
PHYSICAL REVIEW B 84, 193103 (2011)

Mott transition in quasi-one-dimensional systems
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We report the application of the density-matrix renormalization-group method to a spatially anisotropic
two-dimensional Hubbard model at half filling. We find a deconfinement transition induced by the transverse
hopping parameter ty from an insulator to a metal. Therefore, if ty is fixed in the metallic phase, increasing the
interaction U leads to a metal-to-insulator transition at a finite critical U . This is in contrast to the weak-coupling
Hartree-Fock theory which predicts a nesting-induced antiferromagnetic insulator for any U > 0.

DOI: 10.1103/PhysRevB.84.193103 PACS number(s): 71.10.Fd, 71.30.+h, 75.10.Jm

The metal-insulator transition (MIT), also called the Mott
transition,1 is certainly one of the most difficult challenges
facing condensed-matter theorists. Hubbard,2 in a pioneering
work, introduced a simple one-band Hamiltonian which has
only two parameters: t for the kinetic energy of the electrons
and U for the local electron-electron interactions. This model
is at half filling the model of reference for the MIT. In
D = 1, Lieb and Wu3 obtained an exact solution by using
the Bethe ansatz. The ground state is an insulator for any
U/W > 0, where W is the bandwidth. Thus, the MIT occurs
at the critical value (U/W )c = 0. In infinite dimensions, the
dynamical mean-field theory (DMFT)4,5 predicts a critical
point at (U/W )c ≈ 1.

The discovery of layered materials, where the motion of
electrons driving the low-energy physics is mostly confined in
the layers, has raised great interest in the two-dimensional
(2D) Hubbard model. The physics at large U/W � 1 is
now understood, the charge excitations are gapped, and the
spin excitations are described by the Heisenberg Hamiltonian
which has long-range order (LRO) at T = 0. But for U/W �
1, the physics is still unclear. Our current knowledge about
the weak-coupling regime is mostly drawn from the Hartree-
Fock approximation and from quantum Monte Carlo (QMC)
simulations.6,7 The QMC results agree qualitatively with the
Hartree-Fock prediction that the ground state is a Slater
insulator for any U/W > 0. However, in most recent studies,
such as in Ref. 7, even though considerable progress has been
achieved in reaching larger systems, in the weak U regime
where the eventual gap is small, reliable extrapolations of
the QMC data remain difficult to achieve. It would thus be
preferable to apply finite-size scaling for data analysis instead
of relying on extrapolations.

More recently, extensions of the DMFT which include
nonlocal fluctuations, the dynamical cluster approximation
(DCA),8 or the cellular DMFT,9,10 have been applied to the
2D Hubbard model. The focus in these studies has mostly
been to discuss the nature of the MIT within the paramagnetic
solution of the DMFT equations. A systematic comparison of
the possible ordered or disordered ground states as functions
of the cluster sizes is still lacking. Therefore, the issue as to
whether or not quantum fluctuations destroy the Hartree-Fock
solution in the half-filled 2D Hubbard model in the small U

regime remains open.
In this paper, we show that insight into this problem can be

gained by studying the quasi-1D Hubbard model. We apply

the two-step density-matrix renormalization group (DMRG)11

to an array of coupled Hubbard chains. We find that there
is a deconfinement transition from the 1D insulator toward
a metallic phase as the transverse hopping ty is increased
from 0. Hence, for a fixed ty in the metallic phase, there
is a quantum phase transition (QPT) at a finite quantum
critical point (QCP) (U/W )c. This suggests, as seen in the
limit of infinite dimensions,4 that by freezing out the local
time dynamics, the Hartree-Fock approximation is unable
to account for the physics of the Hubbard model even for
weak interactions. We note that Biermann and co-workers12

applied the chain-DMFT to the quasi-1D Hubbard model.
They also found a deconfinement transition. However, they
were restricted to paramagnetic solutions. Hence, unlike our
study, they could not tell whether or not their metallic solution
is the true ground state of the quasi-1D Hubbard model. A
deconfinement transition was also predicted by Essler and
Tsvelik13 in a related model with a long-ranged transverse
hopping.

