
PHYSICAL REVIEW B 84, 184523 (2011)

Muon spin rotation investigation of the pressure effect on the magnetic penetration
depth in YBa2Cu3Ox

A. Maisuradze,1,2,* A. Shengelaya,3 A. Amato,1 E. Pomjakushina,4 and H. Keller2

1Laboratory for Muon Spin Spectroscopy, Paul Scherrer Institut, CH-5232 Villigen PSI, Switzerland
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The pressure dependence of the magnetic penetration depth λ in polycrystalline samples of YBa2Cu3Ox

with different oxygen concentrations x = 6.45, 6.6, 6.8, and 6.98 was studied by muon spin rotation (μSR).
The pressure dependence of the superfluid density ρs ∝ 1/λ2 as a function of the superconducting transition
temperature Tc is found to deviate from the usual Uemura line. The ratio (∂Tc/∂P )/(∂ρs/∂P ) is smaller by a
factor of �2 than that of the Uemura relation. In underdoped samples, the zero-temperature superconducting gap
�0 and the BCS ratio �0/kBTc both increase with increasing external hydrostatic pressure, implying an increase
of the coupling strength with pressure. The relation between the pressure effect and the oxygen isotope effect on
λ is also discussed. In order to analyze reliably the μSR spectra of samples with strong magnetic moments in a
pressure cell, a special model was developed and applied.
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I. INTRODUCTION

The compound YBa2Cu3Ox was the first high-temperature
superconductor1 (HTS) with a superconducting transition
temperature Tc above the boiling point of liquid nitrogen,
and it is one of the most studied HTSs.2 Its superconducting
properties are well characterized, even though some of them
are still being heavily discussed. Detailed muon spin rotation
(μSR) studies of the magnetic penetration depth λ and the
superfluid density ρs ∝ 1/λ2 were performed on polycrystals
and single crystals of YBa2Cu3Ox at ambient pressure.3–10

However, the key question concerning the pairing mechanism
responsible for high-temperature superconductivity is still not
resolved and is the subject of intense debates. Although it is
widely believed that magnetic fluctuations play a dominant
role in the pairing mechanism,11 oxygen isotope effect (OIE)
studies indicate that lattice degrees of freedom are essential
for the occurrence of superconductivity.12–20 By means of
isotope substitution, one can probe the influence of lattice
degrees of freedom on superconductivity without changing
the lattice parameters.21 There are no other easily accessible
methods which modify only the exchange integral J in order
to investigate its influence on the superconducting state.22

However, the application of hydrostatic pressure changes the
interatomic distances in the lattice, which in turn modifies
both the lattice dynamics23 and the exchange coupling J

between the Cu spins in cuprates.24,25 Therefore, a detailed
study of the pressure effect (PE) on the superconducting
properties (e.g., the superfluid density ρs ∝ 1/λ2, the gap
magnitude �0, and the BCS ratio �0/kBTc) may provide
important information for testing microscopic theories of the
high-temperature superconductivity.26,27

Up to now, the PE on the superconducting transition
temperature Tc was studied by resistivity and Hall effect
experiments.28–31 Several phenomenological28,32,33 and micro-
scopic models were proposed based on a Hubbard34,35 or a
general BCS approach in order to explain the PE on Tc.36

The role of nonadiabatic effects is discussed in Ref. 37. These
models suggest two basic sources for the PE on Tc: (i) A charge

transfer from the charge reservoir to the superconducting CuO2

plane, which was confirmed by Hall effect experiments,30,31

and (ii) an increase of Tc due to a pressure-dependent pairing
interaction.

The magnetic penetration depth λ is a fundamental param-
eter of a superconductor. It is a measure of the superfluid
density according to the relation 1/λ2 ∝ ns/m∗, where ns

is the superconducting carrier density and m∗ is the cor-
responding effective mass.5 From the temperature or field
dependence of λ, one can determine the symmetry of the
superconducting gap, its magnitude, and the BCS ratio. The
pressure dependence of λ was previously studied in fine-
powdered grains of YBa2Cu3Ox

38 and YBa2Cu4O8
39–41 by

means of magnetization experiments. The μSR technique is
a powerful and direct method to determine λ in the bulk
of a type II superconductor.42,43 However, due to several
technical difficulties, only a small number of μSR studies
of the penetration depth under pressure have been performed
so far. The main technical problems are (i) the low fraction
of muons stopping in the sample inside the pressure cell
and (ii) the strong diamagnetism of a superconductor, which
substantially influences the μSR response of the pressure cell.

