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Superconductivity and local noncentrosymmetricity in crystal lattices
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Symmetry of the crystal lattice can be a determining factor for the structure of Cooper pairs in unconventional
superconductors. In this study we extend the discussion of superconductivity in noncentrosymmetric materials to
the case when inversion symmetry is missing locally, but is present on a global level. Concretely, we investigate
the staggered noncentrosymmetricity within a regular sublattice structure, in some analogy to the discussion
of superconductivity in antiferromagnetic systems. Three crystal structures are analyzed in detail as illustrative
examples for the extended classification of Cooper-pairing channels. One of the cases may be relevant for the
class of iron-pnictide superconductors.
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I. INTRODUCTION

Shortly after the seminal paper by Bardeen, Cooper, and
Schrieffer describing superconductivity through pairing of
electrons of equal energy and opposite spin and momentum,1

Anderson realized that the existence of such degenerate elec-
tron pairs would be guaranteed quite generally by time-reversal
symmetry.2 Indeed, removing time-reversal symmetry by an
external magnetic field, magnetic impurities, or ferromagnetic
order substantially weakens or even suppresses superconduc-
tivity in the spin-singlet channel. Later, Baltensperger and
Straessler demonstrated that spin-singlet superconductivity
and antiferromagnetism can coexist for an appropriate pair
structure.3 In such systems, staggered moments break time-
reversal symmetry only on sublattices. However, the time-
reversal operation may be undone globally by exchanging
the two sublattices. In this case, the spin-singlet pair wave
function has dominant amplitudes for the two electrons being
on different sublattices.

For Cooper pairing of electrons in the spin-triplet configu-
ration, Anderson showed several years later that an additional
discrete symmetry is needed, namely, inversion symmetry.4

The discovery of superconductivity in crystals lacking an
inversion center and yet showing features usually attributed
to spin-triplet pairing, therefore, has attracted much attention
in recent years. Noncentrosymmetricity affects the electronic
spectrum through symmetry-specific antisymmetric spin-orbit
coupling (SOC). Spin-triplet superconductivity is not simply
suppressed in favor of spin-singlet pairing, but actually
electrons pair with a mixed-parity structure combining a
spin-singlet component and a spin-triplet component.

Since in the context of time-reversal-symmetry breaking
and superconductivity the effects of both ferromagnetic and
antiferromagnetic order on the Cooper-pair formation have
been studied, it is natural to extend the recent discussion of
globally noncentrosymmetric superconductivity to its stag-
gered form. Recently, Yanase has analyzed the case of locally
broken inversion symmetry due to stacking faults, where the
global inversion symmetry is retained because of the random
distribution of these faults.5 In the present study, we generalize
the discussion from lattices with ferro-type to those with
antiferro-type broken inversion symmetry.

After introducing first a general formulation for the
antiferro-type of “noncentrosymmetric” lattices, we discuss
two examples in detail to illustrate the influence on supercon-
ductivity and then apply the results to a crystal structure as
found in the iron pnictide superconductors. The underlying
crystal symmetry for all three systems is tetragonal and can be
characterized by a specific sublattice structure of two distinct
types of sites or bonds yielding a doubling of the ordinary unit
cell. Each of them has a different subgroup of D4h, leaving the
sublattice structure invariant. The examples then differ in that
the first and third examples have a sublattice lacking inversion
symmetry, while the second example lacks inversion symmetry
only on the bonds connecting the two sublattices.

II. SINGLE-PARTICLE HAMILTONIAN

Before looking at these specific examples, we introduce
a general formalism for superconductivity in a lattice with a
noncentrosymmetric sublattice structure. While such a crystal
has centers of inversion, the lattice structure includes local
violations of inversion symmetry (see Fig. 1), which yield a
staggered form of antisymmetric spin-orbit coupling. This can
be incorporated into the kinetic energy by defining a folded
Brillouin zone with two bands characterized by the wave vector
Q (2Q is a reciprocal lattice vector). Thus, we define the
operators

cαks =
{
cks , α = 1,

ck+Qs , α = 2,
(1)

where we use α = 1 and 2 as band indices.

A. Diagonal single-particle Hamiltonian

First, we consider the general structure of the single-particle
Hamiltonian in the two-band language, that is diagonal in the
electron operators, i.e., the general form of the kinetic energy.
This part of the Hamiltonian is understood in terms of hopping.

1. Spin-independent terms

The spin-independent part is given by

H =
∑
α,α′

∑
k,s

�kαα′c
†
αkscα′ks , (2)
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FIG. 1. The two example crystal structures analyzed in detail
in Secs. III and IV. (a) Inversion-symmetry-lacking layers that are
stacked along the z direction in a staggered way. The symmetry center
lies between the layers and the crystal has a symmorphic structure.
(b) Top view of the crystal structure with O6 octahedra rotated around
the c axis leading to a doubling of the unit cell. While both sublattices
still retain inversion symmetry, the bonds do not, as the rotation shifts
the O ions off the bonds. This crystal structure with its symmetry
center on one of the sublattices is nonsymmorphic.

where for ordinary hopping the energy term �kαα′ = �kααδαα′

is diagonal in the band index. We may explicitly write

H =
∑
k,s

[(
εintra

k − μ + εinter
k

)
c
†
1ksc1ks

+ (
εintra

k − μ − εinter
k

)
c
†
2ksc2ks

]
. (3)

Here, εintra
k = εintra

k+Q is an intrasublattice term, i.e., it represents
hopping between sites of the same sublattice type. Then,
εinter

k = −εinter
k+Q is correspondingly an intersublattice term due

to hopping between sites of different sublattices. It is now
useful to introduce Pauli matrices (τ 0,�τ ) for the band space
with which the matrix element in Eq. (3) simplifies to

�kαα′ = (
εintra

k − μ
)
τ 0
αα′ + εinter

k τ 3
αα′ . (4)

A sublattice-dependent chemical potential μA(B) = μ ± �μ

leads to an additional spin-independent term in the Hamilto-
nian of the form

H =
∑
k,s

�μ(c†1ksc2ks + H.c.) (5)

or, again in terms of Pauli matrices,

�kαα′ = �μτ 1
αα′ , (6)

off-diagonal in the band index. Note that time-reversal sym-
metry leads to the condition that

�kαα′ = �−kαα′ (7)

and �kαα′ is spin independent.
The four Pauli matrices (τ 0,�τ ) for the band part are

easily interpreted in the sublattice and two-band notion.
Matrix elements independent of the sublattice are diagonal
represented by τ 0 for intrasublattice processes and by τ 3 for
intersublattice processes. Analogously, interband hybridiza-
tion is incorporated in τ 1 and τ 2 for intra- and intersublattice
couplings, respectively. This is summarized in Table I.

TABLE I. The different band dependencies possible for terms in
the Hamiltonian of the systems under investigation here. While τ 0 and
τ 3 always belong to the irreducible representation A1g , the irreducible
representation �′ of the other two Pauli matrices depends on the
symmetry operations, which have to be combined with a sublattice
interchange to map the crystal onto itself.

Intrasublattice Intersublattice IR

Intraband τ 0 τ 3 A1g

Interband τ 1 τ 2 �′

2. Spin-dependent terms

We now turn to the spin-dependent part of the Hamiltonian,

H =
∑
α,α′

∑
k

∑
s,s ′

�ss ′
kαα′c

†
αkscα′ks ′ . (8)

This single-particle Hamiltonian is written as a tensor product
of a spin and a band part. In the following, summation over
repeated indices is implicit.

