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Volovik effect in a highly anisotropic multiband superconductor: Experiment and theory
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We present measurements of the specific heat coefficient γ (≡C/T ) in the low-temperature limit as a function
of an applied magnetic field for the Fe-based superconductor BaFe2(As0.7P0.3)2. We find both a linear regime at
higher fields and a limiting square root H behavior at very low fields. The crossover from a Volovik-like

√
H

to a linear field dependence can be understood from a multiband calculation in the quasiclassical approximation
assuming gaps with different momentum dependence on the hole- and electronlike Fermi surface sheets.
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I. INTRODUCTION

The symmetry and detailed structure of the gap function in
the recently discovered iron pnictide1 and chalcogenide2 high-
temperature superconductors are still under discussion. Across
an increasingly numerous set of materials families, as well as
within each family where superconductivity can be tuned by
doping or pressure, experimental indications are that there is
no universal gap structure.3,4 Instead, the superconducting gap
appears to be remarkably sensitive to details of the normal-
state properties. This “intrinsic sensitivity”5 may be due to the
unusual Fermi surface topology, consisting of small hole and
electron pockets, and to the probable A1g symmetry of the
superconducting gap, which allows a continuous deformation
of the order parameter structure from a fully gapped system to
one with nodes (for a review, see, e.g., Ref. 6). It is important
to keep in mind, though, that another possibility to account
for the observed variability is that different experiments on the
same material may probe selectively different Fermi surface
regions and hence different gaps within the system.

The Ba-122 family of materials has been intensively studied
because large high-quality single crystals are relatively easy
to produce.4,7 Within this family, the isovalently substituted
system BaFe2(As1−xPx)2 with a maximum Tc of 31 K is
particularly intriguing because it exhibits a phase diagram
and transport properties remarkably similar to those of the
heterovalently doped system Ba(Fe1−xCox)2As2 and displays
many signatures of apparent quantum critical behavior at
optimal doping.7–9 In the superconducting state, penetra-
tion depth,10 nuclear magnetic resonance (NMR) spin-lattice
relaxation,11 and the temperature dependence10 and angular
field variation12 of the thermal conductivity show clear
indications of nodal behavior. Surprisingly, a linear field
dependence of the specific heat Sommerfeld coefficient γ

was measured13 on optimally doped samples from the same
batch. Such behavior is expected for a fully gapped single-
band superconductor since the fermionic excitations from the
normal cores of vortices provide the only contribution to γ at
low T , and the number of these vortices scales linearly with
the field H . It was argued in Ref. 13 that the specific heat
measurement might be consistent with the other experiments
suggesting nodes if the heavy-hole sheets in the material were
fully gapped while the gaps on the lighter electron sheets were
nodal. In such a case the γ ∼ √

H behavior would be difficult
to observe in experiment.

In this paper, we report new experimental data on the mag-
netic field dependence of the specific heat of optimally doped
BaFe2(As1−xPx)2 samples. We have extended our previous
measurements to 15 T to higher fields up to 35 T [≈ 2

3Hc2(0)],
where we find a continuation of the linear behavior reported
earlier. However, more precise measurements at low fields
have revealed the presence of a Volovik-like

√
H term which

persists roughly over a range of 4 T, crossing over to a linear
behavior above this scale.14 The observation of this term,
consistent with nodes in the superconducting gap, therefore
supports claims made in earlier work,10–12 without the need to
assume an extremely large mass on the hole pockets.

Theoretical estimates using the Doppler-shift method for
isotropic gaps given in Ref. 15 were oversimplified, but did
show the need for a more thorough analysis of anisotropic
multiband systems and stimulated further experimental work,
both of which we report here. The theoretical difficulties
can be seen easily by considering a simple two-band model
with two distinct gaps �1 and �2, where we assume for the
moment that �2 > �1. If the two bands are uncoupled, the
two gaps correspond to two independent coherence lengths
ξi � vF,i/(π�i), where i = 1,2, and two independent “upper
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critical fields” Hc2,i . Vortex core states of the large gap �2

are confined to cores of radius ∼ξ2. For fields in the range
Hc2,1 � H � Hc2,2, the vortex cores of the small gap will
overlap, while the large-gap cores will still be well separated.
Note that if �1 is very small (these considerations also describe
crudely nodal gaps), this field range can be wide and can
extend to quite low fields. On the other hand, methods of
studying quasiparticle properties in superconductors are typi-
cally adapted to calculations near Hc1 or Hc2, i.e., in the limit
of widely separated or nearly overlapping vortices. The current
problem apparently contains elements of both situations. In the
absence of interband coupling, of course, one can use different
methods, corresponding to the appropriate field regimes, for
the distinct bands. For coupled Fermi surfaces, however, such
an approach is not viable. In the immediate vicinity of the
transition, where the Ginzburg-Landau expansion is valid,
there is a single length scale controlling the vortex structure.16

At low temperatures, where the measurements are carried out,
however, the distinct length scales likely survive, although they
are modified by the strength of the interband coupling (see
below). Possible anisotropy of the gap on one or more Fermi
surface sheets complicates the picture even further. We show
here that judicious use of the quasiclassical approximation
even with simplifying assumptions about the vortex structure
can provide a general framework for the description of this
problem and a semiquantitative understanding of the new
data on the BaFe2(As1−xPx)2 system. We compare our results
with those obtained by Doppler-shift methods and show that
if properly implemented this method also gives reasonable
qualitative results in the low-field range.

