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Many-body enhanced nonlinear conductance resonance in quantum channels

Jong E. Han,1,* Saskia F. Fischer,2,3,† Sven S. Buchholz,3 Ulrich Kunze,3 Dirk Reuter,4 Andreas D. Wieck,4 and
Jonathan P. Bird5

1Department of Physics, State University of New York at Buffalo, Buffalo, New York 14260, USA
2Neue Materialien, Humboldt-Universität zu Berlin, D-12489 Berlin, Germany

3Werkstoffe und Nanoelektronik, Ruhr-Universität Bochum, D-44780 Bochum, Germany
4Angewandte Festkörperphysik, Ruhr-Universität Bochum, D-44780 Bochum, Germany

5Department of Electrical Engineering, State University of New York at Buffalo, Buffalo, New York 14260, USA
(Received 20 October 2011; published 16 November 2011)

We measure a strong enhancement of the nonlinear differential conductance (g = dI/dV ), the amplitude of
which exceeds the universal quantum conductance (2e2/h), under finite bias voltage in quantum point contacts
(QPCs). By developing a spin-based model in the low-electron-density limit, we demonstrate that this resonance
is an intrinsic nonequilibrium phenomenon that arises from many-body induced modifications to the QPC
potential. A comparison with the linear conductance (G = I/V ) shows that this phenomenon is driven by
many-body dynamics within a single one-dimensional sub-band.
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The well-known quantization of the conductance1,2 of
quasi-one-dimensional (1D) quantum point contacts (QPCs)
and quantum wires (QWRs), in integer units of G0(=2e2/h),
can be described within a single-particle picture in the
Landauer-Buttiker formalism.3,4 At the same time, however,
many-body phenomena, including those that involve spin-
based interactions, have been widely suggested to modify the
conductance in the limit where the carrier density is lowered
sufficiently that many-body energy terms dominate over the
carrier kinetic energy (for reviews, see Refs. 5–7, and for
various theoretical models, see Refs. 8–14). Recently, a strong
conductance enhancement beyond G0 was observed in the non-
linear transport of QWRs, when their transport was governed
by a single 1D sub-band.15,16 Although many-body effects
were proposed as the origin of this enhancement, it remains
unclear precisely what nonequilibrium mechanism can drive
such a drastic departure from the quantized conductance. Here
we provide a scenario that explains this behavior in terms of
nonequilibrium transport due to spin fluctuations in quasi-1D
constrictions. From diagrammatic calculations, it is shown
that correlations of the spin fluctuations strongly modify the
effective potential barrier (Eb) formed in the 1D QWR, and
it is this effect that yields the observed nonlinear conductance
enhancement.

The phenomenon that we are interested in explaining is
demonstrated here with results for two GaAs/AlGaAs QPCs
[which we refer to here as QPCs A and B, see the inset to
Fig. 1(a) for the geometry], fabricated by nanolithography
and wet etching. QPCs were defined with nominal lengths
and widths of about 100 nm and had a global Ti/Au top gate
that covered the reservoirs and the QPC. A two-dimensional
electron gas (2DEG) was located 55 nm below the top
surface and had (in the dark at 4.2 K) a carrier density, mobility,
and mean free path of 3.1 × 1011 cm−2, 1 × 106 cm2/Vs,
and 9.5 μm, respectively. Differential conductance (g =
dI/dVsd) was measured by use of the lock-in technique,
superimposing a dc source-drain bias (Vsd) on top of a small ac
excitation. Measurements were made in a dilution refrigerator
for temperatures of 0.02–10 K. In rough dc bias measurement

scans five of nine QPCs showed immediate evidence for a
conductance peak, with two of these exhibiting a peak with
g > G0. The reproducibility of our results was demonstrated
in several cooling cycles, performed over the course of a year.
As illustrated in Fig. 1(a), in the limit Vsd → 0, the differential
conductance showed flat quantized plateaus indicating the
high quality of these constrictions. As the top-gate voltage
(Vg) is increased, the onset of conduction is followed by the
well-known 0.7 feature.5 The 1D sub-band energy spacings
were determined from the transconductance (dg/dVg) derived
from g17 measured as a function of both Vg and Vsd. Typical
values for the separation of the first and second sub-bands
(�E1,2) were around 10 meV, significantly larger than the
values (1–3 meV) typically reported for split-gate QPCs. The
large subband spacing is critical for the nonlinear experiments
here, since it allows us to apply dc bias without inducing
transport via higher sub-bands.

