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Normal persistent currents in proximity-effect bilayers
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We calculate the contribution of superconducting fluctuations to the mesoscopic persistent current of an
ensemble of rings, each made of a superconducting layer in contact with a normal one, in the Cooper limit. The
superconducting transition temperature of the bilayer decays very quickly with the increase of the relative width
of the normal layer. In contrast, when the Thouless energy is larger than the temperature, then the suppression of
the persistent current with the increase of this relative width is much slower than that of the transition temperature.
This effect is similar to that predicted for magnetic impurities, although the proximity effect considered here
results in pair weakening as opposed to pair breaking.
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I. INTRODUCTION

The average persistent current'? of a large number of
mesoscopic metallic rings can be used to deduce the sign
and the magnitude of electron-electron interactions in the
metal forming the rings. The size of the average current is
expected to increase with the strength of the interactions, and
its sign reflects the nature of the interactions: The magnetic
response at low flux is paramagnetic (diamagnetic) when the
electronic interactions are repulsive (attractive).>* For a large
ensemble of rings, the current is expected to be periodic in
the magnetic flux, with the period corresponding to one half
of the flux quantum, //2e. The theoretical analysis of Refs. 3
and 4 was motivated in part by early measurements of the
average persistent current in an array of 10° copper rings,’
whose sign and magnitude could not be accounted for by
noninteracting electrons alone and therefore should be affected
by electronic interactions. These experiments confirmed the
above periodicity, also suggesting that the average magnetic
response is induced by interactions.>* Similar results were
later observed on an array of 10° GaAs rings® and on an
array of 10° silver rings.” In contrast, measurements on single
rings®!! showed the /e periodicity. In an array of 30 gold
rings'? both the //2e and the /1/e harmonics were observed.
In this paper the authors were unable to say whether the h/2e
signal was the second harmonic of the typical contribution
or the first harmonic of an average contribution. Overall,
the sign of the /h/2e harmonic measured on metallic rings
seems to indicate that the low-flux response is diamagnetic,’-'>
implying attractive interactions. Recently, Bleszynski-Jayich
et al."® found that the average current in aluminum rings,
subject to high magnetic fields, is negligible, but typical
mesoscopic fluctuations remain almost unaffected.'* It seems
that these experiments can be explained within the framework
of noninteracting electrons.'>

Interestingly enough, it turned out that the bona fide values
of the attractive interactions required to explain the persistent-
current data of the copper’ ensemble for example, would
have implied that this metal is superconducting at measurable
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temperatures, of the order of 1 mK. In fact, early experiments
on the magnetic response'® and on the thermal conductivity'”
of proximity-effect systems, whose normal parts were copper
and silver, also indicated a minute attractive interaction in
these metals.!® However, these early measurements allowed a
broad range for the magnitude of this interaction, and therefore
did not open a discussion of the reasons for the absence
of superconductivity in experiments on these metals. The
latter puzzle became obvious only after the measurements of
the persistent current on copper, which requires a transition
temperature of 1 mK. Superconductivity has not been detected
also in gold and silver, and this fact has remained unexplained
for many years. A possible explanation for this apparent
puzzle' was offered in Refs. 20 and 21, which argued (for
the first time) that the existence of (seemingly unavoidable??)
tiny amounts of magnetic impurities may detrimentally affect
superconductivity in such metals, reducing their transition
temperatures to undetectable, even zero, values, while leaving
the persistent current almost unharmed. This stems from the
disparity of the energy scales determining the renormalized
electronic interaction pertaining to each phenomenon. The
interaction-induced persistent current is proportional to the
renormalized interaction on the scale of the Thouless energy,
E. =nhD/L?* (where D is the diffusion coefficient and L is the
circumference of the ring). Superconductivity is lost, however,
when the spin-flip rate of the magnetic impurities, /7, (in
units of energy), becomes comparable to the bare transition
temperature of the material (in the absence of any pair-breaking
or pair-weakening agents), TC%. In other words, the actual
superconducting transition temperature 7.5 is determined by
the renormalized interaction, on the scale of max[Tf],h /T It

&
follows that a concentration of magnetic impurities such that

kyTH Shjt, S E, (1)

will hardly affect the magnitude of the persistent current,
concomitantly suppressing the superconducting transition
temperature (below we often use units in which 7z = kg = 1).
Indeed, detailed analysis®! of the persistent current data
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reported in Refs. 5 and 7 led to the conclusion that 75 of
copper (gold) is in the mK (a fraction of mK) range.