This joint theory-experiment paper is organized as fol-
lows. We first present our experimental results on the
BaFe2(As1−xPx)2 system in Sec. II and compare to our
previous results, as well as to data by other groups on the
related heterovalently doped Ba-122 materials. In Sec. III, we
discuss the two-band quasiclassical model we use to study the
system, and in Sec. IV we give our results. Finally, in Sec. V
we present our conclusions.

II. EXPERIMENT

Tiny platelet crystals of BaFe2(As0.7P0.3)2 were prepared
as described in Ref. 7. Subsequent measurements on crystals
extracted from various positions in the crucible using x-
ray diffraction and energy dispersion x-ray analysis give a
phosphorus concentration of (32.9 ± 0.4)%. A further test of
the homogeneity of the crystals from a given growth batch is
the measurement of the susceptibility at the superconducting
transition as shown in Fig. 1 of Ref. 13. Here, for a collage
of ∼150 mg of these crystals a rather narrow transition was
observed. A collage of 18 mg of these microcrystals was
then mounted on a sapphire disk using GE7031 varnish.
Approximately 75% of the crystals had the magnetic field
perpendicular to the a-b plane (the plane of the crystals),
whereas the remaining crystals were randomly oriented. The
sapphire disk was mounted in our time constant method
calorimeter,17 and the specific heat from 0.4 to 7 K in fields
from 0 to 35 T was measured. Additionally, the specific heat
of a standard (high-purity Au) was measured in fields up to

14 T. Results on the standard (not shown) indicate agreement
with published values to within ±3% in all fields.

A. Results and discussion

The specific heat coefficient γ ≡ C/T of BaFe2(As0.7P0.3)2

for 0 � H � 35 T is shown by the open triangles in Fig. 1.
There is a small low-temperature anomaly in the specific heat
data below about 1.4 K (discussed in detail in Ref. 13). Such
anomalies have been observed in other FePn samples,18 and
in some cases, e.g., in BaFe2−xCoxAs2, they show a rather
strong magnetic field dependence.18 However, as discussed
in our previous report13 of the data up to 15 T, the anomaly
in BaFe2(As0.7P0.3)2 is approximately field independent. Note
that the small anomaly in the specific heat appears to vanish
above 1.4 K, i.e., does not affect the estimate for γ shown in
Figs. 1 and 2 using data from 1.5 K and above.

In order to have a closer look at the low-field dependence
of the specific heat, these data are shown on an expanded scale
in Fig. 2. In our analysis below, we focus on the asymptotic
T → 0 behavior since it is directly related to the density of
states at the Fermi level, which is easy to calculate reliably,
and since it gives essentially the same field dependence as the
nonzero-T data.

FIG. 1. (Color online) The original specific heat data (Ref. 13)
on BaFe2(As0.7P0.3)2 as a function of field up to 15 T (solid symbols)
with data from present work between 15 and 35 T (open symbols).
Note the agreement between the linear, C/T ∝ H , extrapolation of
the 15 T [colored lines (Ref. 13)] and 35 T (black lines, present work)
results. We extract γ from the data using two (equivalent) methods:
(a) by making an extrapolation C/T = γ + βT 2 + δT 4 from 2 K
and above or (b) by taking the smoothed value of C/T at 1.5 and
2 K found by fitting approximately ten data points around these
temperatures to obtain C/T (1.5 K) and C/T (2 K) with decreased
scatter. The temperature restriction eliminates both the influence of
the anomaly and the field-induced nuclear contribution (see text),
negligible for H � 4 T above 1 K. The absolute accuracy of these
data is ±5% (error bars are not shown at low fields since they are
approximately the same size as a data point), while the precision of
the data is approximately ±2%. In addition, additional data with finer
gradations in the measured fields up to 4 T were taken to explore the
low-field nonlinear behavior. These data are shown on an expanded
scale in Fig. 2.
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FIG. 2. (Color online) Low-field γ data up to 4 T from Fig. 1 on
an expanded scale for T = 2 K (red dots) and 1.5 K (blue up triangles).
Green down triangles show asymptotic limT →0 C/T determined over
the range 1.5 < T < 5 K. The fitting functions of the data are labeled
beside the curves. Best power-law fits to field dependence are shown
in each case.

III. MODEL

A. Quasiclassical approximation

The quasiclassical (Eilenberger) approximation19–21 is a
powerful tool to describe the electronic properties of the
superconducting state on scales large compared to the lattice
spacing, provided the condition kF ξ 	 1 is satisfied. Here kF

is the Fermi momentum and ξ the coherence length. Since
in this limit we can think of quasiparticles as propagating
coherently along a well-defined trajectory in real space, this
method is particularly well suited to address inhomogeneous
situations, such as the vortex state of type-II superconductors
(SCs). An alternative and frequently used approach to the
vortex state is to take into account the (classical) shift of the
quasiparticle energy due to the local supercurrent flow. This
approximation, often referred to as the Doppler-shift approach,
is valid for nodal SCs with considerable weight of extended
quasiparticle excitations ouside the vortex cores. Using this
method, Volovik showed that for superconductors with line
nodes these extended quasiparticle excitations lead to a
nonlinear magnetic field dependence of the spatially averaged
residual density of states N (ω = 0,H ) ∝ N0

√
H/Hc2, the

result known as the Volovik effect.22 This behavior was first
confirmed by measurements of the specific heat23,24 and by
subsequent calculations within the quasiclassical approxima-
tion for both a single vortex in a d-wave SC (Refs. 25 and 26)
and a vortex lattice.27,28 Both quasiclassical and Doppler-shift
methods fail at the lowest temperatures due to quantum
effects,29 but in known systems with Tc 
 EF these effects
are negligible in practice. Both methods have successfully
explained at a semiquantitative level the magnetic field
dependence of the specific heat and thermal conductivity in a
wide variety of unconventional superconductors.30 It was also
shown that the accurately calculated quasiparticle excitation
spectrum is consistent with scanning tunneling microscopy
studies of the electronic structure around a vortex core.27

