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Temperature dependence of the Raman spectrum in Ge1− ySn y and Ge1−x− ySixSn y alloys
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The temperature dependence of the Raman spectrum of Ge-rich Ge1−ySny and Ge1−x−ySixSny alloys has been
determined in the 10- to 400-K range. The Raman line shift and width changes as a function of temperature
are found to be virtually identical to those observed in bulk Ge. This result shows that the anharmonic decay
process responsible for the temperature dependence is extremely robust against the alloy perturbation, so that the
expected relaxation of the wave vector conservation rule does not affect the decay in any noticeable way.
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Group IV, III-V, and II-VI semiconductor alloys are of great
interest from a basic physics point of view because, depending
on the property under consideration, they lend themselves
to an extended state point of view—closely resembling
perfect solids—or to a localized description characteristic
of disordered systems. Consider, for example, the case of
Si1−xGex alloys. The energy eigenvalues for the Si 3s/3p
states and those for the Ge 4s/4p states are very similar, and
therefore it is not surprising that the electronic structure can be
described in terms of a perfectly periodic “virtual crystal” with
an average electronic potential.1–4 Experimental studies of the
dielectric function of the alloys show indeed clear evidence for
Van Hove-like singularities, which evolve smoothly, in shape
and energy, from Ge to Si,5,6 even though such singularities are
only well defined in the context of perfectly periodic solids.
On the other hand, the Raman spectrum of the alloy does not
show a single peak evolving from the Raman spectrum of Si to
the Raman spectrum of Ge, but three distinct spectral features
associated with Si-Si, Si-Ge, and Ge-Ge optical vibrations.7–9

Such localization effects are not surprising if one takes into
account the very large mass difference between Si and Ge.
This combination of “localized” phonons with “extended”
electronic states gives rise to unique properties, some of
which remain unexplained to this day, including the different
wavelength dependence of the Raman cross section for each
of the alloy Raman features.

The above concept of localized optical vibrations, however,
does not convey the full complexity of the alloy vibrational
structure. In fact, in many alloy systems, it is possible to
define “quasi-dispersion” relations for optical and acoustic
phonon branches.10,11 The approximate validity of this concept
in Si1−xGex alloys and similar systems is apparent when one
studies the line shape of their Raman modes, which are broader
than those in the perfect crystals but much narrower than the
Raman bands observed in amorphous materials. This indicates
that the crystal momentum conservation rule q0 ≈ 0, valid
for the wave vector of Raman-active modes in perfect solids,
is only partially relaxed in tetrahedral semiconductor alloys.
Similarly, phonon confinement effects akin to those observed
in single-crystal materials are seen in thin alloy films.11

An important vibrational property for which the quasidis-
persion concept is expected to play an important role is the
lifetime broadening of the Raman modes. In perfect Ge and Si
crystals, the width of the Raman peak at room temperature and

below is essentially determined by the anharmonic decay of the
Raman-active phonon of frequency ω0 into pairs of phonons
of frequencies ω1 and ω2.12 Energy conservation requires
ω1 + ω2 = ω0, and crystal momentum conservation implies
q1 + q2 = q0 ≈ 0. In alloy systems the energy conservation
rule remains valid, but the crystal momentum rule could be
relaxed. Debernardi et al. have used ab initio methods to
study anharmonic phonon decay in Si and Ge.13 They find
that the many pairs of modes that satisfy the two conservation
conditions cluster around frequencies ω1 = 0.35ω0 and ω2 =
0.65ω0, as previously proposed in Ref. 9 to explain the
temperature dependence of the Raman linewidths. At these
frequencies the phonon density of states for transverse acoustic
(TA) and longitudinal acoustic (LA) phonons are quite high,
suggesting that a relaxation of the momentum conservation
rule by the alloying effect should activate many nearby states,
which have the “right” frequencies but the “wrong” wave
vectors to participate in the decay. This should result in a
stronger temperature dependence of the Raman linewidth. The
temperature dependence of the Raman spectrum of Si1−xGex

alloys has been studied in detail by Burke and Herman.14

Quite surprisingly, these authors find that the linewidth of
the Si-Si and Ge-Ge modes in the alloy has essentially the
same temperature dependence as in bulk Ge and Si. On the
other hand, differences in the temperature dependence of
the alloy modes relative to the parent semiconductors have
been observed by Jiménez and coworkers15 for the GaAs-like
modes in Al-rich AlxGa1−xAs alloys as well as by Verma
et al. in P-implanted GaAs.16 These examples suggest that the
alloy perturbation might be too weak in Si1−xGex alloys to
affect the temperature dependence of the Raman widths. To
test this hypothesis, we conducted a study of the temperature
dependence of the Ge-Ge mode shifts and widths in Ge1−ySny