Here, we report on pressure-dependent magnetic penetra-
tion depth studies in polycrystalline samples of YBa2Cu3Ox

(x = 6.45, 6.6, 6.8, and 6.98) by means of μSR. We found that
the pressure-dependent superfluid density ρs ∝ 1/λ2 versus
Tc does not follow the Uemura relation.6 The ratio αp =
(∂Tc/∂P )/(∂ρs/∂P ) is smaller by a factor of �2 than that
of the Uemura relation but is quite close to that found in
oxygen isotope effect (OIE) studies,16,17 suggesting a strong
influence of pressure on the lattice degrees of freedom.
Interestingly, a small pressure dependence of the superfluid
density was also found in the overdoped sample (x = 6.98).
The superconducting gap �0 and the BCS ratio �0/kBTc

both increase upon increasing the hydrostatic pressure in
the underdoped samples, hence implying an increase of the
coupling strength with pressure. Finally, a method of data
analysis for transverse-field μSR measurements of magnetic
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and diamagnetic samples loaded in a pressure cell is presented
and applied here. This method leads to a substantial reduction
of systematic errors in the data analysis.

The paper is organized as follows: In Sec. II, we give
some experimental details. In Sec. III, we describe the method
of μSR data analysis and present the experimental results,
followed by a discussion in Sec. IV. The conclusions are given
in Sec. V. In the appendix, we describe the method used in this
work in order to analyze μSR spectra obtained for a magnetic
and superconducting sample loaded in a pressure cell.

II. EXPERIMENTAL DETAILS

High-quality polycrystalline YBa2Cu3Ox samples with
x = 6.98, 6.8, 6.6, and 6.45 were prepared from the starting
oxides and carbonate Y2O3, CuO, and BaCO3 as described
elsewhere.44 Transverse-field (TF) μSR experiments were
performed at the μE1 and πM3 beam lines of the Paul
Scherrer Institute (Villigen, Switzerland). The samples were
cooled in TFs down to 3 K, and μSR spectra were taken with
increasing temperature in applied fields Bapp = 0.1 and 0.5 T.
Typical statistics for a μSR spectrum were 5–6 × 106 positron
events in the forward and backward histograms.42,43 A CuBe
piston-cylinder pressure cell was used with Daphne oil as
a pressure-transmitting medium. The maximum pressure
achieved was 1.4 GPa at 3 K. The pressure was measured
by tracking the superconducting transition of a very small
indium plate used as a manometer (calibration constant for In:
∂Tc/∂P = −0.364 K/GPa). In order to avoid charge-transfer
effects due to chain reordering in pressurized YBa2Cu3Ox ,
the samples were cooled down below 100 K for the μSR
measurements within less than 1 h after application of the
pressure. This time is much shorter than the time constant
τ = 27.7 h (at room temperature) for the pressure-activated
chain reordering process.45 Below 100 K, τ is much longer
than the typical measurement time of a sample (<24 h).45

High-energy muons (pμ � 100 MeV/c) were implanted in
the sample. Forward and backward positron detectors with
respect to the initial muon polarization were used for the
measurements of the μSR asymmetry time spectrum A(t)
(see Fig. 8 later in this paper).42 Cylindrically pressed samples
were loaded into the cylindrical CuBe pressure cell. The
sample dimensions (diameter 5 mm, height 15 mm) were
chosen to maximize the filling factor of the pressure cell.
The fraction of the muons stopping in the sample was
approximately 40%.

III. RESULTS AND ANALYSIS

For type II superconductors in the vortex state in an applied
field of Bapp � Bc2 (Bc2 is the upper critical field) the square
root of the second moment of the muon depolarization rate
σ is inversely proportional to the square of the magnetic
penetration depth: σ ∝ 1/λ2 (Refs. 4, 46, and 47) and therefore
directly related to the superfluid density: ρs ∝ 1/λ2 ∝ σ .
For a polycrystalline sample of a highly anisotropic and
uniaxial superconductor, the dominant contribution to the
muon depolarization originates from the in-plane magnetic
penetration depth λab = λeff/1.31, where λeff is an effective
(averaged) magnetic penetration depth.48,49

As was pointed out previously, a substantial fraction of
the μSR asymmetry signal originates from muons stopping
in the CuBe material surrounding the sample. The sample in
the superconducting state induces an inhomogeneous field in
its vicinity (see the appendix). This leads to an additional
depolarization of the μSR signal arising from the muons
stopping in the pressure cell. Therefore, the μSR asymmetry
time spectra are characterized by two components and may be
described by the following expression:

A(t) = A1 exp

(
−1

2

(
σ 2 + σ 2

n

)
t2

)
cos(γμB1t + φ)

+A2 exp

(
−1

2
σ 2

pct
2

) ∫
P (B ′) cos(γμB ′t + φ)dB ′.

(1)

Here, A1 and A2 are the initial asymmetries of the two
components of the μSR signal (A1, sample; A2, pressure
cell), γμ is the gyromagnetic ratio of the muon (γμ =
2π × 135.5342 MHz/T), and φ is the initial phase of the
muon spin polarization. B1 is the field in the center of the
sample (or approximately the mean field in the sample).
The parameter σ denotes the muon depolarization in the
sample due to the field distribution created by the vortex
lattice, while σn = 0.10(2) μs−1 is a temperature-, doping-,
and pressure-independent depolarization rate due to the
nuclear moments present in the sample. The temperature-
independent quantity σpc = 0.27 μs−1 describes the muon-
spin depolarization due to the nuclear moments in CuBe. The
total asymmetry is A1 + A2 = 0.275 at 0.1 T and 0.265 at
0.5 T with A1/(A1 + A2) � 0.4 (�40% of the muon ensemble
are stopping inside the sample). P (B ′) represents the magnetic
field distribution probed by the muons stopping in the pressure
cell as described in detail in the appendix.