Many experimental techniques which are sensitive to the
low-energy density of states, such as measurements of thermal
conductivity, specific heat, and NMR relaxation rate, can be
used to draw conclusions about the possible existence and
the momentum dependence of quasiparticle excitations in the
bulk of iron-based superconductors (FeSCs) and thus about
the structure of the superconducting gap and the distribution
of gap nodes. The low-T limit of the Sommerfeld coefficient in
an applied magnetic field, γ (H ), is directly proportional to the
spatially averaged local density of states (LDOS) at the Fermi
level. The Doppler-shift method has been used to calculate the
LDOS for a two-band SC with two isotropic gaps of unequal
size �S �= �L and to give an interpretation of the experimental
data available at that time.15 However, the Doppler-shift
approach cannot account properly for the contributions from
the states in the vortex core that have a very large weight in
the net DOS and hence gives a quantitatively and sometimes
qualitatively inaccurate description of the electronic structure
of the vortex. For example, in a simple d-wave superconductor,
the spatial tails of the low-energy density of states around
the vortex are aligned in the wrong directions.31 To obtain
a quantitative fit to the specific heat data presented in the
previous section and to allow for a more decisive conclusion
about the gap structure of BaFe2(As0.7P0.3)2, we will therefore
use the quasiclassical approximation, which we will briefly
review in the following paragraphs.

In the quasiclassical method, the Gorkov Green’s functions
are integrated with respect to the quasiparticle energy mea-
sured from the Fermi level. The normal and anomalous com-
ponents g(r,θ,iωn) and f (r,θ,iωn) of the resulting propagator
ĝ obey the coupled Eilenberger equations

[
2

(
iωn + e

c
vF · A(r)

)
+ ih̄vF · ∇

]
f (r,θ,iωn)

= 2ig(r,θ,iωn)�(r,θ ), (1a)[
2

(
iωn + e

c
vF · A(r)

)
− ih̄vF · ∇

]
f̄ (r,θ,iωn)

= 2ig(r,θ,iωn)�∗(r,θ ), (1b)

that have to be complemented by the normalization condition

ĝ2 ≡
(

g f

f̄ −g

)2

= 1̂. (2)

Here �(r,θ ) is the order parameter, A(r) the vector potential,
vF the Fermi velocity at the location at the Fermi surface
labeled by θ , and ωn = (2n + 1)πkBT the fermionic Mat-
subara frequencies. For two-dimensional cylindrical Fermi
surfaces such as those considered below, vF = vF k̂ where
k̂ = (cos θ, sin θ ) and θ is the angle measured from the [100]
direction. In that case it is natural to write the position vector in
cylindrical coordinates, r = (ρ,φ,z), where φ is the winding
angle around the vortex in real space.

Making use of the symmetries32 of the quasiclassical
propagator,33

f̄ (r,kF ,iωn) = f ∗(r,kF , − iωn), (3a)

f (r, − kF , − iωn) = f (r,kF ,iωn), (3b)

g(r,kF ,iωn) = g∗(r,kF , − iωn), (3c)
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the diagonal part of the normalization condition (2) can be
written in a more explicit form as

[g(r,θ,iωn)]2 + f (r,θ,iωn)f ∗(r,θ + π,iωn) = 1. (4)

Instead of solving the complicated coupled Eilenberger
equations everywhere in space, we follow Refs. 26 and 32
and parametrize the quasiclassical propagator along real space
trajectories r(x) = r0 + xv̂F by a set of scalar amplitudes a(x)
and b(x),

ĝ(r(x)) = 1

1 + a(x)b(x)

(
1 − a(x)b(x) 2a(x)

2b(x) −1 + a(x)b(x)

)
.

(5)

These amplitudes obey numerically stable Riccati equations,

vF ∂xa(x) + [2ω̃n + �∗(x)a(x)]a(x) − �(x) = 0, (6a)

vF ∂xb(x) − [2ω̃n + �(x)b(x)]b(x) + �∗(x) = 0. (6b)

For the single-vortex problem the spatial dependence vanishes
far away from the vortex core, and hence we have the initial
conditions

a(−∞) = �(−∞)

ωn + √
ω2

n + |�(−∞)|2 , (7a)

b(+∞) = �∗(+∞)

ωn + √
ω2

n + |�(+∞)|2 . (7b)

Here we have set h̄ = 1 and we have introduced the modified
Matsubara frequencies iω̃n(x) = iωn + (e/c)vF · A(x). Since
the modification of the Matsubara frequencies due to the
external field is of the order of 1/κ2 where κ = λL/ξ is the
ratio of the London penetration depth and the coherence length,
the term proportional to A(x) in Eq. (6) can be neglected for
strong type-II superconductors.

After an analytic continuation of the Matsubara frequencies
to the real axis, iωn → ω + iδ, the local density of states can
be calculated as the Fermi surface average of the quasiclassical
propagator,

N (r) = N0

∫ 2π

0

dθ

2π
Re

(
1 − ab

1 + ab

)
iωn→ω+iδ

, (8)

where N0 is the normal density of states at the Fermi energy.
To obtain stable numerical solutions we use a small imaginary
part δ = 0.02Tc in the analytical continuation, where Tc is the
critical temperature of the superconductor.