This theoretical picture can be tested, for instance, by
investigating rings made of known low-superconducting-
transition-temperature materials, in which a controlled con-
centration of pair breakers have been added.'® It has also
been noted that the magnetic flux itself acts as a pair breaker,
causing a periodic decrease of the transition temperature but
a lesser decrease in the persistent current.”? It is interesting
to check whether there exist other situations where the
superconducting transition temperature is lowered by some
pair-breaking or pair-weakening mechanism, but the (super-
conducting fluctuation-induced) persistent current remains
large far above this transition temperature. In the present
paper we consider this question for superconducting-normal
(SN) bilayers, for example, made of Al and Cu.'” Bilayers
made of Al and Ag might even be better, as they avoid
magnetic impurities. The “normal” metal could also be a
weaker superconductor, with a lower transition temperature.
The proximity effect is known to cause a decrease of the
transition temperature of the bilayer with the relative thickness
of the S layer,”*?> and it is interesting to find out what happens
to the persistent current, which is induced by superconducting
fluctuations. This possibility is, in particular, intriguing: Unlike
the magnetic impurities, the proximity effect is not a bona fide
pair breaker, since time-reversal invariance is not broken by it.
The proximity effect just leads to pair weakening, by “diluting”
the superconducting fraction.?

Here we present a calculation of the disorder-averaged
persistent current averaged over an ensemble of bilayer rings,
each having the geometry depicted in Fig. 1. These rings
consist of two adjacent metallic rings, with different transition
temperatures. The area inside the rings is penetrated by a
magnetic flux @, which is measured in units of the flux
quantum hc/e. Below we use the subscript S for quantities
characterizing the layer with the higher transition temperature
and the subscript N for the quantities belonging to the other
one, which may or may not be a superconductor. For simplicity,
we confine our calculation to bilayers in the Cooper limit:**
This limit is reached when the width of each of the layers,
dg or dy, is much smaller than the respective coherence
length.?’ Our aim is to explore the possibility to deduce the

dy

ds

FIG. 1. (Color online) Proximity-effect ring in which the width of
the strong (weak) superconductor is dg (dy), threaded by a magnetic
flux ® (measured in units of the flux quantum).

PHYSICAL REVIEW B 84, 184519 (2011)

scale of the renormalized electronic interaction by analyzing
concomitantly the superconducting transition temperature and
the (superconducting) fluctuation-induced average persistent
current. In other words, we examine the persistent current as
a function of the N-slab relative thickness and find parameter
regimes where it is affected much less than the transition
temperature.

Since pair breakers, notably magnetic impurities, seem to
be ubiquitous in several of the metals used in the persistent-
current measurements, it is interesting to investigate their
effect in a proximity-effect configuration. For instance, it is
plausible that in Al/Cu rings, the copper (the N slab in
our notations) may well include a tiny amount of magnetic
impurities. We therefore include scattering off such impurities
in our expressions.

The transition temperature of an SN proximity bilayer
in the the Cooper limit is known?** to be determined
by the effective (dimensionless) electronic coupling, A,
which is the weighted sum of the effective couplings of
the separate slabs, Ag (which is positive, since the S slab is
superconducting) and Ay (which may take both signs):

Ans = Pniy + Pshss ()
with
Py = dnisNves)/Netrs 3)

where A, ~(s) denotes the density of states at the Fermi energy
per unit length of the normal (superconducting) layer, and

/veff = /\7NdN + /\N[sds~ 4)

The mean-field transition temperature, 7.3%, of the bilayer

(without magnetic impurities) is then given by**%3

: —w<l+ “p ) \I’(1> )
Ayvs  \2  2nThS 2)’

where W is the digamma function whose asymptotic expan-
sion, valid for large arguments, is given by

lim ¥(z) - Inz. 6)

Z—>
The Debye frequency w, in Eq. (5) (assumed to be identical for
both slabs) marks the upper cutoff on the effective interactions.
The above results hold only for a dirty superconductor, where
wpT K 1, and 7 is the mean free time associated with the
scattering from (nonmagnetic) impurities, so that the whole
calculation is done in the diffusive limit. The result (5) is
obtained assuming that the two layers are in a good electrical
contact. (The effect of a barrier between the two layers has
been considered by McMillan.?®) In the limit p > TCI(\)’ 5 one
may use Eq. (6) to obtain