The resonant enhancement of the QPC conductance under
nonlinear bias is demonstrated in Fig. 1(b). Here we plot
high-resolution measurements of g(Vsd) for a series of Vg

close to pinch-off. For the lowest conductance curves, it
is clear that an increase of Vsd to 4 mV yields a rapid
increase of g to a value beyond G0. Related behavior was
found previously in the experiment of Morimoto et al.,15,16

who showed that this resonant enhancement became more
pronounced with increasing channel length, a result that we
return to explain below. It is clear from Fig. 1(b) that the
resonance is seen only for a narrow range of Vg close to
pinch-off and that it is rapidly suppressed with increase of
the background g. This can also be seen in the colorscale
plot of g(Vg,Vsd) in Fig. 1(c). Values of g exceeding G0

are plotted in dark red and the width of the resonances is
very narrow, about 400 μV. For increasing gate voltage, as
the background conductance increases toward the right-hand
side of the contour, the resonances are suppressed. As a
further illustration of the range of the resonance, in Fig. 1(a)
we compare the gate-voltage dependence of the differential
conductance, measured with Vsd = 0 to that for Vsd = 4 mV.
The data are similar to those in Ref. 15 and show that the
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FIG. 1. (Color online) (a) g = dI/dVsd measured vs. Vg (up and down sweeps) for Vsd = 0 and Vsd = +4 mV at 22 mK, QPC A. (Inset)
Typical QPC before deposition of the top gate. (b) g(Vsd) measured at different Vg , showing g > G0, QPC A. (c) Color plot of g(Vsd,Vg). g > G0

values in red. (Red line) g(Vsd = +4 mV) of (a), (blue line) g(Vg = 0.38V ) of (b), QPC A. (d) Temperature dependence of the conductance
peak, QPC B. (Inset) Linear conductance showing the 0.7 anomaly. (e) Nonlinear conductance peak for Vsd = +4.5 mV at B = 0 T and 8 T,
QPC B.

enhancement of the conductance above G0 is associated with
the threshold for a single sub-band. Sweeping Vg up and down

shows that the resonance is highly reproducible and that there
is no hysteresis. We have, furthermore, found the resonance
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FIG. 2. (Color online) (a) Schematic I -Vsd relation. As a pinched-off QPC [in (d)] becomes conducting [in (e)] the potential barrier shifts
downward (dashed to solid curve) due to the energy gain via coupling to spin fluctuations and the current becomes enhanced. The current should
be bound by the maximum current, Imax = G0Vsd, if only one sub-band is responsible. Once the conductance saturates [in (f)], the potential
shift does not affect the plateau. (b) Corresponding differential conductance. (c) Measured I -Vsd curves. [(d)–(f)] Energy configurations at
different gate voltages. Eb is the potential barrier height. (g) Linear-conductance regime.

to be stable with regards to variation of the ac excitation
(4–240 μV rms).

Two further features of the resonance that should be
addressed concern its temperature and magnetic-field depen-
dence, which are demonstrated in Figs. 1(d) and 1(e). Con-
sistent with Ref. 15, the resonance is suppressed quickly with
increase of temperature beyond 1 K [Fig. 1(d)]. Such behavior
is, therefore, opposite to that reported for the 0.7 feature,5

whose visibility typically improves above 1 K, suggesting that
the resonance arises from a different mechanism. In Fig. 1(e)
we show that a large in-plane magnetic field suppresses the
resonance, similar to the trend reported by Morimoto et al.15

The inset to this figure reveals an interesting behavior that is
observed by first configuring Vg to achieve maximal resonance
at B = 0 T and then increasing the magnetic field while
holding Vg fixed. g reduces in a steplike manner, from an
enhanced value of more than G0 to around G0, near 4 T, and
then to a value close to zero.

