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Dynamic reflectionless defects in tight-binding lattices
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In tight-binding lattices, localized modes are generally created by the introduction of structural impurities in the
otherwise homogeneous lattice. In most cases, impurities are not transparent and cause scattering (reflection) of
Bloch wave packets. Here it is shown that the application of high-frequency and strong ac fields in a certain class
of lattices with structural impurities can make them reflectionless, yet preserving their localization properties.
Hence, a structural defect in the lattice supporting a localized mode, which is a scattering center when the external
ac field is switched off, can be dynamically transformed into a reflectionless defect when the external field is
switched on.
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Propagation, scattering, and localization phenomena in
tight-binding lattices with inhomogeneities is a subject of
continuous interest in different areas of physics. Structural1–3

or nonlinearly induced4 defects, disorder,1 or local coupling
channels5 are responsible for important physical effects, such
as resonant scattering, Anderson localization, and Fano reso-
nances (see, for instance, Ref. 6, and references therein). The
application of strong ac fields can deeply modify the transport,
localization, and scattering properties of both homogeneous
and inhomogeneous lattices. In homogeneous lattices, ac
driving with a suitable ratio between the amplitude and the
frequency of forcing can lead to the suppression of diffusion of
a particle wave packet, which undergoes periodical self imag-
ing of its initial distribution. Such a phenomenon, originally
predicted by Dunlap and Kenkre7 and referred to as dynamic
localization, is related to the collapse of the quasienergy
band of the periodically driven lattice8 and has been recently
observed for cold atoms and Bose-Einstein condensates in
periodically shaken optical lattices9 and for light waves in
periodically curved optical waveguide arrays.10 Ac-driving is
also an efficient tool to control the scattering and localization
properties of inhomogeneous lattices.11–21 For example, it
has been shown that an ac field can control the localization
length of a defect mode supported by a single impurity,12 the
tunneling between two communicating defects,17 the number
of surface states in truncated lattices,20 and the localization-
delocalization transition in disordered lattices.13,18,19 An ac
field can be also exploited to clean impurities and potential
barriers, making the lattice effectively homogeneous.16,21 Most
of such phenomena are basically related to renormalization of
the effective hopping rate between adjacent sites in the lattice
induced by the ac field.

The simplest way to create localized states in a homo-
geneous lattice is the introduction of structural impurities
in one or more lattice sites. In most cases, such impurities,
besides introducing localized (defect) modes with energies
in the gap, cause a Bloch wave packet propagating in the
lattice to be scattered off, i.e., to be partially reflected
at the impurity sites. However, there exist some special
structural inhomogenities supporting localized modes that are
reflectionless, i.e., that appear to be transparent to Bloch wave
packets.25–28 Structural reflectionless impurities on a lattice,
which support an arbitrary number of localized states, can be

synthesized in a rather general way by use of the Darboux
transformation of supersymmetric quantum mechanics.25,27

An experimental demonstration of such a kind of structural
reflectionless inhomogeneities on a lattice has been recently
reported by Szameit and collaborators28 in femtosecond-laser-
written photonic lattices with controlled waveguide spacing. In
this Brief Report we propose dynamic reflectionless impurities
on a lattice, i.e., impurities sustaining localized states that are
not reflectionless but that can be done so when a strong ac field,
with appropriate amplitude and frequency, is applied. Hence,
switching on or off an external field can make a localized
defect transparent or opaque to Bloch wave packets.