and Si1−x−yGexSny alloys. The lattice mismatch between Ge
and α-Sn is 14%, as opposed to 4% in the Si-Ge system, so
that Sn represents a much larger perturbation in Ge than Ge in
Si. Even stronger disorder is present in the ternary alloy, where
Sn atoms coexist with Si atoms. In spite of this enhanced alloy
disorder, however, we find that the temperature dependence of
the Raman width and shift is the same, within experimental
error, as the temperature dependence observed in bulk Ge.
These results, combined with the earlier work of Burke and
Herman,14 suggest that anharmonic decay in group-IV alloys
is extremely robust against wave vector relaxation effects.
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Our Ge1−ySny samples were grown using the chemical
vapor deposition method introduced by Bauer et al.17 The
films are deposited directly on Si using via reactions of
Ge2H6 with appropriate amounts of SnD4 at ∼350 ◦C. Details
on the growth procedure can be found in Ref. 18. The
ternary Si1−x−yGexSny alloys were grown by the same method
using SnD4, Ge2H6, and Si3H8

19 Raman measurements were
performed from 10 K to 450 K in the near-backscattering
configuration using the 532-nm laser line of a doubled Nd:YAG
laser with excitation power of 25 mW. The samples were
mounted strain-free in a closed cycle variable temperature
cryostat. The collected scattered light was analyzed using an
Acton 500-mm spectrometer and a Si CCD detector.

Figure 1 shows the evolution of the Raman spectrum of a
Ge0.98Sn0.02 sample as a function of temperature. The Raman
spectrum of bulk Si, Ge, and α-Sn is well approximated by a
Lorentzian line shape. The experimentally observed spectrum
is the convolution of this Lorentzian with the instrument’s
response function, which can be reasonably well described by
a Gaussian. The resulting Voigt profile20 is available as a fitting
function in most commercial data analysis software packages,
so that the intrinsic widths can be extracted directly from fits
with these functions. Alternatively, it has been shown that the
intrinsic component of the width is related to the width of the
instrument resolution function by20,21

� = �exp − �2
G

�exp
(1)

where � is the intrinsic (approximately Lorentzian in the case
of a perfect crystal) full width at half maximum (FWHM), �G

the FWHM of the instrument resolution function, and �exp the
measured FWHM. This formula can then be used to obtain �

from the measured data without formally fitting with a Voigt
profile.

The analysis of the line shape of alloy modes is much more
complicated because, in addition to the lifetime and instrument
resolution broadening, there is a broadening contribution
from the intrinsic disorder and the relaxation of the wave
vector conservation rule. Unfortunately, there are no realistic
analytical models that can be used to fit the data and correct for
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FIG. 1. Raman spectrum of Ge0.98Sn0.2 obtained with 532-nm
excitation at temperatures 10, 200, and 400 K. The scattering
configuration was z (x,y) z in Porto notation, where x, y, and z refer
to the cubic axes.
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FIG. 2. (a) Linewidths (FWHM) �(T) of the Ge-Ge mode
for Ge (MC, from Ref. 12), Ge (present data), Ge0.98Sn0.02 and
Si0.09Ge0.887Sn0.023 as a function of temperature T . (b) Linewidth
difference ��(T ) between Ge0.98Sn0.02 and Ge and between
Si0.09Ge0.887Sn0.023 and Ge.

the instrument resolution. Therefore, we adopted the following
approximate procedure. We first determine the FWHM of the
Raman peaks by fitting with any function that gives good
agreement with the data (usually a Voigt profile if the peak
looks symmetric or an exponentially modified Gaussian if the
peak is asymmetric). Then we assume that we can still use
Eq. (1) to correct for the instrumental broadening, even though
Eq. (1) has been shown to be valid when the intrinsic line shape
is Lorentzian. This approach may introduce a small systematic
error, but it will not alter the results in any significant way. In
fact, the qualitative conclusions of this Brief Report would
not change if we were to ignore instrumental broadening
altogether and assume it is part of the intrinsic width. In
Fig. 2 we plot the linewidths �GeSn (T ), �SiGeSn (T ), and
�Ge (T ) together with the differences �GeSn (T ) − �Ge (T ) and
�SiGeSn (T ) − �Ge (T ), where all widths have been obtained
following the procedure just described. In Fig. 3 we show
the corresponding line shifts ωGeSn (T ), ωSiGeSn (T ), and
ωGe (T ) together with the differences ωGeSn (T ) − ωGe (T ) and
ωSiGeSn (T ) − ωGe (T ). We see that all these differences are
remarkably constant over the entire range of temperatures stud-
ied here. In the case of the linewidth, it has been proposed that
the temperature dependence can be fit with an expression of the
form12