B. Two-band model

The Fermi surface of the optimally doped BaFe2(As0.7P0.3)2

consists of multiple Fermi surface sheets. Density functional
theory (DFT) calculations showed that there are three con-
centric hole cylinders in the center of the Brillouin zone
(� point) and two electron pockets at the zone corner (X
point).34 Laser angle-resolved photoemission spectroscopy
(ARPES) measurements35 found a superconducting order
parameter that is fully gapped with comparably sized gaps
on each hole pocket of the order of �h/kBTc ∼ 1.7. Taking
into account the results from thermal conductivity10,12 and

NMR measurements11 as well as the measurements of the
specific heat coefficient in low fields presented above, which
all consistently report evidence for low-energy quasiparticles,
this ARPES result implies a nodal gap on the electron
pockets.

For numerical convenience we adopt below a two-band
model, distinguishing only between electron and hole pockets.
Inclusion of all Fermi surface sheets then enters only as a
weighting factor for the electron and hole pocket contributions,
as we discuss in the following section. We take the gaps on the
electron and hole pockets in the form �1,2(θ ) = �

e,h
0 �1,2(θ ),

where the angle θ parametrizes the appropriate Fermi surface,
assumed to be cylindrical. We assume an anisotropic gap on
the electron pocket,36 �1(θ ) = (1 + r cos 2θ )/

√
1 + r2/2, and

an isotropic gap around the hole Fermi surface, �2(θ ) = 1. If
the anisotropy factor r > 1, the superconducting gap in the
electron band, �1(θ ), has accidental nodes; if r = 0, �1(θ ) is
isotropic like �2(θ ).

First we assume �e
0 = �h

0, as is often found by ARPES (at
this writing there are to our knowledge no ARPES results on
this material which resolve the gap on the electron pocket).
Since we consider well-separated electron and hole bands, we
can solve the Riccati equations (6) for the two propagators
separately, and the only coupling of the pockets is via the self-
consistency equations on the order parameter (see below). With
this in mind we normalize the energy and length for the electron
and hole bands by the gap amplitudes �e

0 and �h
0 and the

coherence lengths ξe
0 = ve

F /�e
0 and ξh

0 = vh
F /�h

0, respectively.
Fermi velocities therefore appear as an input. DFT calculations
for a comparable Ba-122 system37 give vh

F = 1.979 × 105 m/s
and ve

F = 3.023 × 105 m/s, i.e., vh
F /ve

F = ξh
0 /ξe

0 = 0.65. In
our analysis we keep this ratio but reduce the value of both
Fermi velocities by a factor of 5 to approximately account
for the mass renormalization of this system near optimal
doping.9,38 This reduction also gives a roughly correct value
of the c-axis upper critical field Hc2 ∼ 50 T. In the limit of
negligible coupling between the bands, the upper critical field
is determined by the overlap of the vortices with smallest core
size,

R

min
{
ξ e

0 ,ξh
0

} = R

ξh
0

=
√

Hc2

H
. (9)

Below we solve the Eilenberger equations and determine the
density of states for an isolated vortex and for each band
separately. In a two-band system the spatial profile of the
quasiparticle states on the electron and hole bands is controlled
by the respective coherence lengths, and therefore spatial
averaging weights the contributions of the bands differently
compared to the DOS of a system with a single or two
equal coherence lengths. This is the most significant difference
compared to a single-band model.

The superconducting order parameters in the two bands are
related by the interband component of the pairing interaction.
We consider a general coupling matrix in the factorized form,
λνμ(θ,θ ′) = λνμ�ν(θ )�μ(θ ′), where μ,ν = 1,2 and λνμ ≡
VνμNμ. Here V11 = Ve and V22 = Vh are the intraband pairing
interactions in the electron and the hole band, respectively,
while V12 = Veh is the interband interaction. Nμ is the normal
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density of states at the Fermi level. Then the gap equation for
an inhomogeneous superconductor is

�ν(r) = 2πT
∑

μ=1,2

λνμ

ωc∑
ωn>0

〈�μ(θ )fμ(r,θ,iωn)〉θ . (10)

Here �ν(r) is the momentum-independent part of the gap
function; �1,2 = �

e,h
0 at T = 0 and H = 0.

In the vortex state the self-consistent determination of the
spatially dependent order parameter is a complex task. Since
we are interested in relatively low fields, when the vortices
are well separated, we solve the Eilenberger equations for an
order parameter that is assumed to have a single vortex form,

�e( �ρ,H ; θ ) = �1(H ) tanh

(
ρ

0.1ξ e
0

)
1 + r cos 2θ√

1 + r2/2
, (11a)

�h( �ρ,H ) = �2(H ) tanh

(
ρ

0.1ξh
0

)
. (11b)

Here �ρ = (ρ,φ) is the two-dimensional projection of the
radius vector in cylindrical coordinates, and the factor of
0.1 is introduced to approximate the shrinking of the core
size in the self-consistent treatment at low temperatures (the
Kramer-Pesch effect39,40). This single-vortex ansatz provides
a qualitatively correct description of the low-field state, close
to what is found by full numerical solution.31 To account for
the suppression of the bulk order parameter by the magnetic
field, we determine the coefficients �1,2(H ) from the Brandt-
Pesch-Tewordt approximation,41 where in the presence of
an Abrikosov vortex lattice the diagonal components of the
Green’s function are replaced by their averages over a vortex
unit cell of the vortex lattice. This approximation is proven
to give reliable results over a considerable range of magnetic
fields and is incorporated into our approach.