Let us consider the tight-binding system shown in Fig. 1(a),
driven by an external sinusoidal field Ex(t) = E0 cos(ωt) ap-
plied along the x axis. The lattice comprises three impurities at
the sites n = 0 and n = ±1. In the tight-binding approximation
and considering only tunneling between nearest neighboring,
the single-particle Hamiltonian of the system reads

Ĥ = −h̄κ
∑

n

(|n〉〈n + 1| + |n + 1〉〈n|)

+
∑

n

[h̄εn + xneEx(t)] |n〉〈n|, (1)

where |n〉 is the Wannier state localized at the n-th site of
the lattice with energy h̄εn, κ is the hopping rate between
adjacent sites, and xn is the x-coordinate of the n-th site. For
the arrangement of Fig. 1(a), the values of εn and xn read
explicitly

εn =

⎧⎪⎨
⎪⎩

0 for |n| � 2

σ for n = ±1

U for n = 0

(2)

and

xn =

⎧⎪⎨
⎪⎩

(n + 1)a for |n| � −2

0 for n = 0, ± 1

(n − 1)a for n � 2,

(3)

where a is the separation between adjacent sites in the lattice.
If the state vector |ψ(t)〉 of the system is decomposed on
the Wanner basis as |ψ(t)〉 = ∑

n cn(t)|n〉, the evolution of
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FIG. 1. (Color online) (a) Schematic of an ac-driven tight-binding
lattice with uniform hopping amplitudes κ comprising one strong
(|U | � κ) and two weak (|σ | � κ) impurities at sites n = 0 and n =
±1, respectively. (b) Effective lattice model, obtained by asymptotic
analysis of Eq. (4), in which the strong impurity is decoupled from the
lattice. (c) Schematic of an ac-driven tight-binding lattice, comprising
two strong and four weak impurities, obtained by cascading the
building block of Fig. 1(a).

the probability amplitudes cn describing the occupation of the
various sites in the lattice is governed by the coupled equations

i
dcn

dt
= −κ(cn+1 + cn−1) + [εn + eEx(t)xn/h̄] cn. (4)

The tight-binding Hamiltonian Eq. (1), with controlled site
energies as dictated by Eq. (2), can be implemented in different
physical systems. For example, Eq. (1) can describe the
coherent single-electron dynamics in mesoscopic systems,22,23

such as in an ac-driven chain of coupled quantum dots in
the geometrical setting of Fig. 1(a), in which the energies
εn at lattice sites n = 0, ± 1 can be controlled by dc gate
potentials. Similarly, Eq. (4) can describe light transport in
an array of evanescently coupled optical waveguides with a
sinusoidally curved optical axis, in which the periodic axis
bending mimics the effect of an ac field and the site energies
εn define the propagation constants of the modes trapped in the
various waveguides.24 In this optical system, tailoring of εn,
as requested by Eq. (2), can be achieved by varying either the
refractive index change or the core size of the waveguides at
lattice sites n = 0, ± 1. In the absence of the external driving
field (i.e., for Ex = 0) and far from the defect region, a Bloch
wave packet with carrier momentum p propagates along the
lattice with a group velocity vg1 = 2κa sin(pa). As the wave
packet reaches the defect region near n = 0, it is scattered
off owing to the impurities at the lattice sites n = 0, ± 1. We

FIG. 2. (Color online) Snapshots of occupation probabilities
|cn(t)|2 versus time in the tight-binding lattice of Fig. 1(a) for
parameter values κ = 1, U = 5, σ = 0.2, ω = 4, � = 2.0415 and
for the ac driving field switched off (upper panels) and on (lower
panels). The panels in (a) correspond to Bloch wave packet excitation
cn(0) ∝ exp[−(n − n0)2/w2 + iapn] with offset n0 = −20, wave
packet width w = 4, and momentum p = π/(2a), whereas panels
(b) correspond to the initial particle localized at the n = 0 site, i.e.,
cn(0) = δn,0.

typically consider the case of a strong impurity at the site
n = 0, |U | � κ , and a weak impurity at the sites n = ±1,
|σ | � κ . In this case, the lattice sustains a single localized
mode near n = 0, and the impurity at n = 0 is fully opaque,
i.e., a Bloch wave packet incident onto it is almost completely
reflected, as shown in the upper panel of Fig. 2(a). Our aim
is to make the impurity transparent to Bloch wave packets
by application of a strong ac field, without destroying the
localization property of the impurity. To this aim, it is worth
introducing the new amplitudes an according to

cn = an exp

[
−i

�xn

a
sin(ωt) − iUδn,0t

]
(5)

and the normalized time variable τ = Ut , where � =
eaE0/(h̄ω); in this way, Eq. (4) takes the form

i
dan

dτ
= (εn/U − δn,0)an − κ

U
an+1 exp[i�n+1(t)]

