an MI, the quasiparticle excitations
are not well defined and the discrepancy between 6 and Ae,
will show up. We can thus expect that the comparison of the
renormalized band gap A, with the spectral gap § will be a
good parameter for determining whether the system is in a BI
phase or not.

Within the CDMFT we have computed and plotted the
difference between the spectral gap § and A, in Fig. 5. We
can see that it is zero for U = 0, which is guaranteed from
the definition of the renormalized band gap. It is remarkable
that the difference remains zero over a finite region of U
below a certain critical value U,;. Above U, the discrepancy
between § and Ay, turns out to grow rapidly, signifying
that an MI phase or another correlated phase emerges for
U > U, . For A =t, the CDMFT yields U, = 2.2¢; this
is comparable to, although slightly smaller than, the critical
values obtained in the existing works, U,; ~ 2.67¢ from the
DMRG study?! and U, ~ 2.3t from the effective model
in the strong-coupling limit.*® We compare U, and U,
for various A in Table I. It is found that two interaction
strengths correlate very much with each other and U is always
slightly higher than U, which is also consistent with existing
works. 202!
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FIG. 5. (Color online) Difference between the spectral gap § and
the renormalized band gap A, for various values of A /z. The same
symbols are used as in Fig. 4.

E. Spectral weights

A useful quantity for demonstrating momentum-resolved
information on the correlation effects in the system is a total
spectral weight A(k,w) given in Eq. (12). This is computed
from periodized sublattice Green functions in Eq. (11) and we
plot A(k,w) for various interaction strength U in Fig. 6.

For weak interactions below U, two quasiparticle bands
are sharply defined in A(k,w), as illustrated in Fig. 6(a) for
U = 0.3¢. Such quasiparticle bands which are separated by
a band gap result in two-band structure of the LDOS which
is similar to that of a noninteracting system. In this regime
only the gap between the two bands and the band widths are
renormalized by weak interactions.

In Fig. 6(b) we can observe that around U, the single-
particle dispersion begins to be broadened particularly around
the zone center k = 0, which is a signature of the transition
to a correlated phase from a BI phase. The broadening around
the zone center is a source for the appearance of long tails
at the outer edges of the bands in the LDOS. Here it is of
interest to note that the broadening shape of the dispersion
closely resembles the spin-charge separation observed in the
1D HM. The spinon (holon) is a fractionalized excitation which
carries only spin (charge) but no charge (spin). In the 1D HM,
the Bethe ansatz solution gives the dispersion of the exotic
excitations. The assembled dispersions construct the spectral
weight and we can observe some prominent dispersions such
as the spinon and the holon branches. In the 1D HM most
weights of A(k,w) are concentrated on the spinon branch
under relatively weak interaction and more weights transfer
to the holon branches and other accessible regions of higher
energies as the interaction strength is increased.”’ Similar

TABLE I. Comparison of the critical interaction strength U
below which the system is in a BI phase and U, at which the system
shows a minimum spectral gap. All the energies are given in units
of .

A UO Ucl
1.0 2.4 2.2
2.0 34 3.2
3.0 4.4 4.1
4.0 5.3 5.0
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FIG. 6. (Color online) Spectral weights for A/t =1.0 and
@ U/t=03;(b) U/t =22, (c) U/t =6; and (d) U/t = 8. We
used a cluster of size N, = 6 with N, = 6 bath sites. Since the unit
cell of the IHM is twice that of the original HM, the first Brillouin
zone isreducedto — /2 < k < /2. For better resolution the spectral
weights are rescaled according to their maximum values in each plot.

weight transfer is observed in the spectral weights of 1D IHM,
as shown in Fig. 6.

Although the spectral weights of the two models are quite
similar to each other in the strong interaction regime, a
remarkably different feature also arises from the presence of a
staggered potential. In the absence of the staggered potential
two holon branches for k > 0 and for k < O cross each other
at the zone center slightly above w = U/2, and extends as
secondary holon branches in the other region, as is reproduced
in Fig. 7(a).”’ The spectral weights for A /¢ = 2 and 4, which
are shown in Figs. 7(b) and 7(c), demonstrate marked gaps
at the crossing points of the holon branches. The fact that
the gap width is proportional to A also supports that the
degeneracy of the holon branches at k = 0 is lifted by the
staggered potential. Accordingly, the dispersion displays four
well-separated bands, yielding the characteristic four-band
structure observed in the LDOS for large U in Fig. 3. We

FIG. 7. (Color online) Spectral weight for N, =6, N, =6,
U/t =10.0,(a) A/t =0,(b) A/t =2,and (c) A/t = 4.

also note that the shift of the spinon and the first holon bands
toward the Fermi level produces some reduction in the Mott
gap in the presence of a staggered potential.

The comparison of the spectral weights with different N,
gives us a good guide to the understanding of the overall
distribution of spectral weights. In Fig. 8 we plot the spectral
weights on the two momentum points k =0 and k = /2
with different cluster sizes N. = 2, 4, and 6. In the plot of
spectral weights at the zone center in Fig. 8(a) we can recognize
three prominent peaks around w & 3¢, 4.3¢, and 5.5¢, which
are identified as the spinon and the two split holon branches,
respectively. A similar tendency is demonstrated clearly in the
plot of A(/2,w) in Fig. 8(b). The first peak around w ~ 2¢
corresponds to a merging band of the spinon and the lower
holon band, while the higher holon band generates the second
peak around w ~ 6.5¢. The peaks which seem to be prominent
for N. = 2 tend to be smeared out to a continuum with the
increase of N.,.

Since the pioneering bosonization approach!” it has been
generally believed that the 1D IHM shows two successive
transitions with an increase of the interaction strength. In
the CDMFT we have identified the first transition from the
BI by examining the renormalized band gap. However, we
are not able to position the second transition point from the
intermediate insulating phase to the MI in the investigation of
the systems with various values of A. We have not observed
any nonanalytic behaviors in local quantities such as the
staggered charges or the double occupancy, in contrast to
the 2D THM where some kinks in the local quantities were
proposed as a signature of the second phase transition.'?
No abrupt change in the spectral properties occurs as the
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FIG. 8. (Color online) Spectral weight for A/t =1, U/t =8,
(a) k = 0, and (b) k = 7 /2 with different cluster sizes.

interaction strength is increased. Particularly the spectral
weights exhibit a rather gradual transition to the MI. Although
the origin of such difficulty in positioning the second phase
transition is not clear, we believe that it is related to rather
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slow falloff of the bond-order parameter around the second
transition in the DMRG study.”!

IV. SUMMARY

We have investigated the one-dimensional half-filled ionic
Hubbard model at zero temperature using the cellular dy-
namical mean-field theory. We have computed the staggered
charge density and the double occupancy. Both quantities
display monotonic decrease with an increase of the interaction
strength, signifying that the system evolves from a band
insulator to a Mott insulator. The energy-density analysis
shows that the potential energy gain occurs for weak in-
teractions, while the system with strong interactions gives
almost the same energy contributions as in the Hubbard model.
The phase boundary of a band insulating phase has been
determined by the comparison of the renormalized band gap
with the spectral gap. Around the phase boundary we have also
observed a minimum of the spectral gap for various strengths
of staggered potential. We have calculated the spectral weights
and analyzed the detailed structure of spin-charge separation
by analogy with the one-dimensional Hubbard model. The
staggered potential turns out to produce a gap at the crossing
point of two holon branches, which is proportional to a
band-gap parameter.
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