First, we consider terms which are based on intrasublattice
contributions, connecting only sites of the same sublattice.
These can be written as

�ss ′
kαα′ = �f 0

k · �σss ′ ⊗ τ 0
αα′ + �f 1

k · �σss ′ ⊗ τ 1
αα′ , (9)

involving intra- and interband terms, �f 0
k and �f 1

k . Analogously
the intersublattice part is given by

�ss ′
kαα′ = �g 2

k · �σss ′ ⊗ τ 2
αα′ + �g 3

k · �σss ′ ⊗ τ 3
αα′ . (10)

Note that time reversal T̂ and inversion Î operate on these
terms through

T̂ �f a
k = − �f a

−k (11)

and

Î �f a
k = �f a

−k (12)

and analogously for �g a
k . Therefore, Eqs. (9) and (10) are im-

portant if time-reversal and/or inversion symmetry are broken
globally or locally in a staggered fashion. For illustration,
let us look at a few generic examples. Zeeman coupling
of all spins to a uniform magnetic field �H0 is implemented
by �f 0

k = gμB �H0 and, correspondingly, a staggered field �HQ

(opposite for the electron spins on the two sublattices) is
represented as �f 1

k = gμB �HQ (analogous to the sublattice-
dependent chemical potential), both being on-site-coupling
(intrasublattice) terms. According to Eq. (11), they introduce a
violation of time-reversal symmetry. Spin-dependent hopping
terms connecting the same or different sublattices can be
written as

�f 0
k = �λintra

k and �g 3
k = �λinter

k , (13)

respectively. More important for our subsequent discussion are
“staggered” spin-orbit coupling terms which correspond to

�f 1
k = �ζ intra

k and �g 2
k = �ζ inter

k , (14)

for intra- and intersublattice hopping, respectively.
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3. Symmetry considerations

We consider now some symmetry aspects, whereby the
sublattice structure again plays an important role. We introduce
G as the generating point group and denote by G ′ the subgroup
of operations respecting the sublattice structure. All other
operations in G \ G ′ interchange the two sublattices. As
we consider centrosymmetric crystals, we request that the
inversion is contained inG. However, inversion may or may not
be contained in G ′. In the former case, the symmetry center lies
on one of the two sublattices and the operations in G \ G ′ have
to be accompanied with a translation undoing the interchange
of the sublattices. This means that the space group of these
crystals does not contain G as a subgroup and is therefore
nonsymmorphic. In the latter case, the center of inversion lies
between the sublattices. This can lead to both symmorphic
and nonsymmorphic crystal structures as we see in the
following.

As noted above, the diagonal terms of the single-particle
Hamiltonian have a tensor product structure, consisting of the
momentum-dependent spin part (εkσ

0, �fk · �σ , and �gk · �σ ) and
the band part expressed by the τ matrices. Therefore, we may
classify these terms by means of irreducible representations
of G as R ⊗ R′. The symmetry operations g ∈ G on the
momentum-dependent spin part act as

gεk = εD−
g k and g �fk = D+

g
�fD−

g k, (15)

where D−
g is the corresponding operation of element g on a

vector and D+
g is the corresponding operation of element g on

a pseudovector. For the band part, it is easy to see that τ 0 and
τ 3 do not change under such an interchange of the sublattices,
such that they belong to the trivial irreducible representation,
R′ = A1g of G, i.e., R ⊗ R′ = A1g ⊗ A1g . On the other hand,
terms with τ 1 and τ 2 change sign under the interchange of
sublattices and belong to an irreducible representation R′ = �′
specific to G and the sublattice structure. As the Hamiltonian
has to transform trivially under all operations of G, we also
have R = �′ in this case: R ⊗ R′ = �′ ⊗ �′. Note that if
inversion is an element of G ′, �′ is an even representation,
while it is odd otherwise.

For illustration, we consider two specific examples for a
lattice with tetragonal symmetry with G = D4h, which are dis-
cussed in more detail below. The first example has a sublattice
structure such that the A and B sublattices form alternating
layers along the z axis, which yields �Q = (0,0,π/c), and the
primitive lattice vector interconnecting two sublattice points
is (0,0,c) [see Fig. 1(a)]. The center of inversion lies in
the middle between the two layers, e.g., at (0,0,c)/2, and
interchanges the two sublattices (a and c being the lattice
constants in-plane and out-of-plane, respectively). In this case,
the subgroup leaving the sublattices invariant is G ′ = C4v

and �′ = A2u. The second example is a sublattice structure
within each layer with the primitive lattice vector (a,a,0)
connecting the two sublattices, leading to �Q = (π/a,π/a,0)
[see Fig. 1(b)]. The inversion center lies within the layer on
a lattice point belonging to one of the two sublattices. The
subgroup retaining the crystal structure is C4h and �′ = A2g

of D4h.

B. Off-diagonal single-particle terms

We now introduce the superconducting order parameter
which on the mean-field level leads to off-diagonal terms to
the single-particle Hamiltonian. These terms can be classified
in a very analogous way as the diagonal terms. It is illustrative
to discuss first the pair wave function

�ss ′
kαα′ = 〈cαkscα′−ks ′ 〉, (16)

which combines two electrons characterized by spin and band
configuration. Note that the pair wave function describes zero-
momentum pairs for α = α′ while for α �= α′ the pairs possess
momentum Q as can be seen from the definition of the single-
particle operators in Eq. (1).

In order to formulate the off-diagonal terms in the Hamilto-
nian, we introduce now the (mean-field) gap function �ss ′

αα′ (k)
and write

H′
MF =

∑
k

�ss ′
αα′ (k)c†αksc

†
α′−ks ′ + H.c. (17)

We use the standard notation of the scalar gap function ψ(k)
for spin-singlet pairing and the vector gap function �d(k) for
spin-triplet pairing. The gap function has to satisfy the Pauli
principle to change sign under exchange of the two electrons:

�ss ′
αα′ (k) = −�s ′s

α′α(−k). (18)

For a single-band superconductor this requires that ψ(−k) =
ψ(k) and �d(−k) = −�d(k).

We express the gap function as

�ss ′
αα′ (k,a) = [ψa(k)ς0 + �da(k) · �ς ]ss ′ ⊗ τ a

αα′ , (19)

where we define ς0 = iσ y and �ς = i �σσy . For intrasublattice
Cooper pairing originating from interactions between elec-
trons on the same sublattice, intraband pairing corresponds to
a = 0 and interband pairing to a = 1. Analogously, intersub-
lattice pairing for intraband pairs takes the index a = 3 and for
interband pairs a = 2. Note that for a = 0, 1, and 3 the scalar
(vector) gap function is an even (odd) function of k, while it is
opposite for a = 2, as required by Eq. (18). The case of a = 2
is special in the sense that the band part of the pairing state is
antisymmetric under exchange allowing both momentum and
spin part to be simultaneously symmetric or antisymmetric.

As in the case of the diagonal part we can classify the
symmetry for the tensor product characterizing the pairing
state (gap function). Thus, we consider again the irreducible
representations Rs ⊗ R′

s of the generating point group G. The
representations R′

s correspond again to the ones of the τ

matrices as given in Table I. The representation Rs is based
on the internal (spin and momentum) structure of the Cooper
pair, given in Table II for the case G = D4h, which we use in
the following.

Connections between different (off-diagonal) pairing chan-
nels mediated by pairing interactions obey symmetry-imposed
selection rules based on the representations of the diagonal
part of the Hamiltonian, i.e., R ⊗ R′.6 The pairing channels
Rs ⊗ R′

s and R̃s ⊗ R̃′
s are coupled if there is a matrix element

in the Hamiltonian that allows for this. In terms of symmetries
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TABLE II. Basis functions belonging to the different irreducible
representations of D4h with spin-orbit coupling for the different gaps.

�+ ψ0,1,3(k) �d2(k)

A1g 1 x̂kykz − ŷkzkx

A2g kxky(k2
x − k2

y) x̂kxkz + ŷkykz

B1g k2
x − k2

y x̂kykz + ŷkxkz

B2g kxky x̂kxkz − ŷkykz

Eg {kxkz,kykz} {ẑkxkz,ẑkykz}
�− ψ2(k) �d0,1,3(k)

A1u — x̂kx + ŷky + εẑkz

A2u kz x̂ky − ŷkx

B1u kxkykz x̂kx − ŷky

B2u kz(k2
x − k2

y) x̂ky + ŷkx

Eu {kx,ky} {ẑkx,ẑky}

this requires that R̃s ⊗ R̃′
s appears in the decomposition of the

product

(R ⊗ R′) × (Rs ⊗ R′
s) = (R × Rs) ⊗ (R′ × R′

s). (20)

In addition to the trivial coupling through R ⊗ R′ = A1g ⊗
A1g , we find couplings due to the spin-orbit coupling terms
that transform like R ⊗ R′ = �′ ⊗ �′ such that �′ × Rs → R̃s

and �′ × R′
S → R̃′

s . This allows one to classify all possible
interdependent pairing states within a given crystal lattice
symmetry.