NS
1nTC°S =—<1—A—N>—pN , %)
0 Ag ) Aypy +Agps

where T3 is the bulk transition temperature of the clean S slab.
When the N slab is also superconducting (i.e., A, > 0), TC’(\)’ S
remains finite for all p, (although quite small for large p,, and
small A ). However, when A, < 0, the transition temperature
of the bilayer T $ approaches zero at a quantum critical point,
py = 1/(1 — Ay /Ag). The approach is exponential, with zero
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FIG. 2. (Color online) The transition temperature of a proximity-
effect sandwich in the Cooper limit [Eq. (7)] as a function of the
weighed width of the normal layer for Ay = 0, 0.05, and —0.05 (solid,
dashed, and dotted curves, respectively). In all curves Ag = 0.17.
The inset depicts the Abrikosov-Gorkov expression [Eq. (8)] for the
reduction of the transition temperature by pair breakers.

slope (see Fig. 2). In practice, T3 becomes very small for
py 2 1/2. In some sense, this inequality replaces the left-
hand side of Eq. (1). As we show below, the persistent current
remains rather large even in this regime.

The effect of genuine pair-breaking mechanisms on the
transition temperature was considered a long time ago. The
seminal paper of Abrikosov and Gorkov?® found that the
transition temperature ch) is reduced by magnetic impurities

to 77,
| T _o(N_y 1+sTE‘B ®
n—= — ] — — ,
TS 2 2T

c

where s = 1/(2xT5t,). This expression is shown in the
inset in Fig. 2. Unlike T}%, TS approaches zero at
s = exp[W¥(1/2)] = 1/(4yy) ~ 0.140 365 (namely, at i/t ~
O.9ch)), with a finite slope. Here, y,, is the Euler constant. This
difference in slope between the two mechanisms probably
reflects the difference between pair weakening and pair
breaking.?®

In a complete analogy with Eq. (8), a small amount of
pair-breaking impurities in the N slab lowers the transition
temperature of the sandwich from 7% to N5, given by®

1 1 1) 1 p
— =y o+ —L V(N ) @
Ays <2+2nTCNS> (2+271TCN51:S) ©)

generalizing Eq. (5).

The rest of this paper describes the calculation of the
average persistent current, pertaining to a large ensemble of
bilayers. Section II outlines the derivation of the effective
Ginzburg-Landau theory for this case, with some technical
details given in the Appendix . Some quantitative results are
presented in Sec. III. Since the fluctuations are calculated
within the high-temperature Gaussian approximation, which is
valid only above the Ginzburg critical regime, Sec. IV presents
a critical discussion of this regime. That section also contains
our conclusions.
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II. THE PERSISTENT CURRENT OF A
PROXIMITY-EFFECT SANDWICH

Here we present a microscopic derivation of the free
energy which determines the superconducting fluctuations.
The Hamiltonian of the bilayer is similar to that used in
Refs. 20 and 21,

H= /drH(r), (10)

with
H) =Y Y- (0)9,.(r)

— VIO Y @Y, ), @), (11)

where wg(r) creates an electron with spin o at r. The
interaction V(r) depends on the spatial coordinate x (see
Fig. 1),

V(x)=Ag/Ng, —dg<x
V(x)=hiy/Ny, 0<x <dy.

(Note that here the A”s are the densities of states per unit
volume of the two layers.) The single-particle part of the
Hamiltonian (11) reads

<0,
12)

Hoo (1) =8, , Ho (1) + (1), (13)
where
Hy = [—iV + (e/)AM)]/2m) — u, (14)

and p is the chemical potential. With the choice A = B x r/2,
the vector potential A points along the circumference of the
ring in the anticlockwise direction. The disorder potential
is u(r) = u, +u,o - S, yielding scattering off nonmagnetic
impurities (scaled by u,) as well as off magnetic impurities
(scaled by u,, S denotes the magnetic impurity spins; the
impurities are modeled by pointlike scatterers®?).
The quantum partition function Z is’!

Z=/Dwmw@mwwm&&, (15)

where the action S is

B
S = /dr/o dr (;wg(r,r);—rwa(r,r)+H(r,r)),

(16)

and B = 1/T. Here, the annihilation and creation field oper-
ators in the Hamiltonian (11) (¢ and ) are replaced by the
spinor Grassmann variables ¥ (r,7) and E(r,r), respectively.

