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A Ginzburg-Landau theory is proposed in which the supersolid state is viewed as a system displaying features
of an ordinary solid and of a superfluid. The theory shows that the superfluid part is responsible for a nonclassical
rotational inertia (NCRI) behavior, but the ordinary part (the lattice) is responsible for elastic behaviors usually
seen in solids. Moreover, the superfluid part contributes to an excess of heat capacity near the supersolid—ordinary
solid transition. The theory provides a coherent picture, at least at the macroscopic scale, of supersolidity that
reconciles (NCRI) and the heat-capacity measurements. The parameters of the Ginzburg-Landau free energy are
estimated using experimental data, hence a healing length of the order of 100 nm and a critical speed of the order
of 0.1 m/s are predicted, both results consistent with recent studies by Kubota and co-workers.
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I. INTRODUCTION

Solid helium below temperatures of the order of 0.1K
displays very anomalous properties.! Among them, the anoma-
lous drop of the effective (measurable) moment of inertia of
solid helium has generated enormous speculation about the
existence of supersolidity, first predicted forty years ago.”™
Indeed, recent experiments by Kim, Chan, and co-workers>®
may be interpreted as a nonclassical rotational inertia (NCRI),
one of the characteristic of supersolidity.* The “experimentum
crusis,” the so-called “blocked annulus experiment,”é’9 placed
evidence consistent with the existence of a macroscopic
superflow. In the same line, Kim and collaborators have found
that supersolidity in a steady rotating frame is in agreement
with a superfluid behavior.! Although, to this day, eight
groups™!'~15 confirm Kim and Chan’s findings, the value of
the NCRI depends on many factors such as crystal sample
preparation, cell material, etc. Moreover, annealing was shown
to lower systematically the superfluid fraction.®!! Today,
the zero-temperature limit of the NCRI fraction (NCRIF) is
spanned over three orders of magnitude, from 20% to 0.02%,
without any rational explanation. Furthermore, an alternative
view that unifies the NCRI and shear modulus experiments
under the assumption of a complex rheology'® has been
considered.

In the context of mechanical properties, up to date,
the responses of solid “He to pressure!”'® and chemical
potential'>* gradients showed no evidence of superflow in the
solid. More important, the mechanical response to shear shows
an increase of the effective shear modulus of solid helium
with an intriguing similar dependence on temperature of the
observed NCRI.?!"?? Similarly, sound measurements of cavity
resonances maybe interpreted in terms of a shear modulus
anomaly.”>?* Finally, thermodynamical measurements show
an anomaly by an excess of heat capacity at temperatures lower
than 0.1 K.>>=?7 For more details, the reader may consult the
reviews.?832

This issue remains controversial, partly due to the diffi-
culty of investigating the helium system both theoretically
and experimentally, for instance, the apparent contradictory
feature of solid helium below 100 mK: Supersolid helium
behaves like a coherent superfluid in a nonclassical rotational
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inertia experiment but its behavior is of an ordinary solid in
pressure/external force driven experiments.

This observation indicates that supersolidity possesses a
quite complex behavior: indeed there are two different large
scale collective motions, in some sense similar to the original
two fluid model of Landau for superfluid helium: one is the
lattice displacements as in ordinary solids, while the second
is a superfluid motion. The lattice and the superfluid motion
maybe realized independently. In some situations, depending
on the boundary conditions, the system responds as an ordinary
solid, and in other cases as a superfluid type of motion. In this
sense, because of a rotation the superfluid mode is needed by
the boundary conditions, while a gradient pressure does not
require a superflow to be at equilibrium, because elasticity
balances pressure. This point was satisfactorily explained,*
where a theory for macroscopic equation of a supersolid was
proposed. In Ref. 33 the existence of a nonclassical rotational
inertia fraction in the limit of small rotation speed and no
superflow under small (but finite) stress nor external force is
shown.

On the other hand, nowadays there is no satisfactory
explanation of the observed excess of heat capacity near the
transition temperature. It may be a consequence of a structural
(lattice) property or because of the existence of a superfluid
behavior. One may ask is this excess of heat capacity related
to the superfluid fraction?