Note that our ansatz for the order parameter becomes
quantitatively inaccurate for strong interband coupling in
the regime of applicability of the Ginzburg-Landau theory,
since the core sizes of the two bands approach each other.42

We verified in a fully self-consistent calculation that in the
parameter range that we use the corresponding effect on the
specific heat is of order 1% or less and hence can be neglected.
We therefore use Eq. (11) hereafter.

To proceed we substitute Eq. (11) into Eq. (6), solve for
a(x) and b(x), and use Eq. (8) to find the local density of
states N ( �ρ,H ). To approximate the specific heat coefficient,
we evaluate the spatial average of the zero-energy local density
of states

N̄ (H ) =
∫ 2π

0
dφ

∫ R

0
dρ ρ

N ( �ρ,H )

πR2N0
, (12)

where the intervortex distance R depends on H as described
by Eq. (9). The total density of states is then given as

N̄ (H )tot = weN̄
e(H ) + whN̄

h(H )

we + wh

, (13)

where we/wh = 2Ne
0/Nh

0 = 2ζ if we consider, for example,
two electron Fermi surface sheets in the folded Brillouin zone
and denote ζ ≡ Ne

0/Nh
0 = vh

F /ve
F = 0.65 = λ21/λ12. The spe-

cific heat Sommerfeld coefficient γ in the superconducting
state is now obtained as γ (H )−γ0

γn−γ0
= N̄ (H )tot. Since the vortex

density is controlled by the external field, integration up to
the intervortex spacing R ∼ √

�0/H correctly accounts for
the field effect within the single-vortex approximation. The
integration thus includes not only the contribution of extended
quasiparticle states to the specific heat, but also the localized
quasiparticles in the core.

IV. RESULTS

To illustrate that the salient features of the vortex state
DOS are captured in our approach in Fig. 3 we show the field
dependence of the spatially averaged zero-energy local density
of states (ZDOS) for a one-band SC with either an isotropic
s-wave gap or a strongly anisotropic nodal gap (r = 1.3). Note
that, while the field dependences in both the nodal and fully
gapped cases clearly fit the anticipated power laws at low fields,√

H and H , respectively, there is a significant influence on the
magnitude of the DOS caused by the size of the core, with the
smaller core size yielding a smaller ZDOS. In particular, in
the absence of the Kramer-Pesch effect, for the nodal case the
ZDOS would exceed the normal-state value at fields far below
Hc2, which is unphysical.

Below we consider r = 0.9 and 1.3 to mimic a gap with
deep minima and accidental nodes, respectively. To show
different types of behavior allowed within our microscopic
model, we chose four sets of coupling constants, two for each
value of r , as shown in Table I. In cases 1 and 3, the interband
pairing λ12 is strong and close to the intraband parameter λ11,
while in cases 2 and 4 λ12 
 λ11,λ22.

FIG. 3. (Color online) The spatially averaged ZDOS, normalized
to the normal-state value N (ω = 0)/N0 for a nodeless (lower two
data sets, orange) and a nodal (upper two data sets, blue) single-band
superconductor. The dashed lines show the idealized linear H and√

H behavior for a clean s-wave (lower line) and d-wave (upper line)
SC, respectively. The symbols are numerical results for a single-band
SC with an isotropic s-wave gap (circles) and a strongly anisotropic
nodal gap (triangles). Additionally we compare results that do (solid
symbols) and do not (open symbols) take into account the vortex core
reduction due to the Kramer-Pesch effect. Here we have ignored the
field dependence of the superconducting gap, i.e., �(H ) = �0.
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TABLE I. The different models for the coupling matrix and the
gap anisotropy on the electron pockets considered in this work.

λ11 λ12 λ21 λ22 r Tc (K) Hc2 (T)

Case 1 0.51 0.51 0.33 0.65 0.9 31 54
Case 2 1.00 0.02 0.013 0.81 0.9 31 47
Case 3 0.51 0.51 0.34 0.64 1.3 31 54
Case 4 1.00 0.023 0.015 0.77 1.3 31 42

In Fig. 4(a) we show the self-consistently determined
magnitudes of the bulk gaps in the vortex state �1,2(H ) as
defined in Eqs. (10) and (11). Hc2 ∼ 40–50 T. In the cases 2
and 4 with only weak interband pairing, the gap on the electron
Fermi surface deviates considerably from the phenomenologi-
cal form �(H ) = �0

√
1 − H/Hc2. Figures 4(b) and 4(c) show

the spatially averaged ZDOSs corresponding to each band. For
Ne(H ) and for r = 1.3 the

√
H behavior of the Volovik effect

is clearly visible at lower fields. Comparing Fig. 4(b) to Fig. 3,
we find that within the two-band model the density of states
on the electron band Ne(H ) reaches a quasilinear behavior
already at smaller fields than the corresponding density of
states for the one-band case. In Fig. 3 a linear behavior is never
observed, and might only be fitted over some intermediate field
range for H/Hc2 > 0.2, while in the multiband case Ne(H )
displays a clear linear behavior already for H/Hc2 > 0.1.

It is tempting to interpret the low-field crossover to a
quasilinear field variation as evidence for a small energy
scale �sm ≡ �e

0(1 − r)/
√

1 + r2/2 on the electron band;
this, however, seems unlikely. Provided �sm 
 �e

0, the gap
still increases linearly along the Fermi surface away from
the nodal points above this energy scale, simply with a
different slope. Then within the usual Volovik argumentation
the contributions from extended states at these intermediate
energies give rise to a

√
H contribution even if �sm � EH 


�max, where EH ∝ √
H is the average Doppler shift and

�max ≡ �e
0(1 + r)/

√
1 + r2/2 is the maximum gap. There is

therefore no true linear-H behavior arising from the electron
band with gap nodes. Consequently, we interpret this crossover
as the consequence of the two-band behavior coupled with a
gradually increasing contribution of core states which is nearly

linear in field. Figure 4(c) clearly shows that the density of
states on the hole band, Nh(H ), assumed here to be fully
gapped, is always linear as a function of field, and the results for
the two different coupling matrices considered here are very
similar. However, as mentioned before, the slope is smaller
than the one predicted for an idealized s-wave SC.