− κ

U
an−1 exp[−i�n(τ )], (6)

where we have set �n(τ ) ≡ (�/a)(xn−1 − xn) sin(ωτ/U ) +
(δn−1,0 − δn,0)τ . Equation (6) is suited for a multiple-time
scale asymptotic analysis.29 Here we assume κ/U as a small
parameter—of order, say, ∼ ε—with the scaling ω/U ∼ 1,
σ/U ∼ ε2, and J0(�) ∼ ε, where J0 is the zero-order Bessel
function of first kind. The last condition corresponds to a
choice of the ac driving amplitude and frequency close to
the dynamic localization regime.7 Moreover, the ratio ω/U

is assumed to be far from any integer number to avoid
resonance effects. The solution to Eq. (6) is searched as
a power series an = a(0)

n + εa(1)
n + ε2a(2)

n + ..., and multiple
time scales T0 = τ , T1 = ετ , T2 = ε2τ ,... are introduced
to remove secular growing terms at various orders in the
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asymptotic analysis. Using the derivative rule d/dτ =
d/dT0 + εd/dT1 + ε2d/dT2 + ... in Eq. (6), a hierarchy of
equations for successive corrections to an are obtained by
equating the terms of the same order in ε. At leading order
∼ ε0, one simply obtains ∂T0a

(0)
n = 0, i.e.,

a(0)
n = An(T1,T2,...), (7)

where the amplitudes An vary on the slow time scales T1, T2,....
The evolutions of the amplitudes An on the slow time scales
T1, T2,... are obtained from the solvability conditions at the
various orders ε, ε2,...29. At order ∼ ε, one obtains ∂T1An = 0,
whereas at order ε2 the solvability conditions yield

iU
dAn

dT2
= −κ1(An+1 + An−1) |n| � 2, (8)

iU
dA−1

dT2
= −κ1A−2 − κ0A1 − ρA−1, (9)

iU
dA1

dT2
= −κ1A2 − κ0A−1 − ρA1, (10)

iU
dA0

dT2
= 0, (11)

where we have set κ1 = κJ0(�), κ0 = κ2/U , and ρ = σ − κ0.
If we stop the analysis at this order, the leading-order
approximate solution to Eq. (4) is thus given by Eqs. (5)
and (7), where the slow evolution of amplitudes An in the
physical time variable t is governed by Eqs. (8)–(11), with
the replacement U (d/dT2) → d/dt . Hence, the application of
the strong ac field basically transforms the original tight-
binding lattice of Fig. 1(a) into the effective lattice shown
in Fig. 1(b), in which the strong impurity at site |0〉 is
effectively decoupled from the lattice. The tunneling from
the sites n = −1 and n = 1, with a hopping amplitude κ0,
is a second-order process, which is accompanied by a shift
of the site energies by −κ0. The reduction of the hopping rate
between the other lattice sites, from κ to κ1, is the usual hopping
renormalization induced by an ac field.7,8 Remarkably, if the
amplitude E0 and frequency ω of forcing are chosen such that
κ1 = κ0 and the weak impurity σ such that ρ = 0, i.e., if the
following conditions are satisfied:

J0(eaE0/h̄ω) = κ/U, σ = κ2/U, (12)

it follows that the effective lattice, composed by the sites ...,

|−3〉,|−2〉,|−1〉,|1〉,|2〉,|3〉,... turns out to be homogeneous
(i.e., defect-free) and, thus, Bloch waves are not scattered off
and propagate along the effective lattice with a reduced group
velocity vg2 = (κ/U )vg1. This is shown, as an example, in the
lower panel of Fig. 2(a), where the propagation of a Bloch
wave packet, as obtained by numerical integration of Eq. (4),
using an accurate variable-step fourth-order Runge-Kutta
method, is shown in the ac-driven lattice for parameter values
satisfying the conditions of Eq. (12). Note that, according to
the asymptotic analysis, in the driven lattice the impurities
are basically reflectionless. It should be noted that the effect
of the ac field is not to clean the impurities of the original
lattice, erasing the localized defect mode sustained by the
strong impurity (a case which was previously investigated in
Refs. 16 and 21), rather it is to decouple the strong impurity
from the lattice. The persistence of the localized defect state