Let us briefly describe the two-step DMRG method intro-
duced for coupled chains in Ref. 11. This method is generalized
here for coupled multileg ladders. For a system of spins
or electrons on an anisotropic square lattice of dimensions
Lx × Ly , the Hamiltonian may be written as H = Hintra +
Hinter = ∑

l hl + gH̃inter, where hl are the Hamiltonians of 1D
systems; g � 1 is the transverse coupling. H̃inter is of the
same magnitude as Hintra. hl can represent a single chain,
a two-leg ladder, or even a multileg ladder as illustrated in
Fig. 1 for a spin system. The DMRG analysis of H is done
in two steps. In the first step, the m2 lowest eigenfunctions φn

and eigenvalues En from different charge-spin sectors of the
1D Hamiltonian hl are obtained by applying the conventional
1D DMRG algorithm.14 During this step, m1 states are kept
such that the lowest m2 states are accurately computed. In the
second step, H is projected onto the tensor product of the φn’s.
Since the resulting effective 2D Hamiltonian is now 1D in the
transverse direction, it can be studied using the conventional
DMRG. For a given size, let E0 and Em2 be the lowest and the
highest DMRG energies kept for hl . If g � �E = Em2 − E0

(in practice we set g

�E
� 10), the two-step DMRG retains high

accuracy. But as Lx increases, �E decreases, for a fixed g,
it would be impossible to retain accuracy for arbitrarily large
Lx . Thus, successfully performing finite-size analysis for the
g-induced QPT will depend on the magnitude of the critical
value of g and on the density of the 1D spectrum.
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FIG. 1. (Color online) Clusters used as building blocks for the
2D square lattice: (a) chains; (b) two-leg ladders; and (c) four-leg
ladders: Jx = 1 is the coupling along the legs; Jy is the intercluster
coupling, and Jr is the coupling between the rungs for the ladders.

In order to avoid uncertainties related to extrapolations
in the regime where the gap is very small, it is preferable
to perform finite-size scaling analysis. In the vicinity of the
QCP the gap is �(g) ∝ (gc − g)ν , where ν is the correlation
length exponent (Lorentz invariance is assumed), and gc is
the value of the g at the QCP. The product L�, where
L is the linear size of the system, is given by a universal
function, L� = f [C(gc − g)L1/ν],15 where C is independent
of L. At the critical point, L� = f (0) is independent of L.
All the curves �(g) for different sizes should converge at
g = gc. In practice, however, there are finite-size effects. It is
necessary to extrapolate the different crossing points in order to
precisely locate gc. Before studying the MIT in the Hubbard
model, we first apply the two-step technique to the QPT in
quantum antiferromagnets (AFM). There are two motivations
for this prelude on spin systems. First, well-controlled QMC
are available; this will allow one to gauge the performance of
the two-step DMRG. Second, the energy scales of the different
systems roughly span those of the Hubbard model when the
interaction is varied.

In coupled chains with S = 1, the ground state is known
both in 1D and 2D. In 1D, the system has a spin gap, the
Haldane gap �S=1 = 0.410 49,16 The correlation length is
ξS=1 ≈ 6.17 In 2D, we know from the rigorous result18,19

that the ground state has an LRO, thus it is gapless and
ξS=1 = ∞. Hence, there should be a QPT at some critical
J c

y from a disordered to an ordered ground state. QMC studies
predict J c

y ≈ 0.04 (Ref. 20) and J c
y = 0.043 648(8).21 In the

two-step study, we applied periodic boundary conditions in the
x direction and open boundary conditions in the y direction.
In Fig. 2(a) we show the finite-size behavior of the spin gap
�s . It shows that in agreement with QMC, J c

y is located
between Jy = 0.040 and Jy = 0.045. A more accurate DMRG
estimate of J c

y can be obtained by locating the crossing point of
consecutive Lx × Ly systems and extrapolating. But for S =
1, an extrapolation was not necessary; for Lx × Ly � 16 × 17,
the data converged around J c

y = 0.043 68. We performed
the same analysis for coupled S = 2 chains. For a single
chain �S=2 = 0.0876 (Ref. 22) and ξS=2 ≈ 49.17 The scaled
gaps are displayed in Fig. 2(b); we find J c

y ≈ 0.0007. It is
interesting to note that the values of J c

y for S = 1 and for S = 2
are roughly consistent with the Schwinger boson prediction,
J c

y × ξ 2
1D ≈ Jx ,23 where ξ1D is the 1D correlation length. We

find J c
y × ξ 2

1D = 1.5701 for S = 1, and J c
y × ξ 2

1D = 1.5707
for S = 2. These results suggest that J c

y × ξ 2
1D = π

2 Jx . In
Fig. 2(c) we show �s for two typical values in a S = 1 system,
Jy = 0.02 < Jc

y and Jy = 0.06 > Jc
y . The extrapolated values

are consistent with, respectively, gapped and gapless phases.