In the following, we analyze three different tetragonal
crystal lattices with generating point group D4h and elaborate
on the way of analyzing the influence of staggered types of
spin-orbit coupling due to local inversion-symmetry breaking
on superconductivity from a symmetry point of view.

III. STACK OF INVERSION-SYMMETRY-LACKING
LAYERS

Our first example is a tetragonal crystal lattice, whose
staggered form originates from a sublattice structure of
alternating layers. The basic unit, the layer, violates inversion
symmetry by the absence of reflection symmetry z → −z

(z: the fourfold rotation axis of the tetragonal crystal). This
type of noncentrosymmetricity yields a Rashba-type spin-orbit
coupling in each layer l,

HSOC
l =

∑
k

( ��(l)
k · �σss ′

)
c
†
kscks ′ , (21)

with ��(l)
k = αl(x̂ sin ky − ŷ sin kx). The sign of the Rashba

coupling αl = (−1)lα is opposite for the two sublattices, i.e.,
alternates from layer to layer [see Fig. 1(a)]. The two bands
resulting from this feature are related by �Q = (0,0,π ) taking
from now on all lattice constants to unity.

A. Symmetry considerations

The crystal lattice has the tetragonal D4h point group with
full inversion symmetry, taking the center at a symmetry point
between the layers. The elements of D4h are divided into those

transforming within the layers and those interchanging the
sublattice:

Gintra = {E,2C4,C2,2σv,2σd} = C4v, (22)

Ginter = {2C ′
2,2C ′′

2 ,I,σh,2S4}, (23)

using the standard notation of Ref. 7. From this we conclude
that R′ = A2u, which is the one-dimensional irreducible
representation with +1 for all elements of Gintra and −1
for all elements of Ginter. Considering now the diagonal
single-particle part of the Hamiltonian, we find for the
spin-independent hopping terms the standard representations
A1g ⊗ A1g . On the other hand, the staggered spin-orbit part
consists only of the intrasublattice (in-plane) Rashba-like
coupling for which �gk transforms according to A2u and
corresponds to ���k = �ζ intra

k of Eq. (14). This leads to the
representation R ⊗ R′ = A2u ⊗ A2u.

For this system, spin-orbit coupling mixes pairing states
according to Eq. (20) through the decomposition of

(A2u × Rs) ⊗ (A2u × R′
s), (24)

i.e., states of opposite parity can be mixed, as is generally
the case in noncentrosymmetric systems. Note that this also
implies that intraband pairs mix with interband pairs.

Looking first at intrasublattice (intralayer) pairing states,
we consider the example of the (even-parity) s-wave spin-
singlet state, which has for intraband pairing the representation
A1g ⊗ A1g while it belongs to A1g ⊗ A2u for interband pairing.
The mixing occurs as follows:

A1g ⊗ A1g ↔ A2u ⊗ A2u,
(25)

A1g ⊗ A2u ↔ A2u ⊗ A1g,

whereby the admixed states have always opposite parity
(A2u). Using Table II we write the two types of states with
intrasublattice pairing as

�̂(k) = ψ0ς
0 ⊗ τ 0 + d1(kyς

x − kxς
y) ⊗ τ 1,

(26)
�̂(k) = ψ1ς

0 ⊗ τ 1 + d0(kyς
x − kxς

y) ⊗ τ 0,

which mix the spin-singlet and spin-triplet configurations.
Note that the same scheme also applies for other pairing
states; e.g., a d-wave state belonging to B1g ⊗ A1g couples
to a spin-triplet pairing state belonging to B2u ⊗ A2u.

Next, we consider intersublattice (interlayer) pairs, starting
with s-wave intraband states, corresponding again to A1g ⊗
A1g with the admixed A2u ⊗ A2u. On the other hand, the
interband (even-parity) s-wave state (A1g ⊗ A2u) has a spin-
triplet configuration and couples to the intraband odd-parity
spin-triplet state A2u ⊗ A1g as the τ 2 matrix is involved
(Table I).

For the two possible intersublattice pairing states we find
the gap functions

�̂(k) = ψ3ς
0 ⊗ τ 3 + ψ2kzς

0 ⊗ τ 2, (27)

and

�̂(k) = d2(kykzς
x − kxkzς

y) ⊗ τ 2 + d3(kyς
x − kxς

y) ⊗ τ 3,

(28)
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which remain in either the spin-singlet channel or the spin-
triplet channel. Due to the sublattice structure, however, always
inter- and intraband states are mixed.

B. Microscopic consideration

To illustrate the symmetry-based aspects from a micro-
scopic point of view we introduce here a model based on a
tight-binding band structure, whereby each layer is considered
as a simple square lattice. We use the two-band formulation
and write the single-particle part of the Hamiltonian as

H =
∑

k

(
�kαα′σ 0

ss ′ + �ss ′
kαα′

)
c
†
αkscα′ks ′ , (29)

with electron operators as defined in Eq. (1) with Q = (0,0,π ).
Intralayer hopping is taken into account between nearest and
next-nearest neighbors and interlayer hopping is taken into
account only between nearest neighbors, which leads to

εintra
k = −2txy(cos kx + cos ky) − 4t ′xy cos kx cos ky,

(30)
εinter

k = −2tz cos kz.

These contribute to the spin-independent part. The spin-
dependent part originates from the staggered Rashba-type
spin-orbit coupling, which we take only in the nearest-
neighbor form as in Eq. (21), yielding

�f 1
k = α(x̂ sin ky − ŷ sin kx) (31)

following Eqs. (9) and (10).
It is convenient for the following to use the formulation by

means of Green’s functions, which for the noninteracting case
can straightforwardly be calculated by inverting the (4 × 4)
matrix (iωnσ

0
ss ′ ⊗ τ 0

αα′ − �kαα′σ 0
ss ′ − �ss ′

kαα′ ),

Ĝ0(k,ωn) = G0+(k,ωn)σ 0 ⊗ τ 0

+G0−(k,ωn)(f̂k · �σ ⊗ τ 1 + ε̂kσ
0 ⊗ τ 3), (32)

where

G0±(k,ωn) = 1

2

(
1

iωn − ξ+,k
± 1

iωn − ξ−,k

)
, (33)

f̂k = �f 1
k

/√∣∣ �f 1
k

∣∣2 + (
εinter

k

)2
, (34)

and

ε̂k = εinter
k

/√∣∣ �f 1
k

∣∣2 + (
εinter

k

)2
. (35)

In Eq. (33), the two (spin-independent) band energies are
given by

ξ±,ks = ξ±,k = εintra
k − μ ±

√∣∣ �f 1
k

∣∣2 + (
εinter

k

)2
. (36)

We now turn to the problem of superconductivity by
introducing a pairing interaction of the general form,

H′ = 1

N

∑
k,k′

V
ss ′,s3s4
αβ,μν (k,k′)c†αksc

†
β−ks ′cμ−k′s3

cνk′s4
. (37)

TABLE III. List of different basis functions for a crystal structure
with an alternating stack of mirror-symmetry-lacking layers that
are supported by nearest-neighbor intrasublattice and intersublattice
interaction, respectively. Note that with the restriction that only
nearest-neighbor pairing is considered the intersublattice case does
not include any even-parity spin-triplet �d2(k) states.

Intrasublattice Intersublattice
ψ0,1(k) ψ3(k)

A1g 1, cos kx + cos ky cos kz

B1g cos kx − cos ky

�d0,1(k) ψ2(k), �d3(k)

A1u x̂ sin kx + ŷ sin ky ẑ sin kz

A2u x̂ sin ky − ŷ sin kx sin kz

B1u x̂ sin kx − ŷ sin ky

B2u x̂ sin ky + ŷ sin kx

Eu {ẑ sin kx,ẑ sin ky}

We parametrize the matrix element in the notation used for the
single-particle terms,

V
ss ′,s3s4
αβ,μν (k,k′) =

∑
m,n

∑
a

v(a)
mn

[
ψ (a)

mn(k)ςm
ss ′τ

n
αβ

]
× [

ψ (a)
mn(k′)ςm

s3s4
τn
μν

]†
, (38)

where ψ (a)
mn(k) have the symmetry of the gap functions tabu-

lated in Table II. For a more detailed analysis of the structure of
such an interaction see Appendix A. This pairing interaction
incorporates both coupling of the intra- and intersublattice
type. For simplicity, we restrict ourselves to interactions
including only nearest-neighbor coupling in the real lattice.
This limits the classification of pairing states as can be seen in
Table III compared to the more general Table II.

