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Spin tunneling in the diamond color center coupled to the P1 center
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The spin-1 carried by the nitrogen-vacancy (NV−) color center of a diamond is a promising candidate as a
quantum bit (qubit) for the realization of a solid-state quantum computer. The interaction with the P 1 center, which
is a single substitutional nitrogen atom with spin- 1

2 , converts the NV− qubit to a multilevel system. The 18-level
energy diagram of the NV−-P 1 coupled defect pair exhibits several level anticrossings and the spin functions
change sign at different values of the applied magnetic field. Beyond each resonance, the two electronic spins
of the coupled triplet-doublet system flip individually or in concert, offering possibilities to implement quantum
logic gates. Interlevel transitions are also possible. The transition probabilities can be predicted rigorously in the
framework of the Landau-Zener theory. The spin flip occurs by quantum tunneling. It is also possible to introduce
geometric phases, which can be useful for the realization of phase gates.
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Introduction. Various solid-state systems have already
been proposed for implementing a quantum computer with
electronic or nuclear spins such as quantum bits (qubits) and
logic gates.1 Their main advantage is scalability and their main
drawback is the coupling of the qubits to other degrees of
freedom of the solid-state system. We show here that this
difficulty can be overcome in the case of nitrogen-vacancy
(NV−) color centers of diamonds, which are very promising
candidates for a spin-based solid-state quantum computer.
The NV− color centers have several remarkable properties
which are fundamental in quantum-information processing
(QIP).2

The negatively charged NV− defect has an 3A ground state
with a spin-1. It can interact with other spin impurities and
in particular the P 1 center, which is a single substitutional
nitrogen atom with a spin- 1

2 . The addition of the hyperfine
interaction (HF), due to the coupling of the electronic and
nuclear spins of the P 1 center, converts the NV− qubit to a
multilevel system. Under the influence of an external magnetic
field, the spin functions undergo π phase shifts, or equivalently
change sign, while the 18-level energy diagram exhibits several
level crossings (LC) and anticrossings (LAC). Beyond a
resonance, the two electronic spins carried by the coupled
defect pair can flip independently or in concert, offering
possibilities to implement quantum logic gates. Interlevel
transitions without spin flip are also possible. The spin flips
are achieved by a kind of quantum tunneling, similar to that
observed in single molecule magnets with a large spin (S � 10)
such as Mn12 (Ref. 3) and Fe8 (Ref. 4). To our best knowledge,
it is the first time that such quantum tunneling is observed in a
low-spin system (S = 3

2 ).
We have organized the manuscript as follows. First, we

apply the effective spin Hamiltonian formalism to obtain the
Zeeman energy diagram and the spin functions of the coupled
triplet-doublet system. Second, we show the link between this
formalism and the static aspect of the Landau-Zener (LZ)
theory5,6 of a magnetically driven two-level system. The latter
is then applied for studying the LAC observed at about 520 G
and for which some experimental results exist.7,8 Third, exact
transition probabilities of the initially prepared spin system are
obtained and discussed in the framework of the time-dependent
LZ theory.

Effective spin Hamiltonian. For a coupled triplet-doublet
system, the effective spin Hamiltonian can be written as
follows:9,10

H1 = D
[(

SNV
z

)2 − 1
3 (SNV )2

] + SNV JSN, (1)

where SNV (N) are the electron spin operators. The eigenvalues
of their z component is noted as m

NV (N)
S . D = 2.88 GHz

is the zero-field splitting of the triplet, that is, the gap
between the energy level mNV

S = 0 and the twofold degenerate
level mNV

S = ±1. The fine-structure tensor J describes the
interaction between the triplet and the doublet. Its nonzero
elements are:9

Jyy = ξ

(
1 − 3y2

r2

)
, Jzz = ξ

(
1 − 3z2

r2

)
, Jyz = −ξ

3yz

r2
,

(2)

with ξ = Jxx = g2β2/r3 and Jzy = Jyz. g is the isotropic
electronic g factor, β the Bohr magneton, and r the distance
between the two defects. y and z are the Cartesian coordinates
of the P 1 center. The NV− defect is lying along the z axis,
which is parallel to the 〈111〉 crystallographical direction of
the diamond structure. The origin is halfway from the vacancy
and the nitrogen atom.