Figure 1 exhibits μSR asymmetry time spectra of
YBa2Cu3O6.98 above (T = 95 K) and below (T = 4.5 K) the
superconducting transition temperature Tc = 89.6 K obtained
in an applied field of 0.1 T. For better visualization, the
spectra and the fits are shown in a rotating reference frame of
0.08 T. Above Tc, only a weak depolarization of the muon spin
polarization is visible,5 while below Tc the strong relaxation
of the μSR signal reflects the formation of the vortex lattice
in the superconducting state.3,5,7,43,46 Figures 2(a)–2(c) show
the Fourier transforms (FTs) of the μSR time spectra shown in
Fig. 1. In Fig. 2(d), the FT spectra of YBa2Cu3O6.6 below
and above Tc = 60 K are also shown. The narrow signal
around Bapp = 0.1 T in Fig. 2(b) originates from the pressure
cell, while the broad signal with a first moment significantly
lower than Bapp arises from the superconducting sample. The
signal of the pressure cell is also modified below Tc due to
the diamagnetic response of the superconducting sample. The
solid lines are the FTs of the fits to the data using Eq. (1)
(see also the appendix). The good agreement between the fits
and the data demonstrates that the model used here describes
the data rather well. The fit of the data for YBa2Cu3O6.98

measured at T = 5 K, Bapp = 0.1 T, and zero pressure with
Eq. (1) yields σ = 4.75(15) μs−1. In order to test the results
obtained with Eq. (1), we performed measurement of the very
same YBa2Cu3O6.98 sample at Bapp = 0.1 T and T = 5 K
using the low-background spectrometer without pressure cell
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FIG. 1. (Color online) μSR asymmetry signal A(t) of
YBa2Cu3O6.98 measured at T = 4.5 K and 95 K in an applied field
Bapp = 0.1 T (empty and full circles, respectively). The fast relaxation
of the μSR signal (empty circles) is due to the formation of a vortex
lattice in the superconducting state. The solid lines are fits of the data
to Eq. (1). For better visualization, the spectra and the fits are shown
in a rotating reference frame of 0.08 T.

(GPS, πM3 beamline at PSI, Switzerland). This measurements
was analyzed with an equation50 similar to Eq. (1), resulting in
σ = 4.60(7) μs−1, which is in good agreement with the result
obtained above.

The whole temperature dependence of the μSR asymmetry
time spectra was fitted globally with the common parameters
Bapp, A1, A2, and σn. Solely the parameters B1 and σ were con-
sidered as temperature-dependent free parameters. As shown
in the appendix, the field in the sample is macroscopically
inhomogeneous due to the inhomogeneity of demagnetization
effects. B1 is the field at the point x = y = z = 0 (i.e., the
center of the sample). In addition, the parameters describing
the muon stopping distribution x0,i and σi were kept the same
for each temperature scan [see Eqs. (A3) and (A4) in the
appendix].

The temperature dependence of the depolarization rates
σ for x = 6.98, 6.8, 6.6, and 6.45 at Bapp = 0.1 and 0.5 T
obtained with Eq. (1) are shown in Figs. 3 and 4, respectively.
The black empty points correspond to the data measured at
zero pressure, while the full red points correspond to the
data measured at 1.1 GPa (for x = 6.45, 6.6, and 6.8) and
1.4 GPa (for x = 6.98). The values of Tc and σ (0) are in
good agreement with previous results.5,6,8,9 It is known that the
order parameter in YBa2Cu3O6.98 predominantly has the form
of � = �0(p̂2

x − p̂2
y) (p̂i = pi/| �p| denotes the component of

the unit momentum vector in the reciprocal space along the
ith axis).11,51,52 This implies a linear temperature dependence
of the superfluid density ρs down to very low temperatures
due to quasiparticle excitations at the gapless line nodes in
the p̂x = ±|p̂y | directions on the Fermi surface.43 However,
in Fig. 3 we clearly see that σ (T ) tends to saturate at low
temperatures for YBa2Cu3O6.98 for both applied magnetic
fields. Such a behavior was often observed in μSR studies
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FIG. 2. (Color online) Fourier transform (FT) amplitude as a
function of field for the spectra shown in Fig. 1 [panels (a), (b),
and (c)]. Panel (b) is the expanded view (along the y axis) of panel (a)
showing the signal from the sample. Panel (c) is the expanded view
(along the x axis) of panel (a) showing the signal of the pressure cell.
Panel (d) shows the FT of the sample with x = 6.6 below and above
Tc = 60 K. The solid lines are the FTs of the fitted curves shown in
Fig. 1. The FT spectra are slightly broadened due to a FT apodization
of 4 μs−1.

of polycrystalline samples3,7 and was explained as originating
from a strong scattering of electrons on impurities.53–57

This scattering can strongly influence the temperature de-
pendence of ρs , but it has a minor effect on the superconducting
transition temperature Tc. In previous theoretical works, it
was suggested that such a behavior indicates scattering in the
unitary limit.55,56 Thus, the temperature dependence of the
superfluid density ρs was analyzed with the “dirty d-wave
model” of the BCS theory in the unitary limit of carrier
scattering as described in Ref. 53:

ρs ∝ 1

λ2
ab

= 4πe2Nf

(
vab

f

)2

c2

∫ 2π

0

dφ

2π

∞∑
n=0

|�(φ)|2(
ε̃2
n + |�(φ)|2)3/2 .