With the Hamiltonian and the noninteracting Green’s
function introduced above it is possible to analyze the
superconducting instabilities in detail by resorting to the
standard framework of the Gor’kov equations.8 The linearized
gap equation reads

�ss ′
αβ(k) = −T

∑
μ,ν

∑
ωn

∑
k′

∑
s3,s4

V
ss ′s3s4
αβ,μν (k,k′)

× [
Ĝ0(k′,ωn)�̂(k′)ĜT

0 (−k′, − ωn)
]s4s3

νμ
, (39)

where all the Green’s functions as well as the order parameter
are 4 × 4 matrices. This gap equation is analyzed in the
following for the two cases of a leading instability in
the intrasublattice and the intersublattice pairing channel,
respectively.

1. Intralayer interaction

We use the nearest-neighbor interactions derived in
Appendix A for the intrasublattice case, which, following
Eq. (26), lead to gap functions of the form

�̂(k) =
{

ψ0(k)ς0 ⊗ τ 0 + �d1(k) · �ς ⊗ τ 1,

ψ1(k)ς0 ⊗ τ 1 + �d0(k) · �ς ⊗ τ 0,
(40)
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for which we insert from Table III

ψn(k) = ψn(cos kx + cos ky), (41)

�dn(k) = dn(x̂ sin ky − ŷ sin kx), (42)

with n = 0 and 1. It is easy to see that the gap functions (40)
couple within the linearized gap equation (39) indeed in the
way anticipated above, using the intralayer interaction given
in Appendix A in Eqs. (A19) and (A20):

ψ0(k) = −T
∑
n,k′

v+
kk′ {[G0+G̃0+ + G0−G̃0−]ψ0(k′)

+ [G0+G̃0− + G0−G̃0+]f̂k′ · �d1(k′)}, (43)

�d1(k) = −T
∑
n,k′

v−
kk′ {[G0+G̃0+ + G0−G̃0−] �d1(k′)

+ 2G0−G̃0−{f̂k′[f̂k′ · �d1(k′)] − �d1(k′)}
+ [G0+G̃0− + G0−G̃0+]f̂k′ψ0(k′)}, (44)

and, analogously,

�d0(k) = −T
∑
n,k′

v−
kk′ {[G0+G̃0+ + G0−G̃0−] �d0(k′)

+ 2G0−G̃0−{f̂k′[f̂k′ · �d0(k′)] − �d0(k′)}
+ [G0+G̃0− + G0−G̃0+]f̂k′ψ1(k′)}, (45)

ψ1(k) = −T
∑
n,k′

v+
kk′ {[G0+G̃0+ + G0−G̃0−]ψ1(k′)

− 2(ε̂k′ )2G0−G̃0−ψ1(k′)
+ [G0+G̃0− + G0−G̃0+]f̂k′ · �d0(k′)}. (46)

Here, we have introduced the short notation G0± = G0±(k,ωn)
and G̃0± = G0±(−k, − ωn). It is also obvious now that it is the
spin-orbit coupling term, represented here through f̂k, which
yields the coupling between even- and odd-parity pairing
states.

2. Interlayer interaction

Turning to the intersublattice (interlayer) pairing the situa-
tion becomes more intricate due to pairing in the antisymmetric
band channel (τ 2). We write the gap function as

�̂(k) =
{

ψ2(k)ς0 ⊗ τ 2 + �d3(k) · �ς ⊗ τ 3,

ψ3(k)ς3 ⊗ τ 3 + �d2(k) · �ς ⊗ τ 2,
(47)

where for nearest-neighbor pairing only we may use

ψ2(k) = ψ2 sin kz, (48)

ψ3(k) = ψ3 cos kz, (49)
�d3(k) = d3ẑ sin kz, (50)

while �d2(k) = 0, following Table III. To write the linearized
gap equation we use the interlayer pairing interactions (A21)
and (A22) to find

ψ3(k) = −T
∑
n,k′

v+
kk′

{
[G0+G̃0+ + G0−G̃0−]ψ3(k′)

− 2G0−G̃0−f̂ 2
k′ψ3(k′)

}
(51)

and, in the same way,

�d3(k) = −T
∑
n,k′

v−
kk′ {[G0+G̃0+ + G0−G̃0−] �d3(k′)

− 2G0−G̃0−[f̂k′ · �d3(k′)]f̂k′ }. (52)

Note that for the gap equation there is no mixing within this
approximation.

C. Discussion

We first consider the intralayer pairing channels looking at
Eqs. (43)–(46). Restricting our analysis to the terms diagonal
in each gap function only, we find that even-parity intraband
pairing is essentially unaffected by spin-orbit coupling. More
interesting are the intraband odd-parity gaps which suffer
suppression unless the d vector is parallel to f̂k. This prop-
erty is known from noncentrosymmetric superconductors9

and should be fully transferable to the case of completely
decoupled layers. Our analysis shows that including interband
pairing combined with interlayer hopping (tz �= 0) reduces the
pair-breaking effect of spin-orbit coupling, as can be seen in
Fig. 2. There, we plot Tc versus the spin-orbit coupling strength
α for three different values of the interlayer hopping values.
Naturally, the case of �d0(k) ‖ f̂k is unchanged (solid line in
Fig. 2).

Considering the interband gaps [ψ1(k) and �d1(k)], which
correspond to finite-momentum pairing, it is easy to see that
they have the same gap equations as the intraband gaps if we
decouple the layers (tz = 0 with ε̂k = 0) and set the spin-orbit
coupling to 0 (α = 0 with f̂k = 0). The reason is that the finite
momentum �Q = (0,0,π ) yields an alternating phase of 0 and
π from layer to layer, which is irrelevant for decoupled layers.
Therefore finite-momentum pairing is suppressed by interlayer
hopping, which introduces the disadvantage of an interlayer
phase shift to the energy balance, as we can see in the plot
of Tc in Fig. 3. On the other hand, adding spin-orbit coupling
helps the intraband pairing to slightly recover Tc.

The trends discussed so far show that a strong interlayer
coupling moves the system further away from the parity-
mixing (spin-singlet–spin-triplet mixing) as compared to a

FIG. 2. Suppression of the transition temperature of the intraband
gaps due to the antisymmetric SOC. With increasing interlayer
coupling, the suppression is weakened, tz = 0, 0.1t , and 0.2t from
bottom to top.
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FIG. 3. Change in the transition temperature of the interband gap
with �d1(k) = x̂ sin ky − ŷ sin kx as a function of the interlayer hopping
tz for different spin-orbit coupling strengths.

real noncentrosymmetric superconductor. Interlayer coupling
“recovers the inversion symmetry” gradually.

A further interesting aspect occurs if the interlayer pairing is
the leading instability. While the system has the full inversion
symmetry in this case, the spin-orbit coupling acts as pair
breaking for the spin-singlet channel [see Eq. (51)]. On the
other hand, spin-orbit coupling does not affect the spin-triplet
gap �d3(k), since �d3(k) ⊥ f̂k for all k. Thus, in this case the
spin-orbit coupling can be important in influencing the pairing
symmetry in favor of a spin-triplet state. Note, however, that the
structure of the pairing interaction remains the major deciding
element for the pairing symmetry.

IV. INVERSION-SYMMETRY-LACKING BONDS

The second example studied here is motivated by the
layered perovskite crystal structure with tetragonal symmetry,
known for some transition metal oxides. The subunits are
oxygen octahedra, where six oxygen ions enclose a transition
metal ion. In some systems, these octahedra rotate around the
crystalline z axis leading to a staggered pattern of rotation,
i.e., neighboring octahedra in the xy plane rotate in opposite
directions [see Fig. 1(b)]. Such features are known in the
bilayer Sr3Ru2O7 and in Sr2RhO4 or Sr2IrO4, to mention a few
examples.10,11 This lattice distortion shifts the in-plane bond
oxygens to off-center positions and, thus, leads to a breaking
of inversion symmetry on each of these bonds. Again, we
arrive at a form of staggered spin-orbit coupling fitting into
the scheme developed above. Since inversion symmetry within
the sublattice is retained in this structure, there is no even-odd
mixing at all for this type of crystal structure. However, the
spin-orbit coupling has an influence on the direction of the d

vector for a spin-triplet pairing state. Before this is studied in
detail with the help of the linearized gap equation, we again
start with a symmetry analysis.