The six-dimensional energy matrix is obtained by rewriting
Eq. (1) in the basis {|mNV

S mN
S 〉}, which is the tensor product

of the triplet basis {|mNV
S 〉} and the doublet basis {|mN

S 〉}. The
effect of the J coupling is to lift the twofold degeneracy of the
energy level mNV

S = ±1 (see Fig. 1). The separation depends
on the relative position of the two defects but does not exceed
328 MHz (r � 5.4 Å). This gap will modify somewhat the
positions and the number of the LACs in the Zeeman diagram.
The relative position of the two defects will be probably
different from one sample to another (see Ref. 7). With a
P 1 defect placed at a distance r = 12.12 Å from the NV−1

defect, the known LACs are well positioned.7,10,11 The second
polar coordinate, measured from the z axis, is equal to 106◦.
Clearly, if the origin of the coordinate framework is placed
at ( 1

8 , 1
8 , 1

8 ) with respect to the cubic crystallographic axes, the
nitrogen atom will be at (0, 0, 0), the vacancy at ( 1

4 , 1
4 , 1

4 ), and
the P 1 defect at (2,2,2). This configuration introduces a gap
of 33 MHz between the levels mNV

S = −1 and mNV
S = 1.
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With the nuclear Zeeman energy and the quadrupole
interaction dropped, the Hamiltonian of the HF interaction
is given by

H2 = SNAIN + gβHS, (3)

where IN is the nuclear spin operator of the P 1 center. The
second term on the right-hand side is the electronic Zeeman
energy. S = (SN + SNV ) is the total electronic spin operator
and H the magnetic field. In the case of axial symmetry,
the tensor A has only two independent components:12 A⊥ =
Axx = Ayy = 81.3 MHz and A‖ = Azz = 114.0 MHz. The
effective hyperfine coupling parameter differs slightly from
A‖.11 The energy levels and the spin functions are obtained
with the total Hamiltonian H = H1 + H2 and the basis
{|mNV

S mN
S mI 〉}. mI is the eigenvalue of IN

z . The 18-
dimensional energy matrix is partitioned into three blocks
which differ only by the value of mI . Each block has been
diagonalized iteratively. For H = 0, the energy diagram is
composed of nine levels which are twofold degenerated (see
Fig. 1). The external magnetic field, applied parallel to the
z axis, lifts the Kramers degeneracy since the energy levels
with MS = mN

S + mNV
S > 0 increase while those with MS < 0

decrease. Energy levels of the states with the same value
of mI can approach each other but do not cross. LC and
LAC occur at five regions numbered 1 to 5 in Fig. 1 (see
details in Fig. 2). Their position in the energy diagram and
their number depend somewhat on the relative position of the
two defects and the misalignment of H with the z axis, i.e.,
a component of H perpendicular to the z axis will modify
the off-diagonal elements of the energy matrix. Beyond a
resonance, where two energy levels approach a minimum
distance, the two electronic spins flip individually or in concert.

For each value of mI , the spin functions are mixtures of the
six basis states {|mNV

S mN
S mI 〉}. LC and LAC are encountered

in various areas of physics and chemistry. For example, in
atomic spectroscopy, these effects allow a simple and precise
determination of atomic structures and radiative lifetimes.13

Recently, they have been detected in the nanomagnets Mn12

(Ref. 3) and Fe8 (Ref. 4) and are expected to play an important
role in QIP.

Let’s examine the LACs which occur at about 520 G.
Some experimental results have been published recently.7,8

Figure 3 shows that corresponding to mI = 0. The tunnel
splitting, 2 |�|= ε+ − ε−, is equal to 57 MHz. ε+ and ε−
are the noncrossing levels. Beyond the transition region,
the two electronic spins flip in concert. The corresponding
spin functions reduce to |ψ±〉 = c1±|⇓↓ mI〉 ± c2±|0↑mI 〉. We
found that the four coefficients cJ± are purely imaginary. Their
moduli vary rapidly only in the transition region (see Fig. 3)
and their arguments φ±, equal to π

2 or −π
2 , undergo π jumps at

different values of H ; i.e., the spin functions change sign. In his
review of the literature on the π phase shift, Berry14 reported
the connection between the sign change and the degeneracy of
the cyclicly transported state. We conclude that we are dealing
with a new case of change of sign of eigenvectors.