(2)

Here, λab is the in-plane magnetic penetration depth, �(φ) =
�0 cos(2φ)g(t) (t = T/Tc) is the two-dimensional (2D)
gap function, and ε̃n = Z(εn)εn are impurity renormalized
Matsubara frequencies: εn = (2n + 1)πT . �0 is the maximum
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FIG. 3. (Color online) (a) Temperature dependence of σ of
YBa2Cu3Ox measured at Bapp = 0.1 T at zero and applied hydrostatic
pressures for x = 6.45 (♦, P = 0 GPa; �, P = 1.1 GPa), x = 6.6
(�, P = 0 GPa; �, P = 1.1 GPa), x = 6.8 (	, P = 0 GPa; �,
P = 1.1 GPa), and x = 6.98 (◦, P = 0 GPa; •, P = 1.4 GPa). The
data were analyzed with Eq. (1). The solid curves are fits to the data
with Eq. (2). (b) Diamagnetic shift of the field �B = B1 − Bapp in
the corresponding samples. B1 is the mean field in the centre of the
sample (see text and the appendix).

of the gap function on the Fermi surface, and g(t) represents
the temperature dependence of the gap with g(0) = 1. The
parameters Nf and vf are the density of states at the Fermi
level and the Fermi velocity, respectively. The constants e and
c represent the electron charge and the speed of light. The
coefficients Z(εn) are as follows:53

Z(εn) = 1 + u

Dn(εn)Z(εn)

cot2(δ0) + [Dn(εn)εnZ(εn)]2
, (3)

with

Dn(εn) =
〈

1√
Z(εn)2ε2

n + |�(pf )|2

〉
pf

, (4)

and δ0 = π/2 in the unitary limit. The angular brackets 〈· · · 〉pf

denote averaging over the Fermi surface. In order to find
Z(εn) and g(t), Eq. (3) is solved together with the following
equation:53

1

2πT

{
ln

(
T

Tc

)
+ ψ

(
1

2
+ u

2πT

)
− ψ

(
1

2
+ u

2πTc

)}

=
∞∑

n=0

⎡
⎣

〈
|e(pf )|2(

Z(εn)2ε2
n + |�(pf )|2)3/2

〉
pf

− 1

εn + u

⎤
⎦ . (5)
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FIG. 4. (Color online) Temperature dependence of σ of
YBa2Cu3Ox measured at Bapp = 0.5 T. The meanings of the symbols
and the solid lines are the same as in Fig. 3(a).

Here, ψ(x) is the � function. Note that the impurity scattering
influences mainly εn while the temperature dependence of
the gap g(t) changes only slightly for a reasonable scattering
rate u. In the clean limit [i.e., u = 0 and Z(εn) = 1, ∀ n],
the normalized function g(t) is very close to the analytical
approximations derived from BCS theory.58

Fits of Eq. (2) to σ (T ) ∝ 1/λab(T )2 measured at various
hydrostatic pressures are presented in Figs. 3 and 4. The
corresponding values for �0, Tc, σ0, and u obtained from
the analysis are summarized in Table I. The data for zero and
applied pressure and the same doping x were analyzed simul-
taneously with the common parameter u, which characterizes
the relaxation rate of the Cooper pairs on impurities. As shown
in Table I the data for the underdoped samples (x = 6.45, 6.6,
and 6.8) are well described by the clean limit d-wave model,
while for the overdoped sample (x = 6.98) u = 15(5) K.
Here, we note that all the studied samples originate from
the same batch and have an identical thermal history, except
the last process of the oxygen reduction. Therefore, we
cannot explain why only the sample with x = 6.98 exhibits a
saturation of σ in the low-temperature limit and why it has such
a high scattering rate u = 15(5) K. Consequently, we cannot
exclude the possibility of a modification of the order parameter
in overdoped YBa2Cu3Ox where the pseudogap state gradually
vanishes. Such a behavior was also observed previously
in optimally doped or overdoped polycrystalline samples
of YBa2Cu3Ox .3,5,7,8 However, in single-crystal YBa2Cu3Ox

close to optimum doping, a linear temperature dependence
of 1/λ2 at low temperatures was also reported.10,43 For the
sample with x = 6.45, only the data above 15 K were analyzed,
since below 15 K the occurrence of field-induced spin-glass
magnetic order hinders a precise determination of σ .