Since the calculation of the partition function is rather
technical, we present it in the Appendix . We first perform
this analysis in the absence of the magnetic flux. A Hubbard-
Stratonovich transformation replaces the Grassmann variables
¥ and ¥ by complex bosonic variables A(r,7) and A*(r,7)
(which are now functions of the imaginary time 7), and the
action is expanded in powers of these variables. The Gaussian
approximation uses only the quadratic terms in this expansion.
In the Cooper limit, the Fourier transformed bosonic variables
take only two values as a function of x, namely, Ag(q,v)
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for —dy < x <0 and Ay(q,v) for 0 < x < dy, where q is
a two-dimensional vector perpendicular to . The quadratic
action then becomes

S, = BNy Z Z(aNmN(q,vn2 + aglAg(q,v)

—c[A} (q,v)AS(q,V) +c.c.]), (17)
where N’eff is given in Eq. (4), and
Pnes
NS P12v(s))/a C = PsPNY- (18)

ayesy = _)‘N(S)

Here, P(s) are given in Eqgs. (3). The function y(q,v,T) is
given by

y(@v,T)=7T ) 7(qv0), (19)
where

i v] 1 -
P(qv.o) = (|w| SR sDwd’) . Q0)

w=nT(2m+ 1) and v = 27 T (with integer m and ¢) are
the fermionic and bosonic Matsubara frequencies and D is
the effective diffusion coefficient of the double layer,

D = pyDy + psDs. @1
Since the sum over w in Eq. (19) is cut off by the Debye
frequency )/, one finds

N l+ |V|+Deffq2+2PN/Ts
2 dnT

v| + Deffq +2pn/Ts + 20
AnT

y(qv,T) = —

v
+ <2+

(22)

The bilinear form in Eq. (17) is diagonalized by the
transformation (for convenience, we omit the explicit notations
of q, v, and T in part of the expressions below)

Ay=u_A_~+u A, Ag=u A_—u_A_, (23)
where
(1 ay—ag 172 _ ay — ag 2 )
m (b)) e f(25) e e
One then finds
S, = BNy YD (a_(qv.DIA_(q.v)
q v
+a(qu.1)|A (g, (25)
with
a, =(ay +ag)/2 k. (26)

Within this Ginzburg-Landau-like model, the phase transi-
tion occurs when the first coefficient a, (q,v,T) vanishes as
the temperature 7 is lowered. Since a, —a_ = 2« > 0, this
transition happens when a_(0,0,7) = 0 (while a, remains
positive). Equations (18) and (19) imply that

2 PnPshys [k‘

= —c" = 1) 27
a,a_ ayag —C )\ )» —v(q,v )] 27
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Therefore, at zero flux the transition occurs at TCN S which
obeys the equation A% = ¥(0,0,T.V%). Using Eq. (22), this
reproduces Eq. (9).

Finally, we incorporate the magnetic flux into the expres-
sions for the action and for the partition function. To lowest
order (neglecting the effect of the field on the order parameter)
it suffices to replace q with*

q— q+(2e/o)A. (28)

This follows directly from Eq. (14), remembering that the
momentum ¢ relates to a bosonic Cooper pair. For the
circular geometry at hand, the component of ¢ along the ring
circumference, qy becomes

2
q, = TJT(n +29), (29)

with integer n. The transition is then shifted, with??

L y[q, = 4w ®/L,0.TNS(®)], (30)

NS

>

and the persistent current is given by

e 0TInZ

T 2nc 90

Within this Gaussian approximation, the fluctuation’s con-
tribution to the partition function can be obtained straightfor-
wardly. One finds

“= Hnam v T)a @v.) HHA L

€29}

J/((LV T)
(32)

where (flux- and temperature-independent) multiplicative
factors have been omitted. Interestingly, this expression
for the partition function has exactly the same form as
that found for the “superconducting” ring in Ref. 21. The
only modification is that now Ag' is replaced with Ay
The following calculations thus use the same calculational
techniques employed in that reference.

III. RESULTS

Since the important contribution to the persistent current
comes from the zero transverse mode (perpendicular to
the x direction),'>?*2! we replace the sum over q with a
one-dimensional summation over the discrete values of g
[Eq. (29)]. Assuming that the Debye frequency w;, is the
largest energy in the problem (provided it is smaller than 1/7),
the denominator in Eq. (32) becomes?!