Static aspect of the LZ theory. The above-mentioned results
can be reanalyzed in the framework of the LZ theory. Consider
the two-level system |+〉 and |−〉 governed by the Hamiltonian

HLZ = ε1 |+〉〈+| +ε2 |−〉〈−|
+�(|+〉〈−| + |−〉〈+|), (4)

with |+〉 = |⇓↓ mI 〉 and |−〉 = |0 ↑ mI 〉. The off-diagonal
element � is the coupling between the two states. It is
related to the components of the fine-structure tensor J
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FIG. 1. (Color online) Zeeman energy diagram of the NV−-P 1 coupled defect pair in a diamond. In the absence of an external magnetic
field, the dipolar interaction between the triplet (T) and the doublet (D) lifts the twofold degeneracy of the upper level. The effect of the hyperfine
(HF) interaction of the P 1 center is to triple the number of levels. A magnetic field applied along the z axis lifts the Kramers degeneracy. The
18-level diagram exhibits five regions, numbered 1 to 5, where level crossings and anticrossings occur (see details in Fig. 2).
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FIG. 2. (Color online) LCs and LACs of the NV−-P 1 coupled defect pair. For H < 80 G, the tunnel splittings are very small, except those
indicated by the letters b and d in zone 1. Dashed lines were required to reveal the existence of some of them (a, c, e, f, g, and h). Spin flips are
indicated and can be guessed when they are not, since only two-state vectors are involved. A single upward (downward) arrow stands for the
spin state 1

2 (− 1
2 ) and a double upward (downward) arrow stands for the state 1(−1).

[see Eq. (2)]. Its numerical value is given above. As shown
in Fig. 3, the energy levels ε1 = 〈+|H|+〉 and ε2 = 〈−|H|−〉
vary linearly with the magnetic field and should cross at
the resonant field Ho in the absence of coupling. Then, the
following LZ assumption holds: (ε2 − ε1) = κ(H − Ho), with
κ = 2gβ and Ho = (2D + Gzz − 2mIA‖)/2κ , and where the
magnetic field has been substituted to the time. Numerically, κ
is equal to 55.56 GHz while Ho is equal to 500 G for mI = 1,
520 G for mI = 0, and 541 G for mI = −1. Slightly different
resonant fields have been detected by Hanson et al.7 using

photoluminescence spectroscopy. The noncrossing levels are
the eigenvalues of HLZ: ε± = εc ± √

�2 + δ2 with εc =
1
2 (ε1 + ε2) and δ = 1

2 |ε2 − ε1| (see Fig. 3). The normal-
ized eigenvectors are mixtures of the basis states |ψ±〉 =
eiϕ± (a1±|+〉 ± a2±|−〉) with i2 = −1. Each of the four coeffi-
cients aJ± is a basic trigonometric function of ϑ/2 with ϑ =
arctan �

δ
. ϕ± are arbitrary phases. For example, the eigenvector

of the lower energy state is |ψ−〉 = eiϕ− (sin ϑ
2 |+〉 − cos ϑ

2 |−〉)
for H � Ho and eiϕ− (cos ϑ

2 |+〉 − sin ϑ
2 |−〉) for H � Ho. The
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FIG. 3. (Color online) Top: LAC of the NV−-P 1 coupled defect pair. ε+(−) are the noncrossing levels and ε1(2) their asymptotes. 2� is the
tunnel splitting. P is the probability of occurrence of a spin flip |−〉1 ⇒|+〉1 and (1 − P ) that of an interlevel transition |−〉1 ⇒|−〉2 (see
text). Middle: Variation of the moduli of the transition amplitudes cJ± in the vicinity of the resonance. They are purely imaginary. Bottom: π

phase jumps of φ± = arg(cJ±). The solid green line shows the variation of the angle φ+ and the dotted blue line that of φ−.

comparison with the results obtained with the effective spin
Hamiltonian H leads to set ϕ± = φ± and aJ± =|cJ± |. Now,
assume that the system is prepared in the lower-energy state

|ψ−〉 =|−〉1 = |0 ↑ mI 〉 at H � Ho (see Ref. 7). It transits
to the state |+〉1 = |⇓↓ mI 〉 with a probability equal to 1/2
at the resonance (ϑ = π/2) and equal to 1 above Ho (ϑ = 0);
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that is, the two electronic spins flip in concert. The interlevel
transition probability is null. The same analysis can be applied
to the other LAC. Below, we find the same results when the
spin system is transported infinitely slowly (adiabatically).