To begin our discussion of the theoretical interpretation
of the observed phenomena, we first explain the nonlinear
conductance peak heuristically as follows. For given Vsd,
the current through a single 1D sub-band is given by I =
2e
h̄

∫ ks

−kd

dk
2π

vg(k,Vsd) = 2e2

h
Vsd with μs,d and ks,d the chemical

potentials and Fermi wave vectors, respectively, for the source
(s) and drain (d) reservoirs. This formula applies for Eb <

min(μd,μs) [see Fig. 2(d)] even when the potential barrier
or the group velocity vg(k,Vsd) is modified by many-body
effects. When Eb lies inside the chemical potential window
[μd < Eb < μs ; see Fig. 2(e)] the relation is modified to

I = 2e/h(μs − Eb), in the limit of perfect transmission. If
the bias dependence of the barrier is ignored, the differential
conductance becomes g = dI/dV = βG0 with the parameter
β being the fractional voltage drop between the source and the
constriction. In infinitely-long QWRs, the shift of the bottom
of the band can be absorbed in the chemical potential and
is often ignored. However, in QPCs the change of potential
near the constriction should be carefully taken into account.
In the strongly interacting limit near pinch-off, the finite
electron density in the constriction changes the electronic
structure and Eb(Vsd) may develop a strong bias dependence.
As the bias increases by δVsd, the electron density in the
constriction increases, leading to stronger many-body effects,
which, in turn, induces a second-order downward shift of the
potential barrier by δEb. Under such conditions, the current
should exhibit an abrupt change near pinch-off as depicted
in Fig. 2(a). The current increase δI can be expressed as
δI = 2e

h
[βeδVsd + δEb]. δEb/δVsd is model-dependent and

there is no limit to its magnitude a priori. When δEb/δVsd

becomes large enough, the maximum differential conductance

gmax = G0

(
β + 1

e

∂Eb

∂Vsd

)
(1)

may exceed G0, just as measured in our experiment. In the
linear-transport regime, [μd = μs , see Fig. 2(g)], the condition
μd < Eb < μs is never satisfied and the single-sub-band
differential conductance is bounded by G0, even though the
many-body effect may be present in Eb.
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Confirmation that the resonance arises from only a single
1D sub-band can be obtained by examining the QPC I -V
curves. With a single sub-band, the current should be bounded
by Imax = G0Vsd [dashed line in Fig. 2(a)], regardless of many-
body effects. This is demonstrated experimentally in Fig. 2(c),
which shows I -V curves obtained by numerical integration
of the differential conductance of Fig. 1(b). The curves are
clearly bounded by Imax, and a similar conclusion may be
reached from the data of Morimoto et al.16 Thus, the resonance
in the differential conductance does indeed appear to arise
from many-body effects taking place in a single 1D sub-band.
Such character explains why the large 1D sub-band spacing
in our devices aids the observation of the resonance. Hints of
collective behavior of itinerant electrons under strong lateral
confinement have been given earlier in Ref. 18.

Moving beyond this heuristic description to quantitatively
account for the experiment, we have developed a phenomeno-
logical model that takes account of spin fluctuations of itinerant
electrons in a quasi-1D system.19,20 We start with an electron
gas discretized on a noninteracting chain with the Hamiltonian
given by the tight-binding model

H0 =
∞∑

i=−∞

∑
σ

{
− t0(c†i+1,σ ciσ + c

†
i,σ ci+1σ )

+
[
V (xi) − μ − 1

2
gμBσH

]
niσ

}
, (2)

with the gate potential V (xi) = Vg[cosh(xi/Lg)α]−2 on the
i-th point xi along the transport direction. The parameter α is
introduced here to allow variation of the potential shape from
quadratic (α = 1) to flatter (α > 1) forms, thus mimicking
constrictions of different lengths. c

†
iσ is the electron creation

operator of spin index σ = ±1, the electron occupation niσ =
c
†
iσ ciσ , t0 is the hopping integral, and H is the external Zeeman

field. The free electron g factor has been used in the calculation.
To connect to experiment, the length of the gate potential in
the transport direction is chosen as Lg = 240 nm, with the
discretization spacing �x = Lg/32 = 7.5 nm. This leads to
the hopping integral t0 = h̄2/(2m�x2) ≈ 10 meV with the
effective mass m ≈ 0.067me in GaAs. This discretization sets
the coarse-grain length scale for our model of long-wavelength
limit.

For the inter-electron interaction, we consider the Heisen-
berg spin-exchange model

Hint = 1

2

N∑
i=−N

Ji(Ŝi − Ŝi+1)2, (3)

where the spin of itinerant electrons at interacting sites
i = −N, . . . ,N (N = 30) is given by Ŝiα = 1

2

∑
βγ c

†
iβσ α

βγ ciγ

with the Pauli matrix σα (α = x,y,z). Positive spin-exchange
coupling Ji induces ferromagnetic coupling between itinerant
electrons nearby. For numerical calculations, we attenuate
the coupling constant adiabatically with the same width as
the gate potential, Ji = J0[cosh(xi/Lg)]−2. The spin coupling
contributes to a negative shift of the barrier when incoming
electron spins dynamically align with the spin fluctuation19,20

near the barrier. This effect becomes sensitive in the low-
density limit near pinch-off when the effective kinetic energy

competes with many-body interaction. With the barrier be-
tween the source-drain chemical potentials under finite bias,
such abrupt change in the electronic structure leads to the
enhancement of the conductance as discussed for Eq. (1).