T 1
Ays — v(q,v,T) ~In [T } + W[F(n,0)] — [E] (33)

c0

1+ IKI _ Py

F(n, , (34
(n6)="—3 t o Y
and therefore the persistent current is”!
20)W'(F
I=-2eE Y (;‘SJF JWHE) . (3%)
= In(T/T,°) + V(F) —W(l/2)
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FIG. 3. (Color online) The transition temperature of the bilayer
THS, normalized by T3 (blue solid line) and the first harmonic of the
current, divided by its value at p, = 0, from Eq. (36) (red dashed
line). The green dash-dotted line shows the approximation (41) for
the current. The parameters used for all graphs are 7.5 = 1.27 K
(equivalent to Ay = 0.17), wp = 400 K, 7§ =0 (i.e., Ay = 0) and
1/z, = 0. The current is plotted for 7 = 47,3 and E, = 1073,

(We remind the reader that E, = D,;/L? is the Thouless
energy). As shown in Ref. 21, this expression for the persistent
current can also be written as a Poisson summation,

o
I = —4eT Z sin(4rm®)
m=1
o0
X ZZ exp (2mix(l, ) — exp (anxpole)]
¢ j=1
(36)
where
T /2
¢ .
péle/zero tm ZJTE[ 2Fljole/zer0i| ’
(37)
with Fpole = —j and with Fl. being the solution of

W(Fiuo) = In[THS /4y, T)].

We now present several plots of the persistent current based
on Eq. (36). Figure 3 shows the first harmonic of the current
(divided by its value at p,, = 0) as a function of py, for T =
1/7, = 0. To avoid critical fluctuations (see below), we restrict
ourselves to arelatively high temperature, T = 4ch). The same
figure also shows the transition temperature for the bilayer,
divided by ch). Clearly, the relative persistent current decreases
much more slowly than the relative transition temperature.
This slower decrease is similar to that found in Refs. 20 and 21,
resulting from the effects of pair breakers. As an example,
for the parameters used in Fig. 3, the transition temperature
at py = 0.7 is very small, T3%(py = 0.7) >~ 107°T% while
the first harmonic of the current is given by I(p, = 0.7) =
0.161(py =0) =0.13E,.

At a fixed py, the persistent current decreases with
increasing temperature. Figure 4 shows the current (in units of
the Thouless energy E ) as a function of the temperature for a
specific choice of the parameters and for three values of p.
Each of these plots shows the current only above the transition
temperature TC’(\)’ $. As anticipated in the Introduction, the per-
sistent current increases with increasing E.. This can be seen
from Egs. (36) and (37), in which the decay of [ is determined
by the ratio T/E,. Using the relation Neg T3 = g/[E, /TS,

PHYSICAL REVIEW B 84, 184519 (2011)

pN=0.45
pN:O.S

FIG. 4. (Color online) The first harmonic of the current, in units
of the Thouless energy E., versus T/E,, for Tf) =127K, E. =
0.015 K, wp =400 K, TY =1/7, =0, and NeffTo = 10°. The
current is plotted for p, = O 45,0.5, and 0.7 and for T > TX5(pw).

where g is the dimensionless conductance, the parameters used
in Fig. 4 are equivalent to g = 1000.

Finally, we discuss the effects of a positive transition
temperature 7 and a finite amount of magnetic impurities
in the normal slab. Figure 5 shows the first harmonic of the
persistent current versus the temperature for 7 = 1 mK,
which is the estimated minimal value for the pure transition
temperature of copper derived in Ref. 21, with and without
magnetic impurities. We see that at high temperatures the
current is not very sensitive to the pair breaking. As might
be expected, the weak superconductivity of the N layer causes
an increase in the persistent current.

Interestingly, both Fig. 4 and Fig. 5 exhibit fluctuation-
induced persistent currents which are much larger than the
Thouless energy E at temperatures above the superconducting
transition temperature of the S material. This persistent current
increases, and its decay with temperature becomes slower, as
E_ increases.