The problem of supersolidity represents an ambitious
challenge; we shall restrict ourselves to only a few aspects of
supersolidity, namely the aforementioned hypothetical relation
between the excess of heat capacity and the superfluid fraction.
This paper may reach, in the opinion of the author, a coherent
understanding of these two macroscopic properties of the su-
persolid state, which could be tested in experiments. Although
of a phenomenological character, we think that the predictions
should be pertinent to solid helium-4 at low temperatures
(below 0.1 K). More precisely, we develop a Ginzburg-Landau
(GL) theory and provide a self-consistent approach valid near
the transition temperature characterized by an excess of the
specific heat at the transition temperature and an increase of the
supersolid fraction. The model displays a NCRI in a rotating
container, as well as ordinary elastic behavior. We fit the
Landau-Ginzburg parameters from the current experimental
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data from NCRI and heat-capacity experiments and we predict
values for the coherence length, critical velocity, as well other
quantities. These predictions depend on the zero-temperature
limit of the superfluid density, which is considered as a given
parameter. The main properties predicted by the theory are the
existence of a NCRI, four sound modes instead of the usual
three normal modes in solids, quantized vortices, and persistent
currents. Similar works by Dorsey, Goldbart and Toner,** Ye,?
Toner,*® and Anderson®’ were considered previously but with
the obvious differences for the reader.

II. GINZBURG-LANDAU ORDER,PARAMETER
EXPANSION

We shall make the hypothesis that a supersolid behaves
as a “two fluid model,” that is composed by a superfluid part
(responsible of NCRI and of an excess of heat capacity) and the
lattice structure responsible for the usual solid behavior. Near
the transition ordinary solid—supersolid phase it is expected
that the free energy of the superfluid part Fy; (meanwhile, we
shall consider only the supersolid part of the free energy) could
be expanded in series of an order parameter 1,

) 4 B
— —1V dv.
AR yviAad
ey
The minimum free energy provides the equilibrium order
parameter, which satisfies the time-independent GL equation:

Fyo(T) = / (—oc(T)h/flz +

h2 2 2
o VoV ey — By =0, &)

For a homogeneous state one has [ |> = a(T)/B(T). The
three parameters «(7"), B(T), and M are functions of the
temperature 7', pressure, etc. However, only two of them are
independent because the order parameter i has an arbitrary
normalization, thus we need only two measurements to fit the
parameters. Those parameters may be computed with the aid
of the experimental data of the NCRI and specific heat as
follows (this scheme was originally proposed by Ginzburg
and Pitaevskii*®). First, consider the total free energy of
a homogeneous system, Fy; = —;‘é(Tf)V, thus the excess of
specific heat of the supersolid phase is

2 2 2

Cpeak = _Ta F;S = TVa— <a(T) ) .

oT T2 \ 2 B(T)
Next, consider a superflow as a cause of a nonuniform phase,
namely Vaow = /a(T)/B(T)e'?. The superflow energy of

this stateis E = % % f |V¢|>dV . Identifying the superfluid

velocity by vy = %V(ﬁ and the superflow energy with E =
% S mp f |v|>dV, where m is the atomic mass of helium,
p = N/V is the number density of the solid, and f**(T) is the
superfluid fraction, one obtains

oy D)
M p B(T)

Finally, the Ginzburg-Landau expansion has meaning only
if «(T') vanishes at the critical temperature 7, (about 0.1 K in
experiments) and all terms of the free energy (1) are of the same
order. As usual, one expands in Taylor series the parameters
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and we shall keep in the free energy only the terms of the right
orderin (7, — T),i.e.,a(T) = ao(T. — T)/ T, while B and M
are independent of 7.

We rewrite the relations for the specific heat and supersolid
fraction in a convenient form. For instance, we express the
specific heat in terms of the number of mol, N/N4 such
that R = Npkp = 8.31J/(mol K), and N, is the Avogadro

constant:
Qg Q)
Cpeak = R | — . 3
@) o
Similarly, for the superfluid fraction one has
s m(ag\T.—T
() @
M \ pB T,
In expressions (3) and (4), the following dimensionless
quantities appear naturally:

n- L -GGER) o
T=T, pB kpT.
= —(M)(%).  ®
dT T=T. M pB

nl _ Cpeak/R

I3 =

_ M (o)) 7
T=T, B (;> <kBTc>’ @

which could be estimated via the experimental data of the
specific heat and the superfluid density near the transition
(notice that these relations are not independent). From various
experimental data one has the values in Table I for the
dimensionless relations.