IV. DISCUSSION

The main subject of the present study is the pressure effect
on the superconducting gap �0 and the superfluid density
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TABLE I. Summary of the results obtained from the temperature
dependence of σ at 0.1 and 0.5 T in YBa2Cu3Ox using Eq. (2).
Note that for the sample with x = 6.45, a precise analysis of σ was
not possible due to the occurrence of spin-glass magnetism below
T � 15 K. Hence, the errors of these values of σ (0) are rather large.

P Bapp Tc σ (0) �0 u

x (GPa) (T) (K) (μs−1) kBTc (K)

6.98 0 0.1 89.6(4) 4.76(7) 3.87(12) 15(5)
6.98 1.4 0.1 89.5(4) 4.97(7) 3.60(7) 15(5)
6.98 0 0.5 90.0(2) 4.56(7) 2.95(10) 15(5)
6.98 1.4 0.5 89.9(1) 4.72(7) 2.82(7) 15(5)
6.8 0 0.1 77.1(3) 2.07(5) 3.02(12) 0
6.8 1.1 0.1 83.2(5) 2.33(5) 3.48(15) 0
6.8 0 0.5 76.4(3) 1.91(5) 2.59(9) 0
6.8 1.1 0.5 82.3(5) 2.19(5) 2.80(8) 0
6.6 0 0.1 58.9(6) 1.79(5) 3.02(12) 0
6.6 1.1 0.1 62.6(5) 1.95(5) 3.27(12) 0
6.6 0 0.5 57.3(6) 1.58(5) 2.92(12) 0
6.6 1.1 0.5 62.3(6) 1.77(5) 2.89(11) 0
6.45 0 0.1 45.4(3) 1.17(7) 3.0(5) 0
6.45 1.1 0.1 49.5(5) 1.22(7) 3.0(5) 0
6.45 0 0.5 45.1(2) 1.00(7) 2.5(2) 0
6.45 1.1 0.5 48.7(2) 1.14(7) 2.5(2) 0

ρs ∝ σ . The Uemura relation,6 implying the linear relation
between Tc and ρs for underdoped cuprate superconductors,
was established soon after the discovery of HTS1 and is
one of the important criteria which a microscopic theory
of HTS should explain. The Uemura relation for the data
summarized in Table I is shown in Fig. 5. As indicated
by the dotted lines, the slope αp = (∂Tc/∂P )/(∂σ/∂P ) is
systematically smaller than that suggested by the Uemura line
with αU = ∂Tc/∂σ � 40 K/μs−1. The values of αp for the
underdoped samples investigated in this work are summarized
in Table II. Note that due to magnetism below ∼15 K the
error of σ (0) for the sample with x = 6.45 is rather large.
The weighted mean value of αp � 23(4) K/μs−1 is a factor
of �2 smaller than αU � 40 (K μs−1). Such a substantial
deviation from the Uemura line (with a lower value of αp) was
also observed by pressure experiments in YBa2Cu4O8 using
a magnetization technique.39 This is in contrast to pressure
effect results obtained for the organic superconductor κ-
(bis(ethylenedithio)tetrathiafulvalene)2Cu(NCS)2, which fol-
low the Uemura relation.59 Interestingly, a slope smaller by a
factor of 2 than that of the Uemura line was also found by OIE
studies of cuprate superconductors.16 This suggests a strong
influence of pressure on the lattice dynamics.

It is known that the pressure dependence of the supercon-
ducting transition temperature is determined by two mecha-
nisms: (i) the pressure-induced charge transfer to CuO2 planes
�nh and (ii) the pairing interaction Veff , which depends on
pressure.28,32–37,60 For the underdoped samples, the former
mechanism dominates (85–90%) the pressure effect on
Tc.28,32,36 Therefore, one can separate the pressure effect on
σ also in two components: �σ = �σch + �σV . The first
term �σch � (1/αU )(∂Tc/∂P )P follows the Uemura line
and is mainly due to the charge transfer to the plane. The
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FIG. 5. (Color online) Tc vs σ (0) (Uemura plot) at zero and
applied pressure for YBa2Cu3Ox with x = 6.45, 6.6, 6.8, and 6.98.
The solid line is the Uemura line while the dashed line is a guide
to the eye. The dotted lines represent the pressure effects on Tc and
σ (0).

second term �σV � (1/αp − 1/αU )(∂Tc/∂P )P describes the
increase of the superfluid density solely due to a change
of the pairing interaction. This increase of the superfluid
density is equivalent to a decrease of the effective mass of
the superconducting carriers, since �σV /σ = �λ−2

V /λ−2 =
−�m∗

V /m∗.39 Therefore, the pressure-induced change of the
effective carrier mass can be written as

d ln(m∗
V )/dP = −d ln(λ−2

V )/dP ≡ −(�σV /σ )/�P

� (αU/αp − 1)(∂Tc/∂P )/Tc

� 3/Tc GPa−1. (6)

Here, Tc and σ are taken at zero pressure, and the value
of (∂Tc/∂P ) � 4 K/GPa was used. This value is practically
doping independent in underdoped YBa2Cu3Ox for 6.45 �
x � 6.8.32 The quantity �λ−2

V describes the change of the
superfluid density solely due to a modification of the pairing
interaction Veff by pressure. It is remarkable to observe the
qualitative agreement between d ln(λ−2

V )/dP and that found
in OIE studies for d ln λ/d ln MO at different carrier dopings
(d ln MO is the relative change of oxygen mass).16 Indeed,
Eq. (6) predicts that the pressure effect on m∗

V strongly
increases with decreasing Tc.