A. Analysis of symmetry

The generating point group of the crystal structure is D4h

as in the above example. However, the rotation of the O6

octahedra introduces an in-plane doubling of the unit cell as
depicted by the light and dark lattice sites in Fig. 1(b). The
corresponding Q vector is �Q = (π,π,0).

We separate again the symmetry operations within D4h

which turn each sublattice into itself (Gintra) while the
remaining operations (Ginter) exchange the sublattices,

Gintra = {E,2C4,C2,I,2S4,σh} = C4h,
(53)

Ginter = {2C ′
2,2C ′′

2 ,2σv,2σd}.
The representation of D4h changing sign for all elements of
Ginter is �′ = A2g .

Analogous to the previous example, the terms in the Hamil-
tonian can be characterized with respect to their behavior under
sublattice interchange. According to the above symmetry
analysis, the terms that change sign belong to the irreducible
representation �′ = A2g for this structure and a symmetry-
reducing term in the Hamiltonian has to be of A2g ⊗ A2g

symmetry. The staggered spin-orbit coupling derived in Ref. 12
is of this symmetry with

�g 2
k = 2α(cos kx + cos ky)ẑ = �ζ inter

k (54)

and has even parity.
The symmetry-allowed couplings between different pairing

states can again be found by the selection rules introduced in
Sec. II B. Thus, we analyze the decomposition of the products

(R × R′) ⊗ (Rs ⊗ R′
s) = (A2g × Rs) ⊗ (A2g × R′

s), (55)

which leads to Rs ⊗ R′
s ↔ R̃s ⊗ R̃′

s , e.g.,

A1g ⊗ A1g ↔ A2g ⊗ A2g, (56)

B1g,u ⊗ A1g ↔ B2g,u ⊗ A2g, (57)

Eg,u ⊗ A1g ↔ Eg,u ⊗ A2g. (58)

As mentioned above, spin-orbit coupling here does not mix
states of different parity.

B. Analysis of instability

A better understanding of the consequence of symmetry
properties and of the influence of the spin-orbit coupling on the
different superconducting states can be obtained by analyzing
the linearized self-consistency equation for the gap (39). The
noninteracting Hamiltonian is the same as in Sec. III with
the only difference that the spin-dependent term here uses
�g 2

k as given in Eq. (54). Note that we restrict ourselves to the
single-band case and ignore the aspect of degenerate d orbitals
of transition metal ions in the examples mentioned above.

The noninteracting Green’s function is given by

G0(k,ωn) = G0+(k,ωn)σ 0 ⊗ τ 0

−G0−(k,ωn)(ĝkσ
z ⊗ τ 2 − ε̂kσ

0 ⊗ τ 3), (59)

with

G0±(k,ωn) = 1

2

(
1

iωn − ξ+,k
± 1

iωn − ξ−,k

)
, (60)

ĝk = (�g 2
k

)
z

/√∣∣�g 2
k

∣∣2 + (
εinter

k

)2
, (61)

ε̂k = εinter
k

/√∣∣�g 2
k

∣∣2 + (
εinter

k

)2
, (62)

and

ξ±,ks = ξ±,k = εintra
k − μ ±

√∣∣�g 2
k

∣∣2 + (
εinter

k

)2
. (63)
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Note that we again distinguish hoppings connecting different
sublattices (intersublattice, εinter

k ) and the same sublattice (in-
trasublattice εintra

k ) with the former including nearest-neighbor
hopping and the latter including next-nearest-neighbor hop-
ping. In the following, the two cases of an intrasublattice
and intersublattice pairing interaction are again discussed
separately.

1. Intrasublattice pairing

For a leading interaction of intrasublattice type, the gap
is analogous to the form given in Eq. (40). As mentioned,
the intra- and interband gap functions have the same parity
and spin configuration. The case of even-parity pairing can be
illustrated with the example of the intraband pairing state

ψ0(k) = sin kx sin ky (64)

belonging to B2g of D4h. The corresponding admixed state
according to Eq. (57) is the B1g state

ψ1(k) = cos 2kx − cos 2ky. (65)

Note that ψ0(k) here is based on next-nearest-neighbor pairing,
while ψ1(k) originates from an interaction on sites separated
by lattice vectors (2a,0).

For the odd-parity channel it turns out that the x and y

components of the d vector for intra- and interband pairing
states mix in the form(

dx
0 (k)

d
y

0 (k)

)
↔

(−d
y

1 (k)

dx
1 (k)

)
, (66)

which is a result of the decomposition of � ⊗ A2g . This leads
to combinations of gap functions like

A1u : �d0(k) = x̂ sin(kx + ky) + ŷ sin(kx − ky) ↔
(67)

A2u : �d1(k) = x̂ sin(kx − ky) − ŷ sin(kx + ky),

representing one example of a pairing state classified within the
representation of D4h and arising from a next-nearest-neighbor
interaction. The z component of the d vector is conserved
in the mixing of inter- and intraband pairing. This is fully
compatible with the classification of spin-triplet pairing states
in a tetragonal crystal lattice. The state belonging to Eu then
yields for next-nearest-neighbor pairing

�d0(k) = {ẑ sin(kx + ky),ẑ sin(kx − ky)}, (68)

mixing with

�d1(k) = {−ẑ sin(kx − ky),ẑ sin(kx + ky)}, (69)

which also lies in the representation Eu.

2. Intersublattice pairing

For intersublattice pairing interactions, we again consider a
gap of the form given in Eq. (47). If we only consider pairing
within the xy plane, the spin-singlet pairing states ψ3(k) only
appear in the one-dimensional representations of D4h, while
the states ψ2(k) are in the two-dimensional representation Eu

(the respective others require that the gap function changes sign
under the operation z → −z). Therefore, following Table IV
we find that corresponding spin-triplet components �d(k) ⊥ ẑ

TABLE IV. Basis functions belonging to the different irreducible
representations of D4h supported by in-plane nearest-neighbor
interactions.

�+ ψ3(k) �d2(k)

A1g cos kx + cos ky —
A2g — ẑ(cos kx + cos ky)
B1g cos kx − cos ky —
B2g — ẑ(cos kx − cos ky)
Eg — {x̂(cos kx + cos ky),ŷ(cos kx + cos ky)}
�− ψ2(k) �d3(k)

A1u — x̂ sin kx + ŷ sin ky

A2u — x̂ sin ky − ŷ sin kx

B1u — x̂ sin kx − ŷ sin ky

B2u — x̂ sin ky + ŷ sin kx

Eu {sin kx, sin ky} {ẑ sin kx,ẑ sin ky}

remain independent. Only the Eu spin-triplet state ( �d(k) ‖ ẑ)
mixes with the spin-singlet states.

We consider first the case �d(k) ⊥ ẑ yielding the following
linearized gap equation,

d
x,y

3 (k) = −T
∑
n,k′

4v−
kk′ (G0+G̃0+ + G0−G̃0−)dx,y

3 (k′), (70)

and

d
x,y

2 (k) = −T
∑
n,k′

4v+
kk′ (G0+G̃0+ − G0−G̃0−)dx,y

2 (k′), (71)

where we used again the short-hand notation G0± =
G0±(k′,ωn) and G̃0± = G0±(−k′, − ωn) and v±

kk′ are defined
in Appendix A.