From these data, one concludes that

T. df*
fss(o) dT =T,
therefore IT, ~ f*°(0). Moreover, it is tempting to conjec-
ture that IT; ~ [f 55(0)]?, however there is no simultaneous

measurement yet of nonclassical rotational inertia and heat
capacity to conclude such a scaling law.

H_2 - —T.dfss/dT

~15-2,

A. Entropy of the supersolid part

The contribution of the superfluid part to the entropy excess
increases linearly in temperature until the critical temperature
T,; for T > T, the superfluid entropy part keeps a constant
value. This superfluid part of the entropy follows directly from
the Landau free energy (1):

IF ag T
AS=——=V—=—.
oT B T?

The order of magnitude of the entropy excess per atom is

A Sexcess — kg <@> ( (%] ) ~ ]O—ékB,
N pB /) \kpT.

which is consistent with the experimental data.> It should be
noticed that this excess is over the usual phonon contribution
in solids.

In Ref. 44, it is claimed that specific-heat measurements are
contrary to entropy predictions based on a Bose-Einstein type
of supersolidity, however, we may see that in our Ginzburg-
Landau model there is no such problem.
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TABLE I. A summary of possible values for the dimensionless parameters for various experimental data. The value of the dimensionless
parameter I15 is of the order of 10~*. The value of IT, fluctuates around 1072 and 10~*. It is important to notice that IT,/ f**(0) is a number
between 1 and 2. The value of I1;5 in aerogel (*) is obtained combining Refs. 42 and 43, and it is higher than in the case of bulk samples.

Reference ~T, mK) & (T =0) m, I, I, T/ £5(0)
25 80 2.3 x 107

CP, 26 60 6 x 1077

BC2007, 26 100 2.1x 107

BC 1 ppb, 26 120 5.6 x 1076

27 130 9x 1073 1.2 x 1076 1.7 x 1072 7 x 1073 1.88
27 130 4 %1073 2 x 107° 8 x 1073 2.5x 1074 2
27 300 3.7 x 1073 5% 107° 3.3x 1073 1.5 x 1073 0.9
AgCu, 300 ppb, 8 150 1.45 x 1073 2.1 x 1073 1.44
AgCu, 300 ppb, 8 115 4x107* 8 x 107* 2
BeCu, 1 ppb, 8 75 1.35 x 1072 2.1 x 1072 1.55
BeCu, 1 ppb, 8 65 3.5%x 1073 6 x 1073 1.7
10 160 2.2 x 1072 3 x 1072 1.5
39,40 150 9 x 10~ 1.5 x 1073 1.66
16,41 56 1.3
Porous, 5 100 5% 1073 1072 2
Porous, 300 ppb, 42 100 4x107* 6.6 x 1073 1.65
Porous, 1-300 ppb, 43 220 2.4 x 1073 3.6 x 1073 (¥)

Porous, 300 ppm, 43 200 2.7 x 1074

B. Coherence length

The coherence length is defined from the balance of the two
first terms of the GL free energy:

2

2 = —,——
(1) = Mo(T)’

expressing «(7') in terms of the other constants, one gets

T.—T -2
UT) =4y , with

m kBTC )"c
by = Ao, | ——— = AANI1L/I1] = ,
0 M o Vv I/ T

\/m%n is the de Broglie ther-
mal wavelength of helium at the transition temperature,
which is about A, ~ 1.2 nm at 7., ~ 0.08K (in the es-
timations throughout the paper we shall consider T, =
0.08K, kpT, ~ 1.1 x 1072*J, mp = 194kg/m>, m = 6.52 x
107% kg, h/m = 1.58 x 1078 m?/s). Finally, using the data
collected in Table I, one obtains that the healing length is
approximately

®)

and the constant A, =

£y ~ (40 — 110) nm,

which is consistent with the estimations done by Kubota and
collaborators.*’ Therefore ¢ is large enough to be interpreted
as a macroscopic quantity, which at least does not invalidate
a macroscopical approach. In the case of an aerogel this
coherence length would be of the order of the typical separation
between the silica strands, however the value of I3 appears
as large as 13 ~ 0.0036 (see Table I), so that £; &~ 20 nm,
thus superfluidity may manifest over distances of the order of
100 nm.