TABLE II. Values of αp = (∂Tc/∂P )/(∂σ/∂P ) for the under-
doped YBa2Cu3Ox samples investigated in this work (x = 6.45, 6.6,
and 6.8).

αp (K/μs−1) αp (K/μs−1)
x 0.1 T 0.5 T

6.45 — 25(18)
6.6 23(11) 26(6)
6.8 23(7) 21(6)
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FIG. 6. (Color online) Relation between �0 and Tc for
YBa2Cu3Ox with x = 6.6, 6.8, and 6.98. The solid line cor-
responds to �0/kBTc = 3 (weak-coupling BSC superconductor:
�0/kBTc = 1.76). Both �0 and �0/kBTc increase with increasing
pressure.

Another interesting result is the quite small pressure depen-
dence of σ in the overdoped sample with x = 6.98, which is
approximately a factor of �2 weaker than that reported from
magnetization measurements.38 In Fig. 6, the gap magnitudes
�0 for the samples with x = 6.6, 6.8, and 6.98 are plotted as
a function of Tc. For the underdoped samples (x = 6.6 and
6.8), both �0 and �0/kBTc increase upon increasing applied
pressure. This suggests an increase of the coupling strength
with increasing pressure. This behavior is different from that
found for the OIE on �0, where a proportionality between �0

and Tc was found, implying a constant ratio of �0/kBTc.18

In the overdoped sample (x = 6.98), Eq. (2) suggests a small
reduction of the coupling strength with increasing pressure.
However, as was mentioned above, the absence of a linear
temperature dependence of σ at low temperatures for the sam-
ple with x = 6.98 might also indicate that the superconducting
order parameter is not of purely d-wave character.51,52 This, on
the other hand, may influence the result for �0 and its pressure
dependence.

In Fig. 7, for the underdoped samples (x = 6.6 and 6.8)
�0 is plotted versus σ (0), showing a linear correlation
between the two quantities. Note that this correlation does
not change with the application of hydrostatic pressure.
This is in contrast to what is observed for the Uemura
relation, Tc versus σ (0) and �0/kBTc versus Tc (see Figs. 5
and 6).

V. CONCLUSIONS

The pressure dependence of the magnetic penetration
depth λ of polycrystalline YBa2Cu3Ox (x = 6.45, 6.6, 6.8,
and 6.98) was studied by μSR. The pressure dependence
of the superfluid density ρs ∝ σ ∝ 1/λ2 as a function of
the superconducting transition Tc temperature does not

1.5 2.0 2.5
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300
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 1.1 GPa, 0.1 T
 0 GPa, 0.5 T
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Δ 0
/k

B   
(K

)

FIG. 7. (Color online) The gap �0 as a function of σ (0) for the
underdoped samples of YBa2Cu3Ox with x = 6.6 and 6.8. The linear
relation between σ (0) and �0 is better fulfilled under hydrostatic
pressure than the Uemura relation Tc vs σ (0) and �0/kBTc vs Tc (see
Figs. 5 and 6). The line is a guide to the eye.

follow the well-known Uemura relation.6 The ratio αp =
(∂Tc/∂P )/(∂σ/∂P ) � 23(4) K/μs−1 is smaller by a factor of
�2 than that of the Uemura relation observed for underdoped
samples. However, the value of αp is quite close to that found
in OIE studies,16 indicating a strong influence of pressure
on the lattice degrees of freedom. We conclude that the
contribution of carrier doping to the pressure dependence of
λ is similar to the OIE on λ. A weak pressure dependence of
the superfluid density ρs was found in the overdoped sample
(x = 6.98). The superconducting gap �0 and the BCS ratio
�0/kBTc both increase with increasing applied hydrostatic
pressure in the underdoped samples, implying an increase of
the coupling strength with pressure. Although the Uemura
relation does not hold and the BCS ratio is increasing with
pressure in underdoped samples, the relation between �0

and the μSR relaxation rate σ is invariant under pressure.
Finally, a model to analyze TF μSR spectra of magnetic and
diamagnetic samples loaded into a pressure cell was developed
and successfully used in this paper (see the appendix), resulting
in a substantial reduction of the systematic errors in the data
analysis.
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APPENDIX: FIELD DISTRIBUTION IN A PRESSURE CELL
LOADED WITH A SAMPLE WITH NONZERO

MAGNETIZATION

Samples with a strong magnetization placed in a pressure
cell with an applied magnetic field induce a magnetic field in
the space around the sample. Typical examples of such samples
are superconductors (strong diamagnets), superparamagnets,
and ferro- or ferrimagnets. Thus, muons stopping in a pressure
cell (PC) containing the sample will undergo precession in
the vector sum of the applied field and the field induced
by the sample. This spatially inhomogeneous field leads
to an additional depolarization of the muon spin polariza-
tion, which depends on the applied field and the induced
field together with the spatial stopping distribution of the
muons.