On the other hand, the z component mixes with a scalar gap
function,(

dz
3(k)

ψ2(k)

)
= −T

∑
n,k′

4v−
kk′[M(k′)]

(
dz

3(k′)
ψ2(k′)

)
, (72)

for the odd-parity and, similarly, for even-parity gap functions,(
ψ3(k)

dz
2(k)

)
= −T

∑
n,k′

4v+
kk′[M(k′)]

(
ψ3(k′)
dz

2(k′)

)
. (73)

The matrix in Eqs. (72) and (73) is given by

M11(k) = G0+G̃0+ + G0−G̃0− − 2ĝ2
kG0−G̃0−, (74)

M22(k) = G0+G̃0+ + G0−G̃0− − 2ε̂2
kG0−G̃0−, (75)

M12(k) = 2iĝkε̂kG0−G̃0− = M∗
21(k). (76)

Performing the sums over the Matsubara frequencies, we
first discuss the uncoupled x and y components of the d vector
and choose the odd-parity gap functions, �d3(k) = (�x

−x̂ +
�

y
−ŷ) sin kx , obtained for a nearest-neighbor interaction [a

degenerate solution of the linearized gap equation is �d3(k) =
(�x

−x̂ + �
y
−ŷ) sin ky]. Equation (70) yields then the standard

BCS equation determining Tc which is degenerate for both x

and y components,

1 = −V
∑

k′

∑
a=±

sin2 k′
x

2ξa,k′
tanh

(
ξa,k′

2T

)
. (77)
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We turn now to the even-parity gap function �d2(k) for
which we assume an extended-s-wave form, �d2(k) = (�x

+x̂ +
�

y
+ŷ)(cos kx + cos ky), a result of the nearest-neighbor inter-

action. This leads to the equation for Tc,

1 = −V
∑

k′

∑
a=±

(cos k′
x + cos k′

y)2

2
(
εintra

k′ − μ
) tanh

(
ξa,k′

2T

)
, (78)

originating from Eq. (71).
These equations should be compared with the correspond-

ing equations, Eqs. (72) and (73). For the odd-parity case
with the nearest-neighbor coupling and the gap functions
dz

3(k) = �z
− sin kx and ψ2(k) = �s

− sin kx , we obtain from
Eq. (72) (

�z
−

�s
−

)
=

(
L−

0 + L−
1 iL−

3

−iL−
3 L−

0 + L−
2

) (
�z

−
�s

−

)
. (79)

Summing again over the Matsubara frequencies, we can
express these matrix elements as

L−
0 = −V

∑
k

sin2 kxS1(k),

L−
1 = −V

∑
k

sin2 kxĝ
2
k[S2(k) − S1(k)],

(80)
L−

2 = −V
∑

k

sin2 kxε̂
2
k[S2(k) − S1(k)],

L−
3 = −V

∑
k

sin2 kxĝkε̂k[S2(k) − S1(k)],

with

S1(k) =
∑
a=±

1

2ξa,k
tanh

(
ξa,k

2T

)
, (81)

S2(k) =
∑
a=±

1

2
(
εintra

k − μ
) tanh

(
ξa,k

2T

)
. (82)

The analogous result can be obtained for the even-parity case
with dz

2(k) = �z
+(cos kx + cos ky) and ψ3(k) = �s

+(cos kx +
cos ky), leading to(

�s
+

�z
+

)
=

(
L+

0 + L+
1 iL+

3

−iL+
3 L+

0 + L+
2

) (
�s

+
�z

+

)
, (83)

with

L+
0 = −V

∑
k

(cos kx +cos ky)2S1(k),

L+
1 = −V

∑
k

(cos kx +cos ky)2ĝ2
k[S2(k)−S1(k)],

(84)
L+

2 = −V
∑

k

(cos kx +cos ky)2ε̂2
k[S2(k)−S1(k)],

L+
3 = −V

∑
k

(cos kx +cos ky)2ĝkε̂k[S2(k)−S1(k)].

The instability condition for Eqs. (79) and (83) are given by
the eigenvalues

λs
± = Ls

0 + 1
2

(
Ls

1 + Ls
2

)± 1
2

√(
Ls

1 − Ls
2

)2 + (
2Ls

3

)2
, (85)

reaching λs
± = 1 for both even and odd parity with s = +

[Eq. (79)] and s = − [Eq. (83)]. Note that the instability
condition for the x and y components in Eqs. (77) and (78)
corresponds to

λ1 = L−
0 = 1 (86)

for odd-parity pairing [Eq. (77)] and

λ2 = L+
0 + L+

1 + L+
2 = 1 (87)

for even-parity pairing [Eq. (78)]. It can be demonstrated easily
that Ls

1,L
s
2 < 0 and Ls

1L
s
2 � (Ls

3)2. We now use the resulting
inequality, (

Ls
1 − Ls

2

)2 + (
2Ls

3

)2 �
(
Ls

1 + Ls
2

)2
, (88)

and λs
+ � λs

− to obtain the relation

Ls
0 � λs

+ � λs
− � Ls

0 + Ls
1 + Ls

2. (89)

From these relations we are able to show for the odd-parity
states

λ−
1 = L−

0 � λ−
±, (90)

such that the instability leads to a state with the d vector
perpendicular to the z axis as described by Eq. (70). On the
other hand, for even-parity pairing the inequality

λ+
± � λ−

2 = Ls
0 + Ls

1 + Ls
2 (91)

favors the state with spin-singlet and -triplet mixing where the
d vector points in the z direction as described by Eq. (83).

V. STAGGERED NONCENTROSYMMETRIC
PLAQUETTE STRUCTURES

As a further application we turn to a system with two
sublattices each lacking inversion symmetry, motivated by the
crystal structure of some of the iron-pnictide superconductors.
There, a single FeAs layer consists of Fe ions forming a square
lattice with As ions sitting in every center of the squares. As is
depicted in Fig. 4(a), the As are shifted out of the Fe plane in
such a way as to built distorted tetrahedral cages around the Fe
sites. Due to the arrangement of the As sites, this structure can
again be described with two sublattices of the checkerboard
type.

FIG. 4. (a) Top view of the basic FeAs crystal structure. The open
circles denote As ions lying below the plane while the crosses denote
ions above the plane. (b) Top view of one of the sublattices rotated
by 45◦ for an easier analysis of the hopping Hamiltonian.
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A. Analysis of symmetry

As in the first example of inversion-symmetry-lacking
layers, this crystal possesses a center of inversion that is located
between the sublattices. Here, however, the crystal structure
is nonsymmorphic. Taking the symmetry center on one of
the Fe sites, we can again separate the symmetry operations
within D4h leaving the sublattice structure invariant and the
ones interchanging the sublattices:

Gintra = {E,C2,C
′
2,2S4,2σd} = D2d ,

(92)
Ginter = {2C4,2C ′′

2 ,I,σh,2σv,}.
As Ginter contains inversion, the representation of D4h that
changes sign for all elements of Ginter is again odd, namely,
�′ = B1u.

Following the characterization of the terms in the Hamilto-
nian introduced above, a symmetry-reducing term has to be of
B1u ⊗ B1u symmetry. Such a term is microscopically derived
in Appendix A for a simplified orbital structure on the Fe sites
and has the same orbital and spin structure as the one in the
first example, however, with

�f 1
k = α(x̂ sin kx cos ky − ŷ cos kx sin ky). (93)

Following the procedure of Sec. II B, symmetry-allowed
couplings between pairing states are, for example, found to be

(A1g ⊗ A1g) ↔ (B1u ⊗ B1u), (94)

(A1g ⊗ B1u) ↔ (B1u ⊗ A1g). (95)

As in Sec. III this yields again states of mixed parity.

B. Microscopic considerations

The Hamiltonian describing this system has the same
structure as the one encountered in Sec. III, but with different
dispersions given by

εintra
k = −4t ′ cos kx cos ky, (96)

εinter
k = −2t(cos kx + cos ky), (97)

and �f 1
k as defined in Eq. (93). The linearized gap equations

have therefore the form of Eqs. (43)–(46) for the intrasublattice
pairing and of Eqs. (51) and (52) for the intersublattice pairing.

TABLE V. Lowest-order basis functions supported by intra- and
intersublattice interactions on the lattice considered in Sec. V, i.e.,
for on-site and nearest-neighbor interactions, respectively. In order
to allow for a spin-singlet to spin-triplet coupling, an interaction
between next-to-nearest neighbors has to be considered.