In a more general way, one shall expect that the following
length plays the role of a healing length at any temperature:

_n [~Tdfvjar
= 76T\ Coa/R

This model conjectures the existence of topological vortices
in a supersolid because of the existence of a coherent long-
range-order phase in the system. As in superfluids, “supersolid
vortices” are stationary solutions of Eq. (2) with a 27 phase
jump around the vortex core.>® Vortices cannot be removed by
any infinitesimal perturbation of the order parameter, since
there are topological defects. Vortices maybe generated in
various ways, the most common is via the mechanism of
critical velocity.

Similarly persistent currents are also present in the frame
of our model. A persistent current maybe easily obtained
in a supersolid if it is in a multiconnected domain. Indeed,
imposing a phase jump of 27 as one turns around the hole
in the multiconnected domain we assure the existence of a
nonuniform phase as in the case of a vortex. Vortices and
persistent currents are a nonambiguous property that would
confirm the existence of a supersolid as a coherent state.
Up to date, there is no direct experimental evidence of such
behaviors.

C. Supersolid—-ordinary solid interface energy
The superfluid bulk-free energy density is f(T) =

2

—fo(iT ), with fy = 35 = SLCR)(2) = p T ~
(0.02 up t0 0.08) Pa. Next, as in the original Ginzburg-Landau
work, we shall consider the existence of an interface composed
of an ordinary solid (¢ = 0) and supersolid state [y, =
Ja(T)/B(T)]. Notice that this interface is imposed by a

boundary or by an object. Thus the energy (per unit surface)
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that we shall compute represents the energy deficit because
of the existence of this boundary. For simplicity, the interface
is settled at x = 0, an equilibrium planar interface follows
from Eq. (2), with the adequate boundary conditions. The
interface solution is v;(x) = /a(T)/B(T)tanh(x/€). The
surface energy is the energy difference between the energy
of the interface solution ; and the homogeneous solution
Yy, that is

4
Oss = __f(T)E(T)

kT ¢ @ ) (FE=T)"
g (“)(ﬁ)(kBT)( 7. )

With the above estimations, one has [%kB T.(pp) ~ 2.6 X
107 kg/s?]
T, — T\
)

that is at least 107> times smaller that the solid-superfluid
helium surface energy. This small factor is not surprising
because the only quantity with an energy scale in the theory is
the specific heat, which is a millionth smaller than in superfluid
helium.

A consequence of the existence of surface energy is a delay
of the ordinary solid-supersolid transition. Indeed if the solid
is inside of a small volume €2 then the gradient term in the
GL free energy increases significantly, so that the quadratic
term of the free energy compensates the negative contribution
of the || term. The ordinary solid state is therefore stable.
More precisely, the supersolid phase existsif T/T, < 1 — Z(Z)AO
where ) is the lowest eigenvalue (which has dimensions of the
inverse of an area ~Q~2/?) of the linear equation —V?u = Au
with u = 0 on 992. So if the geometry and porosity of the
domain provide a Ag > 1/¢3 then the supersolid transition may
never occur even at zero temperature. The value of the healing
length of the order of 100 nm prevents supersolidity in domains
smaller (in all directions) than 100 nm. However, in the case
of solid helium in a porous media, the healing length becomes
as small as 20 nm so that supersolidity may manifest.

oy =2 x 1077 kg/s? <

III. SUPERSOLID AND ELASTIC COUPLING AT
EQUILIBRIUM

The free energy (1) does not consider the existence of
a lattice nor its elasticity. We shall therefore extend this
Ginzburg-Landau approach coupling the superfluid part with
the lattice. Last, at some point this theory should also match
the Andreev-Lifshitz equations.?**434¢ The thermodynamical
variables will be the number density p of solid helium, the
complex order parameter V, the elastic deformation u, and the
entropy per unit volume s.

To derive the set of equations we use the standard approach
of the Landau two fluid model, namely the conservation laws,
and we impose the Galilean invariance. We shall go step
by step to sketch well the different aspects of the proposed
macroscopic equations.