The above plots were based on Eq. (36), which sums over
many values of ¢ and j. For example, Figs. 4 and 5 used
j,£ < 10*. We next describe approximate expressions, which
are valid at high temperatures, when T 3> T,5%. We restrict this
discussion to the case 1/t, = 0. Defining the small parameter

/@yeT)], (38)

—1/w, we find Fio ~ —j + w,

w=—1/In[T§*

and noting that W(w — j) =~
and, therefore,

. . T
x4 ~xY —imw - . (39)
P 2rE[1+2j + |€]]
6} 1 ‘ —]
- = =P =07
I/E V! N o8
c v = Pn=
3 Yo
AR
LN
\‘\\‘~\ ~
0 ‘""'"'-h:._n.:-z-—_..'_ﬂ s
0 5 10 15

T/E
c

FIG. 5. (Color online) Same as Fig. 4, but with 7§ = 0.001 K
(i.e., Ay = 0.077). The current is plotted for p, = 0.7 (blue dashed
line) and p,, = 0.8 (red dash-dotted line). Thick (thin) lines represent
1/t = 0 (1/t, = E.). The graphs are plotted for T > TN5.
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Inserting this approximation into Eq. (36), the Poisson summation form of the current becomes

I~ —4eT Y sin(drm®) Y Y " expl—m\/2xT[1 + 2j + [€]]/E Jlexp(mw /27T /E./[1 + 2j + [£]]) — 1]

m=1 ¢ j=0
~ —4eTw Z sin(4rm®) Z Zm\/2nT/Ec/[1 +2j + [€[lexp[—m/2n T (1 + 2j + |€])/E,], (40)
m=1 ¢ j=0

where the last approximation applies only for mw
V2rT/E, < 1 . At intermediate temperatures, when both
this condition and w < 1 are obeyed, the current decays as

~ wl,, where I, is independent of 7§ Substituting Eq. (7)

for Y 5 in the expression for w, we finally end up with

J In[4y.T/TS
A ~ : );E / piro(]l—)\;v//\s) ’ @D
0 In[4yT/T] + Do—mss

where I, is the persistent current (for the same flux) at p,, = 0.
As seen in Fig. 3, this approximation is quite good.

Unlike the case of the magnetic impurities, in which the
persistent current remains nonzero even when the transition
temperature vanishes, in the case of the bilayer the persistent
current vanishes when 73 = 0. When 1, = 0, the transition
temperature approaches zero as p,, increases toward the quan-
tum critical point, which occurs at p,, = 1. When A, < 0, this
critical point occurs at a threshold p,f, < 1, and the fluctuation-
induced persistent current vanishes above this threshold.
However, as p,, approaches this critical threshold, the current
decreases linearly with p, [as seen from Eq. (41)]. Since the
transition temperature decays exponentially toward that point,
we again find that the persistent current remains significant
even when the transition temperature is negligibly small.

IV. DISCUSSION

The calculations above were carried out within the Gaussian
approximation. This approximation usually breaks down close
to the phase transition, where higher powers of the order
parameters must be taken into account in the expansion of
the action S. This happens below the so-called Ginzburg
temperature, T;;. Therefore, one should not trust the above
results for temperatures in the range TV < T < T,. In this
range, we need to supplement Eq. (17) by the quartic terms,
which should be derived by continuing the expansion of
Eq. (A2) in powers of the A’s. In principle, this expansion
has the form

1 ~
Sy = 513/\/;& Z Z Baﬂys
{q;} v

XAa((h7V1)Aﬁ(QpVQ)AV(Q37V3)A5((]4’V4)7 (42)

where «,8,y,5 take the values S or N, and the sums are
restricted by ), q; = > _; v, =0.

The calculation of the coefficients B, 5 goes beyond the
scope of the present paper.’! Usually, these coefficients are
assumed to be independent of the momenta ; and frequencies
v;, since such dependencies are less relevant near the phase
transition in the renormalization group sense. Furthermore,

Eq. (18) shows that the interaction terms in Eq. (17), [Ag |2/k5
and |A N|2 /Ay, are equal to their bulk values multiplied by
pg and p,, respectively. This indicates a renormalization of

Ag and A, by the factors pS ? and by pl/ > respectively.
In analogy, we conjecture that the various coefficients in
Eq. (42) are also given by their bulk values, multiplied by
the same renormalization factors. We next replace these order
parameters with A, from Eq. (23). For simplicity, we restrict
the following discussion to the special case A, = 0. This
should suffice to demonstrate our arguments. In this special
case one has Ay = prg, a_ =ag = p%[)\;,g —ylu, =1
andu_ = 0. Also,a, = a, = 00, and therefore we can ignore
all the fluctuations associated with A . Finally, the quartic
action becomes

4
Sy = %ﬂAfoB_ Y S TTA @, (43)
{q;) v i=l

where again ), q; = Y, v; = 0 and we set B_ = p}B,, with
B, =7¢(3)/ (8m2T?) having the bulk value of the quartic
term.>? Keeping only the first term in Eq. (25), we find the usual
structure of the effective Ginzburg-Landau action, except for
the renormalization of the coefficients. As we discuss below,
the dependence of a_ on q and on v is very different from the
simple form used in standard Ginzburg-Landau theories.