Intrasublattice Intersublattice

A1g 1, cos kx cos ky cos kx + cos ky

B1g — cos kx − cos ky

B2g sin kx sin ky —

A1u x̂ sin kx cos ky + ŷ sin ky cos kx x̂ sin kx + ŷ sin ky

A2u ŷ sin kx cos ky − x̂ sin ky cos kx x̂ sin ky − ŷ sin kx

B1u x̂ sin kx cos ky − ŷ sin ky cos kx x̂ sin kx − ŷ sin ky

B2u ŷ sin kx cos ky + x̂ sin ky cos kx x̂ sin ky + ŷ sin kx

Eu {ẑ sin kx cos ky,ẑ sin ky cos kx} {ẑ sin kx,ẑ sin ky}

Note that the difference in the crystal structure has more
drastic consequences, since the possible pairing terms in the
interaction for intra- and intersublattice interactions allow now
for different gap functions as summarized in Table V. For the
case of an intrasublattice pairing interaction including on-site
and next-nearest-neighbor interactions, we find the coupling
of two pairing states,

A1g : ψ0(k) = ψ0 + ψ ′
0 cos kx cos ky ↔

(98)
B1u : �d1(k) = d1(ŷ sin kx cos ky − x̂ sin ky cos kx),

with ψ0 (ψ ′
0) denoting the on-site (next-nearest-neighbor)

component.
Considering intersublattice pairing, the dominant channel

can be modeled by a nearest-neighbor interaction. Regarding
first spin-triplet pairing, spin-orbit coupling lifts the degen-
eracy of the spin configuration. Obviously, states belonging
to the representation Eu with �d ‖ ẑ are unaffected by spin-
orbit coupling according to Eq. (52) and yield the highest
transition temperature. However, any odd-parity state in the
other representations (A1u,A2u,B1u,B2u) would have a reduced
Tc compared to the Eu state. On the other hand, the spin-singlet
pairing channels based on intersublattice interactions are
generally suppressed irrespective of the representation as can
be seen in analogy to the discussion resulting in Eq. (51).

In the context of the iron-pnictide superconductors, it is
customary to use the notion of s++-, s+−-, or d-wave pairing.
The s-wave pairing states are characterized by the relative sign
between the gaps on hole Fermi surfaces around the � point
and electron Fermi surfaces around (π,0) and (0,π ) at the
Brillouin zone boundary. The corresponding representation
of such intrasublattice gap functions is A1g , which is given
in Eq. (98) with the term ψ0 for the s++ component of
the gap function and the term ψ ′

0 for the s+− component
of the gap function. The d-wave pairing state is given by
the B1g intersublattice gap function, which is proportional to
cos kx − cos ky . According to our analysis above, we find a
mixing of the s++- and s+−-wave states with a B1u triplet gap
function as given in Eq. (98). On the other hand, our discussion
suggests that the d-wave state as an intersublattice spin-singlet
pairing state would be suppressed by the staggered spin-orbit
interaction. Note, however, that our simplified one-band model
stemming from a single s-like orbital on each site is certainly
insufficient to capture the complexity of the band and gap
structure in the iron pnictides, which is based on the electronic
bands including all five Fe 3d orbitals.

VI. CONCLUSION

For crystal lattices, where inversion symmetry is broken
in a regular, but nonuniform (unit-cell multiplying) pattern,
the multiband structure of the reduced Brillouin zone renders
the classification of the superconducting order parameter in
terms of standard spin-singlet and spin-triplet insufficient.
On the level of the normal state electronic properties this is
imprinted by spin-orbit coupling whose structure is closely
connected to lattice-symmetry details. For such systems, the
usual connection between even (odd) parity in momentum
space and spin-singlet (spin-triplet) configuration is lost in
many cases, although the overall system is centrosymmetric.
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For a full classification in terms of the crystal symmetry, also
the structure of the gap in band space has to be taken into
account.

In this paper, we have studied two main classes of a local
lack of inversion symmetry with a two-sublattice structure,
whereby the complete lattice possesses a center of inversion.
This corresponds to a doubling of the unit cell leading to a
two-band description. The first class of lattices is characterized
by the property that each sublattice has broken inversion
symmetry. This manifests itself in the symmetry group Gintra

which does not include the element of inversion I . This is the
case for our first (Sec. III) and last (Sec. V) example. The
situation yields singlet-triplet mixing which is characterized
by the lattice-specific representation �′ having odd parity and
occurs in the connection with intrasublattice pairing.

In the other case, the sublattices retain separately inversion
symmetry, i.e., Gintra contains I , while the links connecting
the sublattices lack inversion symmetry. The corresponding
representation �′ has even parity, which also determines
the structure of the spin-orbit coupling. In this system, it
is intersublattice pairing which mixes spin-singlet and spin-
triplet pairing while the parity remains fixed. Here, obviously
spin configuration and parity are no longer tied together.

This new classification scheme can be important to de-
termine which pairing states can be stabilized. This can be
particularly useful if questions concerning the degeneracy in
spin space have to be answered. The new states and electronic
structures may have an impact on the way superconductors
couple (Josephson effect) and how the superconducting state
reacts on external magnetic fields. These topics will be
discussed elsewhere.
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APPENDIX A: STRUCTURE OF INTERACTION

In this appendix, the structure of a general density-density
interaction in a crystal with a two-site unit cell is analyzed. The
generalization to other types of interactions, e.g., a spin-spin
interaction, is straightforward. Our starting point is a real-space
formulation of the interaction

H′ =
∑
i,j

∑
s,s ′

Vijnisnjs ′ =
∑
i,j

∑
s,s ′

Vij c
†
isc

†
js ′cjs ′cis, (A1)

with Vij being the interaction strength between the lattice
sites i and j . Note that for the special case of i = j (on-site
interaction) the spin sum only runs over s �= s ′.

Changing to momentum space, Eq. (A1) yields

H′ = 1

N

∑
k,k′,q

∑
s,s ′

v(k,k′)c†ksc
†
−k+qs ′c−k′+qs ′ck′s , (A2)

where v(k,k′) = v(k − k′) due to translational symmetry of
the crystal. Since we are interested in a situation with two sites
per unit cell, we introduce two species of electron operators,

c
†
αks =

{
c
†
ks , α = 1,

c
†
k+Qs , α = 2,

(A3)

where Q = (0,0,π ) for a system as described in Sec. III and
Q = (π,π ) for the situation of Secs. IV and V, respectively.
Accordingly, we restrict the sum in Eq. (A2) to the two cases
of q = 0 and q = Q in the following. For the case q = 0 we
find

H′
0 = 1

N

∑
kk′

{v(k − k′)[c†1ksc
†
1−ks ′c1−k′s ′c1k′s

+ c
†
2ksc

†
2−ks ′c2−k′s ′c2k′s] + v(k − k′ + Q)

× [c†1ksc
†
1−ks ′c2−k′s ′c2k′s + c

†
2ksc

†
2−ks ′c1−k′s ′c1k′s]}. (A4)

For the other case q = Q, the interaction term can similarly be
written as

H′
Q = 1

N

∑
kk′

{v(k − k′)[c†1ksc
†
2−ks ′c2−k′s ′c1k′s

+ c
†
2ksc

†
1−ks ′c1−k′s ′c2k′s] + v(k − k′ + Q)

× [c†1ksc
†
2−ks ′c1−k′s ′c2k′s + c

†
2ksc

†
1−ks ′c2−k′s ′c1k′s]}. (A5)

At this point, we can distinguish the two cases of an interaction
between sites belonging to the same sublattice and between
sites on different sublattices. For the former case, i,j ∈ A (B),
we can use v(k + Q) = v(k) to write the above expressions as

H′
0,Q = 1

N

∑
k,k′

v
0,Q
αβγ δ(k − k′)c†αksc

†
β−ks ′cγ−k′s ′cδk′s , (A6)

with

v0
αβγ δ = v(k − k′)[(τ 0)αβ(τ 0)†γ δ], (A7)

v
Q
αβγ δ = v(k − k′)[(τ 1)αβ(τ 1)†γ δ]. (A8)

Similarly, for the latter case, where i ∈ A(B) and j ∈ B(A),
v(k + Q) = −v(k) yields

v0
αβγ δ = v(k − k′)[(τ 3)αβ(τ 3)†γ δ], (A9)

v
Q
αβγ δ = v(k − k′)[(iτ 2)αβ(iτ 2)†γ δ]. (A10)