Using Eq. (13), the spatially averaged ZDOSs on the
electron and the hole bands are added with different weights.
Using the results presented in Figs. 4(b) and 4(c) as case
4, we investigate several cases. Since there are two electron
pockets, and assuming that only one hole pocket contributes
significantly to the low-energy density of states (or that a naive
average over the hole pockets is sufficient), the net DOS and the
field dependence of the Sommerfeld coefficient are functions
only of the ratio of the densities of states on the electron and
hole sheets. In the following we will study three cases that we
will abbreviate by “Q,” indicating the use of the quasiclassical,
or Eilenberger, approach:

(1) Case Qa: we assume that only one hole pocket
contributes considerably to the low-energy DOS and use the
weights we/wh = 2Ne

0/Nh
0 taken from the DFT calculation,

Ne
0/Nh

0 = 0.65 (see Ref. 37).
(2) Case Qb: We once again fix Ne

0/Nh
0 = 0.65, but adopt a

model for which the normal DOSs for all three hole pockets of
Ba2Fe2(As0.7P0.3)2 are the same and for which all three pockets
contribute equally to the low-energy DOS; hence we/wh =
2Ne

0/3Nh
0 .

(3) Case Qc: We do not hold the ratio Ne
0/Nh

0 fixed, but
instead calculate the weights for the electron pockets a1 and
for the hole pockets a2 by a least-squares fit to the experimental
data using the formula γ tot = a1N̄e(H ) + a2N̄h(H ). If we nor-
malize it to the presumed contribution of the superconducting
fraction, γn − γ0 ≈ 14 mJ/(mol K2), where γ0 is the extrane-
ous term (see below), we find we/(we + wh) = a1/(γn − γ0),
wh/(we + wh) = a2/(γn − γ0), and a1/a2 = we/wh.

In Fig. 5 we compare the results for all three cases to
the experimentally measured specific heat coefficient (pink
circles). The experimental values are obtained by extrapolating
the measured specific heat coefficient γ at various tempera-
tures to T = 0. The upper critical field Hc2 is taken to be
52 T (see Ref. 12). The normal-state γn = 16 mJ/(mol K2)

FIG. 4. (Color online) Results of quasiclassical calculations for the parameters in Table I. (a) Magnetic field dependence of the gaps in the
two-band model calculated within the Pesch approximation (Refs. 41 and 43) for cases 1–4. We assume �e(H = 0) = �h(H = 0) here. The
four sets of coupling constants λij are listed in Table I. (b) Field dependence of the space-averaged ZDOS Ne(H ) on the electron pocket for the
four cases with anisotropic gap with angular variation �e(θ ) = (1 + r cos 2θ )/

√
1 + r2/2. (c) Field dependence of the space-averaged ZDOS

Nh(H ) for the four cases with isotropic gap along the hole pocket.
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FIG. 5. (Color online) Comparison of the experimentally mea-
sured normalized specific heat coefficient (pink circles) to different
theoretical results for the spatially averaged ZDOS. The dotted violet
and solid orange curves are the predictions for the spatially averaged
ZDOS for a clean s-wave and a d-wave SC. The blue squares (case
Qa) and green diamonds (case Qb) are the differently weighted
sums of N̄e(H ) and N̄h(H ) evaluated for case 4 of Figs. 4(b) and
4(c). The black line (no symbols) (case Qc) is obtained using the
formula γ tot = a1N̄e(H ) + a2N̄h(H ), where a1 = 3.2 mJ/(mol K2),
a2 = 10.3 mJ/(mol K2) are determined with a least-squares fit to
experimental data below 30 T. Note that the “d-wave” and “s-wave”
curves represent simple extrapolations of the low-field

√
H and H

terms up to Hc2. The error bar shown corresponds to the absolute
accuracy of the data discussed above in Fig. 1.

can be obtained by extrapolating γ to Hc2. A substantial
residual13 γ0 = 1.7 mJ/(mol K2) in the superconducting state,
presumed due to disorder, is subtracted in the plots of the
field dependence from the experimental data (pink circles) to
compare with our quasiclassical calculation in the clean limit
(blue squares and green diamonds). Note that subtraction of
the residual C/T tends to enhance the scatter in the low-T data
of Fig, 2.

From Fig. 5, we see that the results derived for model
Qb with three equal-mass hole pockets and two equal-mass
electron pockets are in good agreement with the experimental
data: both experiment and theory show a “Volovik effect” at
the lowest fields and then a crossover to a linear H dependence
at intermediate fields. While model Qa has the same qualitative
behavior, the relative weights of hole and electron bands are
apparently not consistent with the normalized experimental
data, and the fit is much poorer. Compared to model Qb the
least-squares fit (Qc) to the experimental data (black line)
is only marginally improved, and gives Ne

0/Nh
0 = 0.47 with

two electron pockets and three hole pockets or 0.16 with
two electron pockets and one hole pocket, the same order
as obtained from DFT.