The literature contains many ways to estimate the Ginzburg
region. Since here we calculate the persistent current, we
define that region as the range where the Gaussian calculation
presented in the previous section must be modified by inclusion
of the quartic terms. Expanding the partition function Z to
leading order in B_, the free energy becomes

2
F=—-ThnZ,+3N, B_ [Z‘ Z(lA(q,v)lz):| . (44
voq

where (- - - ) denotes averaging with the Gaussian action,

(1A_(q.v)P) = 1/[BNga_(q.v.T)]. (45)

The correction to the persistent current due to the quartic term
thus becomes

SeB T

2 lrrlrrme]

The above Gaussian results can be used only if this additional
contribution is smaller than that calculated above [Eq. (35)].
At |®| = 0, the denominators in the sums in Egs. (35)
and (46) vanish for n = £ =0, at the critical temperature
TS (®) which satisfies Eq. (30). Moving slightly away from
this temperature, that is, at small 7 — 71,%’ 5(®), each of these
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FIG. 6. (Color online) Tg;/7T%5 and THS/T3 versus py for

NegeT 5 = 10°. Note the factor of 10> on the y axis.

sums is dominated by its first term, with n = £ = 0. Most
of the discussions in the literature proceed by considering
only these “zero-dimensional classical” terms.>* Following
this “tradition,” that is, keeping only these leading terms in
all three sums, and comparing I with 6/, we find that for
® = 0 the latter can be neglected if

T 21¢@3
+ In |:_S:| > %, (47)
T, 42T N g P

where s was defined after Eq. (8). The left-hand side is the
denominator for n = £ = 0, which vanishes at the mean-field
transition temperature. Apart from multiplicative factors of
order unity, one obtains a similar zero-dimensional classical
condition using other definitions of the Ginzburg region.>334
Close to the transition at TCI(\)’ 5 one usually replaces T by TC](\)’ 5
in the denominator of the right-hand side. Equation (47) then
agrees with the usual Ginzburg criterion in d dimensions,
which would give (T, — T.) ~ In(T;,/T,) ~ T. 7/“~®, with
d =0, except for the additional factor 1/ pg. However,
this substitution is problematic when T3% is very small, as
in our case. Therefore, we prefer to keep 7 also on the
right-hand side, and then solve Eq. (47) as an equality. For
py < 0.5 and for the parameters used above, the resulting
T, turns out to be quite close to TC](\)’S , and therefore the
zero-dimensional classical Ginzburg region is very narrow.
Therefore, Fig. 6 shows these two temperatures only for
py > 0.65. As seen in this figure, the Ginzburg temperature
does not decay as fast as the transition temperature at large
values of p,. For example, for the value of N7 used
in the figure, we have Tg;(py = 0.8) =9 x 10’7ch), while
THS(py = 0.8) =6 x 107175 In any case, the “classical”
Ginzburg region is quite narrow. Had we stopped here (as done
in much of the literature), we would conclude that our Gaussian
results for the persistent current can be used for practically all
temperatures (above 7.V5) and relative widths of the bilayer.
As one moves away from the critical region, each of
the sums in Egs. (35) and (46) must be supplemented with
other terms, involving both nonzero wave vectors (n # 0) and
nonzero Matsubara frequencies (£ # 0). In fact, we find that as
n increases we need to include more values of £ to obtain con-
vergence, and that even the Gaussian approximation, on which
most of our results are based, requires the summation over
many classical and quantum fluctuations. For some reason,
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most of the literature ignores the “quantum” fluctuations com-
ing from nonzero ¢’s and keeps only the “one-dimensional”
terms with n # 0.33% As discussed above, and in Ref. 21,
the persistent current is affected by both types of fluctuations.
The sum in Eq. (35) always converges, becoming of order
1/In[T/ TC%] for TC% &« T « E,. Similarly, the last sum in
Eq. (46) also converges, becoming of order 1/(In[T/ TC%])Z.
In contrast, the first sum in Eq. (46) does not converge, and
thus it depends on the cutoffs imposed on the wave vectors
n and on the frequencies ¢. This problem arises since our
calculation necessitates the replacement of the “usual” Green
function 1/(T — T, + v + Dq?*) by 1/[2~' — y(q,v,T)], with
a logarithmic dependence at large T, v, and ¢ [see, e.g.,
Eq. (33)]. Since this sum depends on the cutoffs, the resulting
Ginzburg criterion will also depend on these cutoffs.*® In our
case, the dirty diffusive limit imposes the cutoffs |v|,Deffq2 <
1/t,, where 7 is the elastic mean-free time.?! Replacing
the sum Zv’q(l /a_) by some cutoff-dependent constant still
shows that |61/1| decreases with increasing 7. The details
of this cutoff-dependent criterion go beyond the scope of the
present paper.