PHYSICAL REVIEW B 84, 184535 (2011)

The total (that is, the superfluid plus the ordinary solid part)
energy and momentum densities are

2

h .
€=V v+ <p—Q“>u2+So<|w|2,p,s,u,-k>, o)

J=m (—ﬁ(w*w — VY +(p - Q”)L’tk) - (10

The kinetic terms in Eq. (9) are of the form %mQ” v %(,o —
Q”)uz, while the momentum (10) takes the usual expression:
Jj =mo* v +m(p — 0°*)uy. These quantities come from
the Galilean invariance. Note that o** = (m/M)|y|* is the
supersolid number density (4). Here &y(|y¥ 12, p,5,u) is the
internal energy of the body that depends explicitly on the order
parameter | |2 (the Landau expansion of previous section), the
number density p, the entropy density s, and the elastic strain
uir = (0;ux + dru;)/2. We shall come back to it later.

The equilibrium solution is obtained minimizing the total
energy under the constrain of a constant momentum. Using the
Lagrange multiplier technique varying [ [€ — A(x,7) - j1d Dy
with respect to ¥ and i, one has that the equilibrium equation
coupled to the lattice motion is [it comes out that A (x,¢) = i]*’

&0
ay|?

where the derivative in the last term in Eq. (11) is formally at
constant density mass, entropy, and strain, that is, 3“’5/(]2 lo.5.10i¢

BV 1Y,

—( ihV —mu)*y + —— =0,

and this term should be understood as [a(T) —
thus
1 . . \2 2

2M( ihV —mu)” ¢ — (o — Iy [Hy =0. (1)
Equation (11) replaces Eq. (2). A uniform rotation follows
easily by taking # = w x r and solving Eq. (11). This
is the well-known problem of a superconductor under an
external uniform magnetic flux. The equilibrium state is
Viow = V/a(T)/B(T)e'® where ¢ satisfies V¢ = 0 inside
the domain or container and 71 - (V¢ — mew x r) = 0 in the
boundaries, that is, the usual problem of a rotating perfect
fluid. This presents a nonclassical rotational behavior that
depends on the geometry of the container, as in the “blocked
annulus experiment,”®® and more importantly the supersolid
density is exactly 0**(T) defined by Eq. (4). In the case of a
rigid rotation, Eq. (11) becomes the usual Ginzburg-Landau
equation for superconductivity in the presence of a uniform
magnetic field. Moreover, as the steady rotation w increases,
vortices appear as @ > w,,, then more and more vortices are
nucleated at regular intervals Aw = % (S is the effective
surface of the container). Finally, NCRI decreases ultimately

to zero as ® > w,, = - e?r)’* a frequency that is of the order

of w,, = A~ 1.5 x 10%s7!, that is, a frequency of the order

[2
of fo, = 250 kHz. This view is consistent with experiments in

steady rotation by Kim and collaborators.'?

A. Macroscopic equations for a supersolid at 7 # 0

Next we shall write the dynamical equations for ¥, p, u,
and s. A simple count indicates that the present approach
presents two extra variables than our previous model at
T = 0.3 One of these new variables is the entropy, absent
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at T = 0. The other variable is the modulus of the order
parameter, that is, the superfluid density ¢**. In our previous
macroscopical equations,*? the superfluid or supersolid density
was a parameter of the problem. Notice finally that the
supersolid density is also a parameter in the Andreev-Lifshitz
model.” In the present context the supersolid density evolves
in time and, indeed, it is fixed by the thermodynamical
equilibrium (11).