FIG. 3. (Color online) Snapshots of occupation probabilities
|cn(t)|2 versus time in the tight-binding lattice of Fig. 1(c) for
parameter values κ = 1, U = 5, σ = 0.2, ω = 4, � = 2.0415 and
for the ac driving field switched off (upper panels) and on (lower
panels). The panels in (a) correspond to Bloch wave packet excitation
cn(0) ∝ exp[−(n − n0)2/w2 + iapn] with offset n0 = −15, wave
packet width w = 4, and momentum p = π/(2a), whereas panels
(b) correspond to the initial particle localized at the n = 2 site, i.e.,
cn(0) = δn,2.

is clearly shown in the bottom panel of Fig. 2(b), where the
evolution of the site occupation probabilities are depicted for
initial single-site excitation cn(0) = δn,0. Note that, for such
an initial condition, the particle remains trapped at the strong
impurity site, according to Eq. (11).

The idea to make a strong impurity in a lattice reflectionless
by application of a suitable strong and high-frequency ac field
can be extended to the case of multiple impurities by cascading
the basic building block of Fig. 1(a). As an example, in Fig. 1(c)
it is shown the schematic of a chain obtained by cascading two
building blocks and comprising two strong impurities U at lat-
tice sites n = 0 and n = 4, and four weak impurities σ at lattice
sites N = −1,1,3, and 5. The propagation of a Bloch wave
packet in this lattice, for the ac field switched off and on, is
shown in the upper and lower panels of Fig. 3(a), respectively.
Note that, when the ac field is switched on, the defects in the
lattice become reflectionless, whereas for the ac field switched
off the wave packet is mostly reflected, with some localization
at the defects. It is interesting to examine the evolution of the
site occupation probabilities for single-site excitation of the
lattice at n = 2, i.e., for a particle initially localized between
the two strong impurities [see Fig. 1(c)]. In the absence of the
ac field [upper panel of Fig. 3(b)], the particle mostly remains
localized between the two strong impurities at lattice sites
n = 0 and n = 4. The periodic pattern observed in Fig. 3(b) is
basically due to the beating of the two defect modes supported
by the lattice of Fig. 1(c), which are symmetrically excited
at t = 0. The slow decay of localization with time noticeable
in the upper panel of Fig. 3(b) is due to the initial excitation
of scattering (Bloch) states, which slowly radiate far from the
defect region and correspond to a nonvanishing probability of
the particle to tunnel the strong impurity sites. As the ac field
is switched on, the evolution of the occupation probabilities is
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shown in the lower plot of Fig. 3(b). In this case, the localized
particle undergoes a ballistic motion like in a homogeneous
lattice (see, for instance, Ref. 30), i.e., the impurities in the
lattice appear to be reflectionless and do not trap anymore
the particle between them. The scenario depicted in Fig. 3
can be obviously extended to a sequence of more than two
impurities. Other lattice settings with structural impurities that
become reflectionless under the application of an ac field could
be envisaged as well. Finally, we would like to briefly mention
that a possible experimental realization of the lattices shown
in Fig. 1 is provided by light transport in engineered two-
dimensional waveguide arrays, in which the ac driving field is
mimicked by sinusoidal bending of the waveguide axis.10

In this Brief Report we have shown that application of
high-frequency and strong ac fields in a certain class of lattices
with structural impurities can make them reflectionless, yet
preserving their localization properties. As compared to the

phenomenon of field-induced defect transparency,16,21 the ac
driving field does not cancel the impurities in the lattice,
rather it effectively decouples them from the homogeneous
part of the lattice. This ensures that a Bloch wave packet is not
scattered off by the impurities, and the localization states at
the impurity sites are not destroyed by the ac field. Our results
thus demonstrate the existence of field-induced reflectionless
impurities in tight binding lattices, which are distinct from
structural reflectionless lattice impurities recently predicted
and experimentally observed in Refs. 26–28. Dynamic re-
flectionless impurities offer the rather important possibility
to dynamically switch a strong scattering impurity from being
opaque to being reflectionless.
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M. Finazzi, Appl. Phys. Lett. 90, 261118 (2007).