In addition, the interaction can also be separated into a spin-
singlet channel and a spin-triplet channel introducing Pauli
matrices for the spin degrees of freedom,∑

ss ′
c
†
αksc

†
β−ks ′cγ−k′s ′cδk′s

= 1

2

∑
s1...s4

�s1s2s3s4c
†
αks1

c
†
β−ks2

cγ−k′s3
cδk′s4

, (A11)

where

�s1s2s3s4 = (ς0)s1s2 (ς0)†s3s4
+ ( �ς )s1s2 · ( �ς)†s3s4

. (A12)

Here, we have introduced ς0 = iσ y and �ς = �σ iσ y for sim-
plicity of notation.
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The total interaction term now has the form

H′ = 1

N

∑
k,k′

[V (k,k′)]s1s2s3s4
αβγ δ c

†
αks1

c
†
β−ks2

cγ−k′s3
cδk′s4

. (A13)

The interaction matrix element [V (k,k′)]s1s2s3s4
αβγ δ has an odd part

and an even part in k which depends on the resulting sign of an
interchange of the two first index pairs, (αβ,s1s2) ↔ (βα,s2s1),

[V (k,k′)]s1s2s3s4
αβγ δ = v+

kk′�
s1s2s3s4
+,αβγ δ + v−

kk′�
s1s2s3s4
−,αβγ δ, (A14)

where

v±
k,k′ = 1

2 [v(k − k′) ± v(k + k′)].

For the intrasublattice interaction, these read

�
s1s2s3s4
+,αβγ δ = (ς0)s1s2 (ς0)†s3s4

[(τ 0)αβ(τ 0)†γ δ + (τ 1)αβ(τ 1)†γ δ]

(A15)

and

�
s1s2s3s4
−,αβγ δ = ( �ς )s1s2 · ( �ς )†s3s4

[(τ 0)αβ(τ 0)†γ δ + (τ 1)αβ(τ 1)†γ δ],

(A16)

while for the intersublattice interaction, we find

�
s1s2s3s4
+,αβγ δ = [(τ 3)αβ(τ 3)†γ δ](ς0)s1s2 (ς0)†s3s4

+ [(iτ 2)αβ(iτ 2)†γ δ]( �ς)s1s2 · ( �ς )†s3s4
(A17)

and

�
s1s2s3s4
−,αβγ δ = [(iτ 2)αβ(iτ 2)†γ δ](ς0)s1s2 (ς0)†s3s4

+ [(τ 3)αβ(τ 3)†γ δ]( �ς)s1s2 · ( �ς)†s3s4
. (A18)

Unlike the case of a primitive unit cell, the momentum
dependence is thus not only depending on the spin part of
the interaction.

As an example, we look in the following at the specific
example of stacked layers of Sec. III. The simplest nontriv-
ial intrasublattice interaction is between nearest neighbors,
i.e., v(k − k′) = V [cos(kx − k′

x) + cos(ky − k′
y)] = −v(k −

k′ + Q),

v+
kk′ = V

2
(cos kx +cos ky)(cos k′

x +cos k′
y)

+ V

2
(cos kx −cos k′

y)(cos k′
x −cos k′

y) (A19)

and

v−
k,k′ = −V (sin kx sin k′

x + sin ky sin k′
y). (A20)

Note that for the cases of Secs. IV and V, the above functions
correspond to the intersublattice interaction.

For the nearest-neighbor intersublattice interaction, we find

v+
kk′ = V cos kz cos k′

z (A21)

and

v−
kk′ = −V sin kz sin k′

z. (A22)

APPENDIX B: HOPPING MATRIX ELEMENTS IN
SYSTEMS LIKE FeAs COMPOUNDS

The special structure of the FeAs layers in the iron pnictides
leads to a spin-orbit coupling with a different sign depending
on the sublattice. In this appendix, this spin-orbit coupling is
derived for a simplified orbital structure, considering s-like
orbitals for the Fe sites and p-type orbitals for the As ions, by
focusing on only one sublattice [see Fig. 4(a)]. To analyze the
nearest-neighbor hopping—corresponding to a next-nearest-
neighbor hopping in the full structure—it is easiest to rotate
the crystal by 45◦ and start with the As ions first lying on the
bonds [see Fig. 4(b)]. For this situation, the electrons can only
hop from one Fe to the next in the x (y) direction via a px (py)
orbital with hopping element tsp,

Hnnn = −tsp
∑
i,s

[
c
†
isp

(x)
i+x̂/2s − c

†
isp

(x)
i−x̂/2s

+ c
†
isp

(y)
i+ŷ/2s − c

†
isp

(y)
i−ŷ/2s + H.c.

]
. (B1)

Assuming that the As orbital’s on-site energy differs from
the energy of the Fe orbitals, EAs = EFe − �, we find for the
nearest-neighbor-hopping integral in the effective one-band
model

t ′ = t2
sp

�
. (B2)

The Hamiltonian in momentum space thus reads

Hhop =
∑

k′
ε

hop
k′ c

†
k′sck′s , (B3)

where ε
hop
k′ = −2t ′(cos k′

x + cos k′
y) with the new rotated axes

k′
x and k′

y . Rotating the crystal back by 45◦ to change to the
old axes we find using k′

x = (kx − ky), k′
y = (kx + ky), and

cos(kx ± ky) = cos kx cos ky ∓ sin kx sin ky (B4)

the usual (nnn) hopping energy ε
hop
k = −4t ′ cos kx cos ky .

If the As ions are moved out of the plane, it becomes also
possible to hop via a pz to a neighboring Fe site with hopping
integral t̃sp. We therefore find the additional hoppings

H = −t̃sp
∑
i,s

[
c
†
isp

(z)
i+x̂/2s + c

†
isp

(z)
i−x̂/2s

− c
†
isp

(z)
i+ŷ/2s − c

†
isp

(z)
i−ŷ/2s + H.c.

]
. (B5)

We can now change to eigenfunctions of the As-site SOC p
(±)
js ,

where the spin-quantization axis has to be orthogonal to the
hopping direction to find

H = −
∑
is

(t̃ c†isp
(+)
i+x̂/2s + t̃∗c†isp

(−)
i+x̂/2s − t̃∗c†isp

(+)
i−x̂/2s

− t̃ c
†
isp

(−)
i−x̂/2s − (it̃)c†isp

(+)
i+ŷ/2s − (it̃)∗c†isp

(−)
i+ŷ/2s

+ (it̃)∗c†isp
(+)
i−ŷ/2s + (it̃)c†isp

(−)
i−ŷ/2s + H.c.), (B6)

with t̃ = (tsp + it̃sp)/
√

2.
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Again reducing this to a single-band model by integrating
out the As orbitals, we find in addition to the hopping
Hamiltonian

−t ′
∑

<i,j>

∑
s

(c†iscjs + H.c.), (B7)

with

t ′ = (
t2
sp − t̃2

sp

) �

�2 − λ2
, (B8)

a new SOC term,

H′ =
∑
iss ′

(
iαc

†
isσ

y

ss ′ci+x̂s ′ − iαc
†
isσ

y

ss ′ci−x̂s ′

+ iαc
†
isσ

x
ss ′ci+ŷs ′ − iαc

†
isσ

x
ss ′ci−ŷs ′ + H.c.

)
, (B9)

with

α̃ = 2tspt̃spλ

�2 − λ2
. (B10)

In momentum space, this additional term reads

H′ =
∑
k,s,s ′

( ��k · �σss ′ )c†kscks ′ , (B11)

where ��k = 2α̃(x̂ sin ky − ŷ sin kx).
To transform this back, we use

sin(kx ± ky) = sin kx cos ky ± cos kx sin ky (B12)

and also the rotated Pauli matrices,

σx �→
√

2

2
(σx − σy), (B13)

σy �→
√

2

2
(σx + σy). (B14)

Finally, we find the SOC Hamiltonian

Hsoc =
∑
k,s,s ′

( ��k · �σss ′ )c†kscks ′ , (B15)

where now ��k = α(x̂ sin kx cos ky − ŷ cos kx sin ky). In a crys-
tal with D4h symmetry, this term belongs to the irreducible
representation B1u.
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