We shall write an equation for ¥ that should relax to equi-
librium after long times to Eq. (11) and, more importantly, it
should be Galilean invariant. This phenomenological approach
was undertaken by Pitaevskii in 1958.47 Pitaevskii considers

'hal'// P VY + oy —iA
h— = —— —1
ot 2m ¢

1 . 2 2
X <W(—1hV—mu) Y — (a — Bl )lﬂ>, (12)

where the first term (with m the atomic mass of helium and
not M !) is responsible for a Galilean invariance, and ¢ is a
potential energy that should be determined. The parameter
A is a dimensionless quantity that measures the rate of
relaxation to equilibrium. This parameter A will be considered
as a real number.*® Finally, we keep, for generality, the

a?io\z term, instead of the usual Ginzburg-Landau expansion

—(@ = Bly ).
For the other pertinent variables we write the conserva-
tion equation for the total mass density, momentum, and

entropy: >4’
op+V-(j/m)=0, (13)
0 ji + 0 Tix = 0, (14)
ds+V-(sit—q)=R>0. (15)

These three equations are the usual conservation laws of the
number of particles, the momentum, and the entropy? [note that
this is the total entropy of the solid and not just the superfluid
excess coming from Fy,(7")]. Finally the potential energy ¢, the
energy momentum tensor 7, the heat flux ¢, and the positive
entropy rate R are chosen by imposing the conservation
of the total energy (9): 9,£ + V - Q = 0. Taking the time
derivative of Eq. (9), after a long, but straightforward, calcu-
lation (details are presented in the Supplemental Material*”),
one obtains

a
—E+0;0i
ot Toe
2N L,
=\R—q-VT ——[BY

&
+it - [(p — 0"V <8_,00> +sVT —Vp+ Q”Vgoi|

1 . & M 03&
=V ——275 ) 16
o ”(‘” 9 ma|w|2> (10
To write Eq. (16), we have explicitly defined
h2
Ty = m(ailﬂakl/f* — Yy +c.c)
S8\, 350
+m(p — 0™ )ity — p ik — —— a7
oujx
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1 A A

1 dE
+| ( smp — )i +Ts +(p — 0*)
2 ap

A G mein ) s — 22 a )
—[V. —mo*u ik — — | g

M J 0 k i k

The shape of the stress tensor above Eq. (17) follows directly
from the theory of superfluids plus an elasticity contribution
—%, which follows from the ordinary elasticity. Finally,
the expression for A and B are given by (see details in the

Supplemental Material*®)

. B
A=——V>+¢p and
2m
A 1 &
B=—— (—ihV —ma) + —>
2M Ayr|?
The requirement of conservation of energy imposes restric-
tions on the auxiliary fields ¢, p, and the entropy production
R’

19)

(20)

&
Vp=sVT +(p— g”)va—; +0"Ve, (2D

0& M 0&
w:(—°+——°2), 22)

dp  mayl

2A .,
R=q-VT+—[By’ >0, (23)
qg=«VT. (24)

Here Eq. (21) is a Gibbs-Duhem relation, thus one defines
the chemical potential by u = %. Finally, Fourier’s law (24)
follows from the positiveness of entropy production (23), and
we notice that the equilibrium holds for a uniform temperature
on the sample and by having By = 0, that is, if ¥ satisfies
Eq. (11), which is consistent with the original assumptions.

Finally, let us point out that for practical purposes one
expands the energy in power of the order parameter and of
the strain,

B(T)
2

2 1 2

+au;|y|” + E(K — 2ug/3)uj;

Eo(p 1Y 1P,s,ui) = eo(p) — a(THIY|* + [y |*

1
+ o UsUigUp + -, (25)

2
where eg(p) is an internal energy, K and u, are the bulk and
shear modulus, respectively, the term au;;||* is of the same
order as (7, — T)?, and it has been considered by Ref. 34 that
this term would be finally responsible for a shear modulus
stiffening as the supersolid phase takes place (T < T,).

B. Sound

We shall consider briefly the oscillations around the
equilibrium state, characterized by uniform values of the
density p, entropy s, superfluid density o**, and phase ¢.
Moreover, there is no strain u;; = 0 as well as no lattice
displacements & = 0. The perturbation scheme is more subtle
than expected because the total density has two types of
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variations: one is the usual change of density in ordinary solids,
that is, because of a change of the strain u;;, we denote this by
pei(uir); the second change comes because of the long-range
coherent superfluid behavior. This second change is responsi-
ble for phase coherence and ultimately of the existence of a
supersolid density. We consider p = p.(u;r) + §p, then one
notices that 3;p. + V - (pit) = (0pc1/ Uik + Peibir) Uik ~
0 because p (T ,u;;) behaves as an ordinary or classical solid.2
Thus in Eq. (13) only nonordinary variation of mass in helium
survives,

ddp + V- [o” (' —a)] =0,

where §p is the variation of the number of particles per unit
volume.