Time-dependent LZ Hamiltonian. The exact transition
probabilities are obtained by solving the time-dependent
Schrödinger equation: HLZ[H (t)] |ψ(t)〉 = ih̄ d

dt
|ψ(t)〉, with

the transported state vector |ψ(t)〉 = c1(t)|+〉 + c2(t)|−〉 and∑
J |cJ (t) |2= 1. H (t) is the time-varying magnetic field. The

tunnel splitting remains constant. Zener6 gave an elegant
solution to this problem of mathematical physics which
remains an active area of research. It is applied below
with a different phase transformation. The two-dimensional
Schrödinger equation is first converted to a Weber differential
equation, ( d2

dz2 + n ± 1
2 − 1

4z2)wJ (z) = 0, by using the follow-
ing phase change: wJ (z) = cJ (t)eiω(t), where ω(t) is given
by the integral 1

2h̄

∫ t [ε1(t ′) + ε2(t ′)]dt ′. The sign +(−) in the
Weber equation is associated with c1(2). z = √

αe−i π
4 t can

be seen as the complex time and n = iγ = i �2

h̄2α
is a purely

imaginary constant. α is a positive constant related to the rate
of change of the magnetic field (see below) and γ is the LZ
parameter. The solutions of these differential equations are the
parabolic cylinder functions or Weber functions Dn(±z) and
D−n−1(±iz).15 Following Zener,6 we assume that the magnetic
field varies linearly with the time, H (t) − Ho = qt . The zero
of the time is shifted to the hypothetical crossing point of the
diabatic levels; i.e., ε2(t) − ε1(t) = h̄αt , with α = qκ > 0. We
are interested in the time evolution of an initial state of the spin
system. As above, let us prepare it in the state |−〉1, defined by
c1−(−∞) = 0 and |c2−(−∞) |= 1. These conditions uniquely
determine the solutions:6

c1−(t) = χD−n−1(−iz)e−iω(t), (5)

c2−(t) = γ − 1
2 χD−n(−iz)ei[3π/4−ω(t)], (6)

with |χ|= √
γ e− 1

4 πγ . At the resonance (t = 0), the probability
P (0) = |c1−(0) |2 to find the spin system in the state |+〉1 is
equal to 1

2 (1 − e−πγ ). For evaluating P (t → +∞), the appro-
priate asymptotic expansion of D−n−1(−iz) is required;15 i.e.,
because of the presence of the Stokes phenomenon, each of
the asymptotic expansions of a single-valued Weber function
is only valid in a limited sector of the complex z plane. As the
time becomes positive and tends toward +∞, z moves away

from the origin on the anti-Stokes line with arg(z) = −π/4. In
the far future, the state vector is given by

|ψ−(t)〉 � e−iω(t)(
√

(1 − e−2πγ )ei[� (t)− 3π
4 −arg(�)] |+〉

− e−πγ e−i� (t) |−〉), (7)

with � (t) = [ αt2

4 + γ ln(
√

α | t |) + π
4 ] and arg(χ ) = 0. � =

�(iγ ) is the γ function. Terms that vary as 1/ | t | are neglected.
For H � Ho, the asymptotic probability to find the spin
system in the state |+〉1 is then equal to (1 − e−2πγ ). It is clear
that the behavior of the spin system depends on the tunnel
splitting and the sweep speed of the magnetic field. In the case
of an adiabatic evolution (γ −1 ∼ q → 0), the two electronic
spins flip in concert (|−〉1 ⇒|+〉1) by quantum tunneling, as
in molecular nanomagnets; i.e., a discontinuous change in the
value of MS without thermal activation is equivalent to crossing
a potential barrier.16 The same result has been obtained by
means of the time-independent Hamiltonians. In the case of a
fast sweep (q → ∞), there is no spin flip, but a nonadiabatic
transition to the higher energy state (|−〉1 ⇒|−〉2) occurs
with an asymptotic probability equal to e−2πγ . This is the
well-known result of Zener.6 From a theoretical point of view,
these quantum transitions can be regarded as the physical
manifestations of the Stokes phenomenon, which is a purely
mathematical concept.

It has been well-known in quantum physics, since the work
of Berry,17 that the state vectors of a spin system may acquire
phases of geometric character if they are transported around a
circuit in the parameter space. It is straightforward to take them
into account. The addition of a weak rotating magnetic field
in the plane perpendicular to H gives rise to such geometric
phases. They have potential applications in QIP, such as fault-
tolerant quantum logic gates.18

Conclusion. We have investigated the interaction between
the NV− qubit and the spin- 1

2 carried by the P 1 center in a
diamond. For certain values of an external magnetic field, the
two electronic spins flip individually or in concert, offering
possibilities to implement quantum logic gates. Also, the
state vectors undergo π phase jumps and can gain phases
of geometric origin that might be useful for the realization of
phase gates. The work provides a theoretical foundation for
reinterpreting recent experimental findings on the NV−-P 1
coupled defect pair and opens new research avenues for
the development of a diamond-based quantum computer.
Nevertheless, there remains much to do.
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13C. Cohen-Tannoudji, in Cargèse Lectures in Physics, edited by
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