193105-4

http://dx.doi.org/10.1103/PhysRevB.59.8639
http://dx.doi.org/10.1103/PhysRevB.50.8875
http://dx.doi.org/10.1103/PhysRevE.50.2365
http://dx.doi.org/10.1103/PhysRevE.50.2365
http://dx.doi.org/10.1103/PhysRevLett.90.084101
http://dx.doi.org/10.1103/PhysRevE.71.036626
http://dx.doi.org/10.1103/RevModPhys.82.2257
http://dx.doi.org/10.1103/RevModPhys.82.2257
http://dx.doi.org/10.1103/PhysRevB.34.3625
http://dx.doi.org/10.1103/PhysRevLett.69.351
http://dx.doi.org/10.1103/PhysRevLett.81.5093
http://dx.doi.org/10.1103/PhysRevLett.99.220403
http://dx.doi.org/10.1103/PhysRevA.79.013611
http://dx.doi.org/10.1103/PhysRevA.79.013611
http://dx.doi.org/10.1103/PhysRevLett.96.243901
http://dx.doi.org/10.1103/PhysRevLett.104.223903
http://dx.doi.org/10.1103/PhysRevB.37.6622
http://dx.doi.org/10.1103/PhysRevB.48.15123
http://dx.doi.org/10.1103/PhysRevLett.75.3914
http://dx.doi.org/10.1103/PhysRevLett.75.3914
http://dx.doi.org/10.1209/0295-5075/32/3/009
http://dx.doi.org/10.1103/PhysRevA.60.R4225
http://dx.doi.org/10.1103/PhysRevA.60.R4225
http://dx.doi.org/10.1016/S0921-4526(99)02289-9
http://dx.doi.org/10.1016/S0921-4526(99)02289-9
http://dx.doi.org/10.1103/PhysRevB.63.045319
http://dx.doi.org/10.1103/PhysRevB.73.193305
http://dx.doi.org/10.1103/PhysRevB.73.054301
http://dx.doi.org/10.1103/PhysRevB.74.115304
http://dx.doi.org/10.1103/PhysRevB.73.073104
http://dx.doi.org/10.1103/PhysRevB.73.073104
http://dx.doi.org/10.1103/PhysRevLett.100.203904
http://dx.doi.org/10.1103/PhysRevLett.100.203904
http://dx.doi.org/10.1103/PhysRevLett.101.203902
http://dx.doi.org/10.1103/PhysRevB.82.205123
http://dx.doi.org/10.1016/j.physrep.2004.11.002
http://dx.doi.org/10.1103/PhysRevB.70.041302
http://dx.doi.org/10.1103/PhysRevB.70.041302
http://dx.doi.org/10.1209/epl/i2003-10100-9
http://dx.doi.org/10.1103/PhysRevB.79.155308
http://dx.doi.org/10.1103/PhysRevLett.96.243901
http://dx.doi.org/10.1002/lpor.200810055
http://dx.doi.org/10.1006/aphy.1995.1006
http://dx.doi.org/10.2991/jnmp.2001.8.1.10
http://dx.doi.org/10.2991/jnmp.2001.8.1.10
http://dx.doi.org/10.1364/OL.35.000989
http://dx.doi.org/10.1103/PhysRevA.82.032111
http://dx.doi.org/10.1103/PhysRevLett.106.193903
http://dx.doi.org/10.1103/PhysRevB.77.195326
http://dx.doi.org/10.1063/1.2753099