Following the usual linear theory of sound modes, one
expresses the variables as exponentials ~e!®*~®)_and one
derives equations for the four linear normal modes of oscilla-
tions, as in the Andreev-Lifshitz model.>?° These modes are
(up to linear order in f**) as follows:

(i) Two shear modes (decoupled up to linear order in an
infinite space) with a dispersion relation,

wp = (L + [ /2)k,

where cf = s /(mp) is the usual shear waves’ sound speed;
the factor (1 4+ f*°/2) is because the effective inertia is less
than the total solid. The effective sound speed of shear waves
s /mp)(1 4 f9/2) presents an increase because of the
shear modulus stiffness®! and because of the factor (1 + £**/2)
too. The former effect is about 8%, while the second is in
general less than 1%. Independent measurements of shear
modulus®? and sound speed”® do not agree with the present
result. Despite the great accuracy there is no evidence of a
superfluid behavior through sound speed measurements.

(ii) One compression mode, which in the zero-temperature
limit reduces to

[t 3%2E0/0p%)
ke (1 N A
@k CK( et T e
hk? (8&/3p + p 3*E0/3p?)
_ A ) 1
iAf 4M< + mci? )’

where c%( = (K +4u,/3) /(mp) is the ordinary velocity of
sound of the compression mode, K is the bulk modulus of
solid helium. The second term represents a damping, which
may fix the value of the dimensionless parameter A 7.

(iii) Last, a superfluid mode, also known as the fourth
sound.”® As in previous work>*-? a new propagating mode
appears besides the usual longitudinal and transverse modes
in regular crystals. The speed of propagation of this mode
is smaller than the usual elastic sound waves’ speed; in-
deed the dispersion relation of the superfluid mode behaves
as

h
wr = cpy 5k + iAmk2, (26)
with
2 _ P M?
cp= K "(p) + i 27

PHYSICAL REVIEW B 84, 184535 (2011)

where w(p) = ’3‘2) is the chemical potential. This slow mode
is a signal of a modulation of the coherent quantum phase.
Although there is no conclusive evidence; in Ref. 51 a slow
mode was perhaps observed. Among the two contributions in
c%, Eq. (27), the Bogoliubov one, pu'(p)/m, is of the order of
the bulk sound speed of solid helium, therefore is definitively
much larger than the second one, the latter being a speed of

+/ kaT“Hl / H%, that is, a few meters/second with

the above estimates in Table I. The final speed of the fourth
mode is of the order of cp+/ f*5.

the order of

C. Ciritical speed for vortex nucleation

In the frame of the Ginzburg-Landau equation (12) a critical
speed for vortex nucleation appears as an instability of a
uniform relative flow between the lattice and the superflow.
We shall perturb the homogeneous solution ¥ = /a/B8 of
Eq. (12). To do this, it is useful to transform Eq. (12) into a
amplitude-phase dynamics. Writing ¢/ = R ¢'% one may spilt
Eq. (12) in the real and imaginary parts:

%R>+V (RZEV) 2A h—sz R — BR?
REAVA RV h[zM FaR=p
m? (h 2
_W< V¢—u) R}R (28)
_ P (Loop _wer)_?
3t¢—2m(RVR (V¢)) P
L Am g R2<EV —'> (29)
IMR? m o)

Because of the dissipative term, proportional to 2’;7“ in

Eq. (28), the superfluid density is settled by the fast dissipative
dynamics, thus the amplitude R follows simply the dynamics
of the superfluid coherent phase ¢. Neglecting 9, R in Eq. (28),
one can obtain this dependence with an asymptotic expansion
in small gradients of V¢ and small elastic displacements i;
one obtains up to first nontrivial order

, 1 m? (h N R,
RR=—-|la——|—Vop—u) — Vg |.
B 2M \m 2mA
Introducing this expression for the dynamical behavior of
the superfluid phase (29), and then expanding, re-arranging and

keeping the lowest order, one obtains that the phase equation
rules,

h [ Am M 2 ) )
8z¢=%<_+_)v¢— — (Vo) + —A

M Am
Am3 A,'Aj m
- iAj— 3 ¢
2M? o — m2A?)2M 2Aa
X Ajo;Aj — p(p)/h, (30

where we have defined the relative superfluid-lattice speed,

h
A,‘ = —V,(p—u
m
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If the crystal is moving with a constant speed v along the
x axis (u, = v) one gets the linear dynamics for the phase
perturbation:

oy = h Am+ M V2¢
T oam\ M Am
n Am? v?