Consider the simplest case of a sample with the shape
of a round cylinder of height H and radius R placed into
a cylindrical pressure cell with the same internal radius R

[Fig. 8(a)]. Typical pressure cell radii used for μSR studies are
R = 2.5–4 mm. In standard TF μSR experiments, the pressure
cell is placed with the cylinder axis oriented vertically while
the magnetic field is applied perpendicular to the cylinder
axis of the pressure cell and the muon beam direction (see
Fig. 8). Let us introduce a Cartesian coordinate system with
the y axis along the sample cylinder axis and the z axis along
the direction of the applied field. Thus, the x axis is along
the initial muon beam direction, which is perpendicular to

FIG. 8. (Color online) (a) Schematic sketch of the μSR pressure
instrument GPD at the Paul Scherrer Institute: Cylindrical sample
(S), pressure cell (PC), muon stopping distribution (dotted ellipse),
and forward and backward positron detectors. (b) Illustration of the
surface current on a slice of a homogeneously magnetized cylindrical
sample. The magnetic field induced by this slice is equivalent to
the magnetic field of the surface currents. (c) Cross section of the
cylindrical sample and the surface current distribution in xz plane.
(d) Magnetic field map of the surface currents as illustrated in panels
(b) and (c).

the forward and backward detector planes (see Fig. 8). The
origin of the coordinate system is located in the center of the
sample.

In an applied magnetic field H (along the z direction), the
sample has a magnetization M. This magnetization is the
source of an induced field H′(r). Let us assume that H′ is
much weaker that the applied field H, which is the case for
superconductors in a magnetic field of μ0H � Bc1 (Bc1 is the
first critical field). Thus, one can neglect the spatial variation
of the magnetization due to the additional induced field: M =
M[H + H ′(r)] � M(H ). Typically half (or even more) of all
the muons are stopping in the PC outside of the sample volume.
The muons stopping in the macroscopically inhomogeneous
field of the PC contribute to an additional relaxation of the
μSR signal. In order to describe the total μSR time spectrum
(sample and PC), one has to model the field distribution
H′(r). For an applied field H � H ′(r), one can neglect the
influence of H ′

x(r) and H ′
y(r) on the μSR time spectrum,

since only the z component H ′
z(r) contributes significantly

to the muon depolarization. The induced magnetic field
H′(r) created by a cylindrical sample can be calculated as
follows:61

H′(r) = 1

4π

∫
V

[
3(M · (r − r′))(r − r′)

|r − r′|5 − M
|r − r′|3

]
dr′.

(A1)

Here, the integral is taken over the sample volume V. For a
sample with a constant magnetization, the three-dimensional
integral can be replaced by surface integrals. Let us take one
slice of width dz out of the sample cylinder and divide it
into many small squares dA = dxdy [see Fig. 8(b)]. The
field created by the elementary cell of volume dV = dxdydz

with magnetization M is equivalent to the field created by
the current Iz = Mdz circulating within this square slice, as
shown in Fig. 8(a). It is obvious that integration of this field
over the whole slice volume will leave only a current Iz flowing
over the perimeter of the slice. The total field of the cylinder is
the integral of the fields created by these slices with constant
current Iz [see Figs. 8(b) and 8(c)].

According to the law of Bio-Savart, the field in a point r
created by the elementary currents Id� at the surface of the
cylinder (with coordinates rs) is61

H′(r) =
∮

S

I

4π

[d�s × (r − rs)]

|r − rs|3 . (A2)

The integration is taken over the surface S of the sample, and
d�s is the elementary length on the surface with its direction
along the current (the subscript s denotes quantities related to
the surfaces of the sample).

The spacial magnetic field distribution around the
ferro/paramagnetic sample calculated with Eq. (A2) in xz

plane is shown in Fig. 8(d). The total field in the pressure
cell is the vector sum of this field and the homogeneous
external field. It is obvious from the figure that the field
along the z axis is higher (lower) than the external field in
a ferromagnet (diamagnet). Along the x axis, on the other
hand, the field is lower (higher) than the external field in
a ferromagnet (diamagnet). The maximal (minimal) induced
field in the PC are just on the border of the sample pressure
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FIG. 9. (Color online) (a) Contour plot of the field distribution
H ′

z(y,z) in the yz plane for a cylindrical sample with R = 2.5 mm
and H = 15 mm (the geometry of the sample used in the experiment).
(b) Contour plot of the muon stopping distribution in the yz plane.
The gray area on the top of the sample corresponds to the empty
pressure cell space where no muons stop (this space is filled
with a low-density pressure transmission medium). The dashed
line indicates the sample space. (c) Magnetic field profile of H ′

z

along the y axis and (d) magnetic field profile of H ′
z along the z

axis.