In S = 1
2 two-leg ladders, if the coupling between the rungs

is Jr = Jx = 1, QMC studies21 predict that J c
y ≈ 0.3. We

could not study the QPT because the condition J c
y � �E is not

fulfilled. If we reduce Jr enough, the two-step DMRG becomes
applicable. This is achieved when Jr � 0.5. For instance, in
Fig. 2(d), we display the finite-size behavior of �s for Jr = 0.4
and Lx × Ly ranging from 10 × 12 to 30 × 32. For these
systems, we find J c

y = 0.0993. An alternative to reducing
Jr for S = 1

2 systems in order to study the QPT in S = 1
2

systems is increasing the number of legs. When the number of
legs increases, �s on the ladder decreases, the system is thus
closer to criticality, and therefore a smaller Jy can induce a
QPT. For the four-leg ladder with Jr = 1, the QMC predicts
J c

y ≈ 0.07.24 In Fig. 2(e), we show systems of four-leg ladders
ranging from 12 × 12 to 44 × 44; it can be seen that J c

y ≈ 0.08.
In Fig. 2(f), we plot the crossing points of 12 × 12 and 20 × 20
to 36 × 36 and 44 × 44 systems, respectively. This yields a
better estimate of the QCP, J c

y = 0.0742.
Let us now consider the anisotropic Hubbard model

defined by hopping parameters tx = 1, ty � tx and a local
interaction U . The noninteracting single-particle energies are
εk = −tx cos(kxx) − ty cos(kyy), where k = (kx,ky). Since
the Fermi surface is nested at the momentum qN, ε(k + qN) =
−ε(k). In the Hartree-Fock approximation, the consequence
of nesting is that the metallic state becomes unstable against
the formation of a gap �HF

c ≈ exp(−W
4U

) and spin-density wave
LRO. In 1D, �1D

s = 0 for all U and the charge gap �1D
c ≈

exp( −W

4
√

U
) for U/W � 1, and �1D

c ≈ U for U/W � 1. There
is no LRO in 1D; the gap opening cannot be explained in the
Hartree-Fock approximation. But it is generally believed that
the Hartree-Fock approximation is at least qualitatively correct
when ty 	= 0.

However, there is a regime of the quasi-1D model where
a simple physical argument shows the failure of the Hartree-
Fock approximation. If ty � �1D

c , interchain motion is pro-
hibited and the electrons are confined into the chains. For any
U > 0, the system would remain a Mott insulator. There will
be an LRO of the Heisenberg type because the spin degrees
of freedom are gapless in 1D, and the small ty would yield
an effective exchange, J̃y = t2

x /�1D
c . This regime cannot be

described by the simple Hartree-Fock theory. This shows that
a strong-coupling-like behavior extends even for small U in
the confined regime. This somewhat overlooked regime of
the Hubbard model was discussed for two-coupled Hubbard
chains.25 It is shown in Ref. 25 that if ty � �1D

c , the system
is equivalent to the Heisenberg two-leg spin ladder. This is
also implicit in the chain dynamical mean-field theory study
which predicted that at half filling, a finite ty was necessary
to deconfine the electrons in the transverse direction. Hence,
if we increase ty from the 1D Mott insulator at ty = 0 there
are three possibilities: (i) the system remains a Mott insulator;
(ii) there is a crossover from a Mott insulator toward a Slater
insulator; and (iii) there is a QPT toward a metallic phase.