For completeness it is important to determine whether
the experimental data can be appropriately fitted within the
confines of a simple two-band Doppler-shift approach. We
detail this method in the Appendix, where we show that models
a and b do not give a satisfactory fit to the experiment. In

FIG. 6. (Color online) γ tot plotted with experimental data in
absolute units. Case Qc is the black solid line similar to that in Fig. 5.
Case Dc is obtained using the formula γ tot = a1N̄e(H ) + a2N̄h(H ),
where N̄e(H ) and N̄h(H ) are represented by the open squares and
circles in Fig. 8 and a1 = 1.50 mJ/(mol K2), a2 = 65.6 mJ/(mol K2)
for case Dc are determined with a least-squares fit to the experimental
data below 15 T.

contrast, model c yields a rather similar field dependence of
the field-induced enhancement of the Sommerfeld coefficient
for the quasiclassical and Doppler (Dc) methods, as shown
in Fig. 6. At the same time the best-fit linear coefficients for
model Dc, a1 = 1.50 mJ/(mol K2), a2 = 65.6 mJ/(mol K2),
give the ratio of the normal-state DOSs for two electron
and three hole Fermi sheets of Ne

0/Nh
0 = 3a1/2a2 ≈ 0.03,

very different from the value of 0.65 obtained within the
band structure calculations. Consequently, the quasiclassical
method provides a far more satisfying fit to the data.

FIG. 7. (Color online) Experimentally measured specific heat
coefficient (pink circles) compared to calculations with deep gap
minima (case 1, r = 0.9, blue triangles) and accidental nodes (case 4,
r = 1.3, green squares). In both cases the weight of electron and hole
pocket contributions has been chosen in agreement with case Qb.
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As is usually the case with measurements that probe the
amplitude rather than the phase of the gap, it is difficult to
distinguish the deep minima from the nodes. In this case we
find that with our current uncertainty in the band parameters,
and the scatter in the data, it is impossible to assert the nodal
behavior purely from the current data. Figure 7 shows the
comparison of cases 1 and 4 of Table I, corresponding to
r = 1.3 and 0.9, i.e., with and without true nodes, with the
weights of case Qb. Even though the nodal fit appears better at
the lowest fields, higher-H data are in between the two cases.
Therefore the conclusion about the true node comes from data
from other experiments, such as the penetration depth.

V. CONCLUSIONS

Among the various families of Fe-based superconductors,
BaFe2(As1−xPx)2 may be a key system for understanding the
origins of superconductivity. In part this is because, alone
among the materials thought to display nodes in the supercon-
ducting gap, it possesses a rather high Tc of 31 K, and hence
the interplay of the pairing mechanism and Fermi surface
shape and parameters in determining the gap anisotropy is
under special scrutiny. The lack of an observable Volovik
effect in earlier specific heat measurements was a cautionary
note in an otherwise consistent array of measurements in
support of gap nodes. In this paper, we have presented new
experimental data at both lower and higher fields than previous
measurements, and found that the initially reported linear-H
behavior extends up to 35 T, but that at low fields (H � 4 T)
more precise measurements with smaller gradations in the
change of field between data points are now clearly consistent
with a Volovik-type effect. The residual T → 0 Sommerfeld
coefficient γ (T → 0) is about 1.7 mJ/mol K2, consistent
with possible nanoscale disorder in the sample. The low-field
sublinear dependence of the Sommerfeld coefficient is a
strong indication that nodes (or deep minima) are present
and provides the sought-after consistency with other probes
without us having to make extreme assumptions about the
ratio of masses on electron pockets to those on hole pockets,
as was proposed in Ref. 13.

It is nevertheless striking that indications of nodal behavior
on the same samples are so much weaker in the specific
heat measurements as compared to thermal conductivity and
penetration depth measurements. This is clearly indicating that
the nodes are located on the pockets with smaller masses
and/or longer lifetimes, as was pointed out in Ref. 13. We
have attempted to put this statement on a semiquantitative
basis by presenting a quasiclassical (Eilenberger) calculation
of the density of states and specific heat of a two-band
anisotropic s± superconductor. Comparison with the Doppler-
shift method allowed us to argue that the quasiclassical
calculation is superior for semiquantitative purposes. We find
that the unusually small range of Volovik-type behavior,
followed by a large range of linear-H behavior, is due to the
small gap and weak nodes on the small-mass (presumably
electron) sheet.12,13 Good fits to the data are obtained for
average hole and electron maximum gaps of approximately
equal magnitude, in the weak-interband-coupling limit. The
success of this fit should not, however, tempt one to draw
definitive conclusions about the relative magnitudes of the

pairing interactions. The proliferation of parameters in the
theory makes it difficult to determine gap magnitudes, density
of states ratios, and nodal properties with any quantitative
certainty. Equally good fits can be obtained, for example, with
substantially smaller full gaps than anisotropic gaps; the nodes
control the low-field behavior, and the small full gap gives
rise to a large linear term. What is important is that we have
shown that a fit can be obtained with reasonable values of the
parameters, that it can only be obtained if nodes exist on one of
the Fermi sheets, and that it requires going beyond the simple
Doppler-shift picture. It is our hope that the results of this
calculation and fit will eventually lead to a more quantitative
first-principles-based calculation.
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APPENDIX: COMPARISON WITH THE DOPPLER-SHIFT
METHOD

In the following we briefly discuss the basic concepts
of the Doppler-shift method and compare it to the quasi-
classical approximation as manifested in the formulation of
the Eilenberger equations introduced in the main text. The
Doppler-shifted energy due to the local supercurrent flow is
ω − mvF · vs(r), where

mve,h
F · vs(r) = h̄

2|r|ve,h
F (θ ) · eφ = h̄v

e,h
F

2|r| sin(θ − φ)