� (T ) = �0 [n (ω1) + n (ω2) + 1] , (2)

where n(ω) is the Bose-Einstein expectation number for
a phonon of frequency ω. In a rigorous derivation, the
anharmonic linewdith is actually a sum of terms of the
form Eq. (2), one for each pair of modes with frequencies
ω1 and ω2 into which the Raman phonon of frequency
ω0 can decay.22 However, this sum can be replaced by
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FIG. 3. (a) Peak frequencies ω(T) of the Ge-Ge Raman mode in
Ge, Ge0.98Sn0.02, and Si0.09Ge0.887Sn0.023 as a function of temperature
T . (b) Line shift difference �ω(T ) between Ge0.98Sn0.02 and Ge and
between Si0.09Ge0.887Sn0.023 and Ge.

a single term if the possible decay frequencies cluster
around a single value, as indicated above for the case of
diamond structure semiconductors. Under this simplification
the coefficient �0 is proportional to the sum of the squared
moduli of the anharmonic matrix elements for each individual
decay channel.12 These matrix elements “contain” the crystal
momentum conservation prescription, that is, they vanish if
q1 + q2 �= 0. In the case of our alloys, we would expect
the square bracket in Eq. (2) to remain the same as in bulk
Ge, because the two frequencies ω1 = 0.35ω0 and ω2 =
0.65ω0 correspond to regions with high phonon density of
states, and the density of states will not be dramatically altered
by alloying. However, precisely because the density of states
is high, there are many nearby phonon states whose matrix
element cancels out due to crystal momentum conservation
but should be able to participate in the decay process if this
rule is relaxed by alloying. Thus, we might expect an increase
in �0 as the main effect of alloying. But the results in Fig. 2
clearly indicate that �0 remains approximately the same as
in bulk Ge, thereby contradicting our expectation. Thus the
anharmonic decay process appears to be extremely robust
against perturbations such as alloying.

The third-order anharmonic line shift is Kramers-Kronig
related to the third-order contribution to the linewidth,22 so we
expect the differences ωGeSn (T ) − ωGe (T ) and ωSiGeSn (T ) −
ωGe (T ) to be constant in view of the results for the linewidth.
This is approximately the case from an inspection of Fig. 3.
In the case of the ωSiGeSn (T ) − ωGe (T ) difference, we see
a small deviation from the constant shift behavior that can
be approximated by a linear T-dependence. This may be
due to the fact that thermal expansion and fourth-order
terms, unrelated to the third-order perturbation, make a non-
negligible contribution to phonon shifts.12
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FIG. 4. Circles: compositional dependence of �� (300 K) for
the Ge-Ge mode in Ge1−ySny alloys. Triangles: peak asymmetry
indicator α as a function of composition y.

The temperature-independent difference between the width
of the alloy Raman peaks and those of bulk Ge represent the
alloy contribution to the width. This contribution is plotted in
Fig. 4. For this plot we chose arbitrarily the value at 300 K, but
in view of the lack of temperature dependence, we could have
chosen any other temperature. It appears that the broadening is
approximately constant for 0 < y < 0.04, and it grows rapidly
for y > 0.04. This coincides with the appearance of the typical
alloy asymmetries in the line shapes, consisting of a broaden-
ing of the low-energy side. One way to quantify this asymmetry
is to fit the experimental spectrum with a symmetric line shape
Isym (ω) and define an asymmetry indicator α(ω) = [Isym(ω0 +
�exp) − I(ω0 + �exp)]/Isym(ω0 + �exp). This function is also
shown in Fig. 4. The observation of asymmetric Raman peaks
is a clear manifestation of the relaxation of the wave vector
conservation rule. Vibrational modes with frequencies close
to the bulk Raman mode become Raman active, but since
the bulk Raman mode corresponds to the highest frequency
optical phonon, all activated modes have lower frequency,
thus appearing as a broadening of the low-energy side of
the Raman peak.23 Thus, while clear evidence is seen for a
relaxation of the wave vector conservation rule in the Raman
scattering process—corresponding to a (electron-mediated)
photon-phonon interaction—there is no indication of a similar
relaxation for the anharmonic decay process—corresponding
to phonon-phonon interactions. Whereas the first of these re-
laxations can be simulated by computing the Raman spectrum
of large supercells with phonons calculated using ab initio
methods, the latter requires an ab initio calculation of the
anharmonic decay in large cells. Such calculations, which to
the best of our knowledge have never been carried out, would
shed light on the surprising temperature dependences reported
here.
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