The two-step DMRG results shown below are consistent
with case (iii). In this study, we kept up to m1 = 384 and
m2 = 96, respectively, during the first and second steps; the
maximum truncation error was less than 1 × 10−7 in the
gapped phase, about 1 × 10−5 at the QCP, and 1 × 10−4

in the ordered phase. The bulk of our calculations was
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FIG. 2. (Color online) �s × Lx as a function of Jy (a) for coupled S = 1 chains and (b) for coupled S = 2 chains; (c) �s as a function of
Lx at two characteristic values below (Jy = 0.02) and above (Jy = 0.06) the QCP for S = 1 chains; (d) S = 1

2 two-leg ladders at Jr = 0.4 (e)
and four-leg ladders with Jr = 1; and (f) J c

y as a function of L−1
x in coupled four-leg ladders.

on lattice sizes Lx × Ly ranging from 12 × 13 to 32 × 33,
U = 0,0.5,1,1.5,2,2.5,3, and at least ten different ty chosen
from ty = 0 to ty ≈ �1D

c . In a few cases, 40 × 41 and 48 × 49
systems were also studied. In Fig. 3(a) we show the scaled
�c as a function of ty for U = 1. The scaled gap displays the
typical behavior seen for spin systems. The data for different
sizes converge near ty = 0.007. The finite-size behavior of t cy
(the crossing points of Lx�c of consecutive systems) is shown
in Fig. 3(b). The extrapolation yields t cy = 0.0056 for U = 1.
In Fig. 3(c), we display �c as a function of Lx at two typical
values of ty above and below t cy . The extrapolated gap is in
agreement with the qualitative behavior of Lx�c. Hence �c

displays a deconfinement transition from a 1D Mott insulator
to a 2D metallic phase. Using the chain-DMFT, Biermann
and co-workers12 find that at U = 2.6, the charge correlation

exponent Kρ jumps from 0.02 at ty = 0.16 to 1.01 at t cy = 0.28.
This shows a deconfinement transition with 0.16 � t cy � 0.28.
We could not however see the ty induced QPT for U = 2.6. The
relation t cy � �E was satisfied only for very small systems.
The maximum value for which we could study the ty-induced
QPT is U = 2; we find t cy = 0.0689. We obtain t cy = 0.18 at
U = 2.6 by extrapolating from smaller values of U . Since in
Ref. 12 they were restricted to paramagnetic solutions, they
could not rule out a possible AFM ground state of the Slater
type.

Once in the deconfined regime, we can induce a MIT by
increasing U . For this purpose, we set ty = 0.05. For this
value of ty we know from the calculations above that for any
U � 1.5, the system is in the metallic phase. We thus expect a
MIT at some U between U = 1.5 and U = 2, because as seen
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FIG. 3. (Color online) (a) �c × Lx as a function of ty at U = 1; (b) the deconfinement transition point t c
y at U = 1 extrapolated from crossing

points of two consecutive Lx × Ly ; (c) �c as a function of 1/Lx at U = 1 for two characteristic values of ty , below (ty = 0.002) and above
(ty = 0.05) t c

y ; �c × Lx as a function of U in 1D (d) and 2D (e); and (f) phase diagram of the quasi-1D Hubbard model in the (U,ty) plane.

above, t cy = 0.0689 at U = 2. In Figs. 3(d) and 3(e), we show
the scaled �c as a function of U , respectively, in 1D and 2D.
In the 2D case [Fig. 3(e)], for U � 1.875, Lx�c decays when
we increase Lx as for U = 0 until it reaches Uc ≈ 1.8 where it
starts to increase. This is to be contrasted to the 1D case shown
in Fig. 3(d) where there is no regime where Lx�c decreases
when Lx is increased, which implies Uc = 0 as we know from
the Lieb-Wu solution. In Fig. 3(f), we show the phase diagram
of the quasi-1D Hubbard model. The deconfinement transition
occurs for small U � 1, at t cy ≈ �1D

c /4.
To conclude, let us comment on the implication of our

result on the isotropic case, ty = tx . For a given U , when
ty > tcy , the system enters the metallic phase. It should remain
in the metallic phase up to ty = tx , because, as soon as ty > tcy ,

there is no other obvious process that will drive the system to
another phase when ty is further increased. In Ref. 8 the DCA
was applied to the isotropic 2D Hubbard model at half filling. It
was found, for cluster sizes up to Nc = 64, that down to U = 4
the paramagnetic solutions remained gapped. Although no gap
was found for U < 4, it was assumed that the gap would open
for larger clusters which were not accessible. However, our
result suggests that this assumption may not be true.
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