= �
e,h
0

2ρ̃e,h
sin(θ − φ). (A1)

Here, we assume �e(T = 0,H = 0) = �h(T = 0,H = 0) =
�

e,h
0 and use ρ̃e,h = |r|/ξe,h

0 . Therefore the normalized local
DOS is

N (ω,r) =
∫ 2π

0

dθ

2π
Re

{ |ω − mvF · vs(r)|√
(ω − mvF · vs(r))2 − |�(θ )|2

}
,

(A2)

and thus the normalized spatially averaged DOS is

N̄ (H ) =
∫ R̃

0

dρ̃ ρ̃

πR̃2

∫ 2π

0
dφ

∫ 2π

0

dθ

2π

× Re

{ |ω − �0 sin(θ − φ)/(2ρ̃)|√
[ω − �0 sin(θ − φ)/(2ρ̃)]2 − |�(θ )|2

}
.

(A3)

Here we have introduced the normalized vortex cell radius
R̃ = R/ξe

0 for the electron bands and R/ξh
0 for the hole

bands, respectively. Since the Doppler-shift method does not
capture core-state contributions it underestimates the slope
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FIG. 8. (Color online) Normalized specific heat coefficient de-
termined within the quasiclassical approach (blue triangles and blue
dashed curve) and within the Doppler-shift method (open squares and
circles). Total normalized specific heat coefficients obtained within
the Doppler-shift method are shown by magenta dotted line, olive
dash-dotted line, and black solid line for cases Da, Db, and Dc,
corresponding to Qa, Qb, and Qc, respectively. The dotted violet and
solid orange curves are the power laws predicted for the spatially
averaged ZDOSs of an idealized s-wave and a d-wave SC. Pink
circles show the experimentally determined normalized specific heat
coefficient.

of the magnetic field dependence of the zero-energy DOS of
an s-wave SC. Since the core region gives only negligible
contributions to the total DOS, one can in principle avoid the
divergence of the Doppler-shift energy as ρ̃ → 0 by cutting
out the complete core region with a lower limit ξ0 for the
radial integration. Here we have included the core region when
integrating over the vortex unit cell. To model �(θ ) we use a
similar function as given by Eq. (11), but without explicitly
modeling the core structure:

�e( �ρ; θ ) = �1(H = 0)
1 + r cos 2θ√

1 + r2/2
, (A4a)

�h( �ρ) = �2(H = 0), (A4b)

and we use the self-consistently calculated �1,2(H = 0) in
case 4 of the quasiclassical calculation in which the anisotropy
factor r = 1.3 for the gap along the electron Fermi surface
sheet and the ratio of the normal DOSs at the Fermi energy is
taken as Ne

0/Nh
0 = 0.65. In Fig. 8 we show the results obtained

within the Doppler-shift approach and compare them to case 4
of the quasiclassical method. Again we also show predictions
for idealized clean s- and d-wave SCs. We conclude that
the Doppler-shift method and the quasiclassical method give
comparable results at the lowest fields but start to deviate
as soon as the field increases. One reason might be that
with increasing field and decreasing intervortex distance the
core states that are not correctly accounted for within the
Doppler-shift method but captured within the quasiclassical
approach become increasingly more important. However, due
to the limitations of the single-vortex approximation the
overlapping of vortices is not correctly reproduced and the
DOS is overestimated (in Fig. 8 the blue triangles rise too
fast).

In Fig. 6 we compare the least-squares fit by the Doppler-
shift method (blue dashed curve) to the least-squares fit by the
quasiclassical method (the black line similar to that in Fig. 5)
and experimental data (pink circles). The linear coefficients
for case Dc are a1 = 1.50 mJ/(mol K2) and a2 = 65.6
mJ/(mol K2). Compared to the linear coefficients for case
Qc [a1 = 3.2 mJ/(mol K2) and a2 = 10.3 mJ/(mol K2)),
they give a nonphysical ratio of the normal DOSs at the
Fermi energy if we consider two electron Fermi sheets and
three hole Fermi sheets. To see this point, let us consider the
equation

Ce,h(T ,H ) = 1

2

∫ +∞

−∞
dω

ω2Ñe,h(H,ω)

T 2cosh(ω/2T )

≈ AÑe,h(H,ω)T (asT → 0)

⇒ γe,h ≈ AÑe,h(H,0) ≡ AN
e,h
0 N̄e,h(H,0).

(A5)

Here A is a numeric constant and we write Ñe,h(H,0) ≡
N

e,h
0 N̄e,h(H,0), where N̄e,h(H,0) is the ZDOS calculated

by the Green’s function method as defined in Eq. (12).
Denote the number of Fermi sheets included in the sum-
mation as nFS and define ne

FSANe
0 = a1 and nh

FSANh
0 = a2

(equivalent to we = ne
FSN

e
0 and wh = nh

FSN
h
0 ). Therefore

γ tot = a1N̄e(H ) + a2N̄h(H ). Note that N̄e,h(H ) are dimen-
sionless and a1,2 are in units of mJ/(mol K2). Optimized
parameters a1,2 for the least-squares fit (Dc) to the ex-
perimental data below 15 T are a1 = 1.50 and a2 = 65.6.
This leads to our estimates in the main text of a1/a2 =
(ne

FSANe
0 )/(nh

FSANh
0 ) = (2Ne

0 )/(3Nh
0 ) and Ne

0/Nh
0 = 0.03,

and to our conclusion that the Doppler-shift method does not
provide a satisfying physical explanation for our specific heat
experiment.
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