3¢ +hot. (1)

C2m M? o —m2v2/2M

The condition for the stability of the superflow is that the
prefactor of d,,¢ term must be positive, so that

Am M Am? v?
JE— + —_ — >
M  Am M? o —m2v2/2M

thus a stable superflow holds if

Oa

v2<2M°‘ 1+(A7m)2
2 3 (Am\2'
1+ 3 (57)

1+(Am/M)* . _
Because the parameter ,/ TG 2am/ a7 18 @ number be

tween 4/2/3 = 0.8 and 1, thus the relevant value for the critical

speed is of the order of
2kgT, 2kgpT,
sTe _ /gy | 2Ke e
m m

[2Mo
v, = =
C mz
12m/s, and according to previous values

UpT.
m

m

(04} M
kBTC m

Because
of the dimensionless quantities one has that 0.1 m/s < v, <

0.6m/s, in close agreement with the experimental value.*

If v < v, a stable superflow is possible, however, if v > v,
a vortex behavior dominates the dynamics. Naturally thermal
fluctuations may change the threshold for vortex nucleation.

We conclude with the following remark: Taking gradient of
Eq. (30) one gets a Navier-Stokes equation for the superfluid
velocity, the kinematic viscosity being 2’%(% + %), a
number proportional to 71/ m.

IV. DISCUSSION

Supersolidity is viewed as a complex system that displays
together ordinary elasticity and superfluidity. Ab initio su-
perfluidity is understood in the frame of a Ginzburg-Landau
theory near the transition temperature. Ultimately, the whole
theory requires a nontrivial coupling of elastic and superfluid
motion. The free parameters of the theory may be estimated
from the current experimental data of nonclassical rotational
inertia fraction and heat capacity. The theory predicts a
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macroscopic coherence length, which would be of the order
of 50-100 nm (in bulk experiments), and a critical speed of
the order of 10-60 cm/s, both predictions in agreement with
the expected values.***° Moreover, the theory predicts a slow
Bogoliubov-like superfluid sound mode with a propagation
speed that scales as the square root of the superfluid fraction,
«/ fss» and may be estimated between 4 and 40 m/s for the
current data of the observed superfluid fraction.

Although the theory cannot predict a value for the di-
mensionless parameter 37, because of the extra intrinsic free
parameter, which is the order parameter normalization, the
theory predicts the right values of thermodynamical quantities
as entropy, or surface energy without any supplementary
assumption. In conclusion, the present theory provides a
unified view of three different behaviors of supersolidity
supported by experiments: NCRI, anomaly of heat capacity,
and the ordinary mechanical behavior under external stress.

Finally, we emphasize that there are many open questions,
which are not contemplated in the present theory, that
deserve some attention. For instance, why is the superfluid or
supersolid fraction f;; so small? Contrary to superfluid liquid
helium, and superfluids in general, the zero-temperature limit
gives a supersolid fraction, between 20% and 0.02%, while in
superfluids the superfluid fraction is always 100%. Leggett,
in a series of papers,* indicates that the ground-state wave
function of crystalline structure provides a natural lower value
for the superfluid fraction at 7 = 0 K. Presumably, the value of
the superfluid density is of microscopic origin and may depend
on the crystallography of the solid. This drives us to a more
important question: Why does the supersolid fraction vary by
three orders of magnitude from one sample to another? It has
been noticed that the superfluid density depends strongly on the
sample preparation, that is, experimental procedure and the cell
material. There is abundant evidence that crystalline defects,
like grain boundaries, dislocations, vacancies, interstitially
enhance supersolidity, however a method to control it precisely
is not known. Given that at present, we do not possess a rational
theory that predicts the superfluid fraction, the proposed theory
uses the superfluid density as a given parameter.
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