cell along z (x) direction. Note that demagnetization effects
are naturally accounted for using Eq. (A2). Since the sample
is not elliptical, this leads to field inhomogenieties within the
volume of the sample (see Fig. 9). As an example, Fig. 9 shows
the magnetic field distribution in the yz plane for a cylindrical
sample with H = 15 mm and radius R = 2.5 mm, together
with fields along the z and y axes calculated with Eq. (A2).
Due to demagnetization effects, the magnetic field profiles
within the sample has peaks at the top and bottom edges of the
sample where the demagnetizing fields are minimal [Fig. 9(c)].
On the other hand, the field profile within the sample close to
the center is quite homogeneous, since a cylinder with infinite
height H is equivalent to an ellipsoid in which the field is
homogeneous.

In order to calculate the probability field distribution of a
sample in a PC with a substantial first moment, a model for the

muon stopping distribution is required. This distribution may
be well approximated by a three-dimensional Gaussian:62

Ps(x1,x2,x3) = A

(2π )3/2

3∏
i=1

1

σi

exp

(
− (xi − x0,i)2

2σ 2
i

)
, (A3)

where the subscripts i = 1,2,3 correspond to x, y, and z,
respectively. The quantities x0,i determine the mean value of
the muon stopping distribution, σi are corresponding standard
deviations, and A is the normalization factor. The quantities
x0,1, x0,2, and x0,3 can be determined quite accurately before
starting the experiment by tuning the momentum of the muon
beam and vertical positioning of the sample. For a sample with
nearly the same density as the pressure cell, x0,1 � x0,2 �
x0,3 � 0. Simulations of the stopping distribution with the
SRIM software62 yield σ1 = 0.875 mm for copper (the basic
component of the CuBe pressure cell) and the minimal ratio
of σ3/σ1 = 3.36. A maximal ratio of σ3/σ1 � 4 is estimated
for the muon beam collimated by a 4 × 10 mm collimator
(this uncertainty is related to the degree of muon beam
focusing). The parameter σ2 is in fact the standard deviation
of the function representing the convolution of a Gaussian
with σ = σ3 over the collimator profile function along the y

axis. These parameters define the fraction of muons stopping
in the PC and the sample for a given sample geometry.
For a known Ps(r), one can calculate the magnetic field
probability distribution P (B) in the pressure cell by solving the
integral:

P (B) =
∫

x2+z2>R2
Ps(r)δ(B − μ0[H + H ′

z(r)])dr. (A4)

Here, δ(x) is the δ function. The integration is taken over
the volume of the pressure cell. Note that this is not simply
the probability field distribution in the pressure cell, but it
is weighted with the muon stopping probability distribution
Ps(x,y,z). Fits of P (B) to the experimental μSR data are
shown in Fig. 2. The corresponding temperature-dependent
parameters for Bapp = 0.1 T are shown in Fig. 3. The analysis
leads to the following temperature-independent parameters
for the muon stopping distribution: x0,1 = 0 mm, x0,2 =
1.7 mm, x0,3 = 0.03 mm, σ1 = 0.875 mm (this parameter
was fixed), σ2 = 3.1 mm, and σ3 = 3.0 mm. These results
are in good agreement with the simulated62 and partially
measured spatial muon stopping distributions. The function
P (B) describes the experimentally measured μSR signal
rather well.

Below we summarize the influence of a magnetized sample
in a pressure cell on the μSR spectrum. As is obvious from
Fig. 2, the main influence of the sample is the broadening of the
field distribution in the pressure cell with a characteristic shape
P (B). This broadening is directly proportional to the magneti-
zation of the sample μ0M or to Bapp − B1 � (1 − N )μ0M (N
is the demagnetization factor, which is approximately constant
in the central part of the sample). In addition, the mean value of
P (B) for a superconductor (ferromagnet) decreases (increases)
proportionally to Bapp − B1.

184523-8



MUON SPIN ROTATION INVESTIGATION OF THE . . . PHYSICAL REVIEW B 84, 184523 (2011)

*alexander.maisuradze@psi.ch
1J. G. Bednorz and K. A. Müller, Z. Phys. B 64, 189 (1986).
2C. W. Chu, P. H. Hor, R. L. Meng, L. Gao, Z. J. Huang, and Y. Q.
Wang, Phys. Rev. Lett. 58, 405 (1987).

3D. R. Harshman, G. Aeppli, E. J. Ansaldo, B. Batlogg, J. H. Brewer,
J. F. Carolan, R. J. Cava, M. Celio, A. C. D. Chaklader, W. N. Hardy,
S. R. Kreitzman, G. M. Luke, D. R. Noakes, and M. Senba, Phys.
Rev. B 36, 2386 (1987).

4J. H. Brewer et al., Phys. Rev. Lett. 60, 1073 (1988).
5Y. J. Uemura et al., Phys. Rev. B 38, 909 (1988).
6Y. J. Uemura et al., Phys. Rev. Lett. 62, 2317 (1989).
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