The model is numerically solved by the nonequilibrium
Keldysh Green function technique21 with the self-energy
calculated to second order of interaction. Figure 3 confirms the
picture discussed earlier. In Fig. 3(a), differential conductance
curves at finite source-drain bias Vsd = 1 meV show a peak
exceeding G0. (VPO denotes the pinch-off gate voltage by the
noninteracting limit.) Here the spin-coupling parameter J0 is
treated as a free parameter. Once J0 exceeds 11 meV, the
conductance peak grows rapidly. In the linear transport regime
(Vsd = 0 meV), the conductance is bounded by G0 as shown
in Fig. 3(b). It is interesting that the calculations carried to
the first-order mean-field approximation (dash-dotted line)
show only a conductance step at g = βG0, as discussed
earlier. This illustrates that the resonant conductance occurs
due to the coupling of quantum fluctuations with itinerant
electrons near a QPC constriction. In principle, bosonic
fluctuation models other than that considered here could
also generate similar resonant conductance physics. Quanti-
tative comparisons to experimental temperature and magnetic
field dependence will determine the applicability of the
models.

At J0 = 12.5 meV, the strong temperature dependence in
Fig. 3(c) reproduces the experimental temperature scale for
suppression of the resonance. Note that the characteristic
energy scale of 2.9 K is much smaller than any other energy
parameters in the model, as is typical for emergent many-body
phenomena. Calculations performed with nonzero magnetic
field also confirm the reduction of conductance peak for H >

4 T, and the progression of the peak position to more-negative
gate voltage at high fields.15

Increasing the constriction length via the QPC potential
yields a remarkable enhancement of the conductance peak, as
we show in Fig. 3(d). In this figure, the potential shape (inset)
has been changed from a quadratic [α = 1, below Eq. (2)]
profile to a flatter form by increment of �α = 0.2. This results
in a growth of the effective region over which the spin-coupling
becomes pronounced, hence leading to enhanced conductance
peaks. As the QPC gets even longer, the effective region does
not grow due to a voltage slope in the potential [see the inset
of Fig. 3(d)], while the resonant many-body state becomes
more extended. This leads to reduced coupling and eventual
reduction of the conductance peak. The overall agreement
of our model with experiment (both here and in Refs. 15
and 16) offers important insight into the origins of the nonlinear
resonance. In our devices here, the large 1D sub-band spacing
promotes a strongly 1D character to transport, while in the
experiment of Morimoto et al.15 this was achieved by studying
long QPCs, with a large length-to-width ratio.

In conclusion, we have developed a quantitative many-body
theory that captures the resonant enhancement of the nonlinear
conductance in QPCs in the lowest one-dimensional sub-band.
Key to this phenomenon is the ability of quantum fluctuations
to induce a significant modification of the constriction poten-
tial, over a narrow range of gate voltage. Due to the strong
magnetic field dependence, models with itinerant spins are
likely candidates, as confirmed by performing calculations
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(a) (b)

(c) (d)

FIG. 3. (Color online) (a) Calculated g at finite bias Vsd = 1 mV with several spin-coupling constants J0. J0 = 10,11,12,12.5,13 meV
from bottom to top curves. (b) g at several Vsd (0,0.25,0.5,1 meV from bottom to top) for J0 = 12.5 meV. Absence of conductance peak in
the mean-field approximation (dash-dotted red curve) demonstrates the importance of spin fluctuations. (c) The conductance peak with strong
temperature and magnetic field (inset) dependence within the experimental range. J0 = 12.5 meV; Vsd = 1 meV. (d) Strong enhancement of
conductance peak for flatter potential barrier (inset). Increment of α is 0.2 [defined below Eq. (2)].

of spin fluctuations in the low-density limit as an example.
Our experimental results confirm the ideas of our model,
showing that, in the limit of large sub-band spacing, the
conductance (I/V ) remains bounded below G0, even though
the differential conductance can significantly exceed this.
Our study, therefore, shows that nonequilibrium transport can
reveal new many-body energetics that is essential to a full
understanding of QPC/QWR systems.
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