Our calculation was done for an ensemble of proximity
rings in the same plane. Qualitatively, we expect similar
behavior for two rings which are deposited on top of each other,
which may be easier to realize experimentally. However, the
explicit calculation for the latter case still needs to be carried
out. It is also interesting to calculate the persistent current
when the bilayer is connected to leads. This also remains for
future calculations.

In conclusion, we have demonstrated that the effect of pair
weakening due to the proximity between a superconducting
ring and a normal (or a weakly superconducting) ring is similar
to, but not identical with, that of pair breaking: The persistent
current decays slowly with the relative width of the normal
layer and persists even when the superconducting transition
temperature (which decays faster) is very small. Since this
relative width can be controlled, it would be interesting to
check our quantitative predictions experimentally.

ACKNOWLEDGMENTS

We thank A. M. Finkel’stein for a useful discussion. This
work was supported by the US-Israel Binational Science
Foundation (BSF), by the Israel Science Foundation (ISF),
and by its Converging Technologies Program. O.E.W. and A.A.
acknowledge the support of the Albert Einstein Minerva Center
for Theoretical Physics, Weizmann Institute of Science, and
the hospitality of the Pacific Institute of Theoretical Physics
(PITP) at the University of British Columbia. J.G.E.H. also
acknowledges support from NSF Grant No. 1106110.

APPENDIX: THE PARTITION FUNCTION

Applying the Hubbard-Stratonovich transformation to
Eqg. (15), and integrating the fermionic part of the action, the
partition function is cast into the form?'

Z= /D{A(r,r),A*(r,r)}e*S, (A1)
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with the action

B
S:/dr/d
0

Here f is the inverse temperature and G~' is the inverse
Green’s function at equal positions and imaginary times,

2
BCOF _ Drriingsg ).

Vo 2 (A2)

G,! ioyA
glt=| 7 ol (A3)
(—ioy)A* G,
with
0 (0)
G-! = —d, — HTT HT¢ Ad
p = 1O _g —HO (Ad)
1 T W
being the particle inverse Green’s function and
(0) 0)
G-l — —8 +H; H % A5
"l HYO ~8, + M) | (A5
™

being the inverse Green’s function of the holes. The factor
B was introduced into the last term in Eq. (A2) to keep the
argument of the log dimensionless (it does not affect any of
the following discussion).

The integration over the bosonic fields in Eq. (A1) is carried
out using a stationary-phase analysis®' of the action S. At
temperatures above the transition temperature, this amounts to
expanding the second term on the right-hand side of Eq. (A2) to
second order in A (the first-order contribution to the expansion
being zero),

Tr{ln(BG ")}

= Tr{ln,B [G

drdt’
B>

where 2 denotes the volume of the system (we added the
factors of volume and B to keep S dimensionless). The first
term on the right-hand side of Eq. (A6) will give the partition
function of noninteracting electrons; the second one represents
the contribution of the superconducting fluctuations to that
function. Its calculation requires the correlation

Sl T

X Kr,r',t — )AX ,T)A*(r,7),

(A6)

Ky, t—17)= —(Tr{Gp(r,r’,r —
7)o, }),

where (---) indicates averaging over the impurity configu-
rations (see Ref. 30 for details). Upon averaging, the spatial
dependence of K becomes a function of x, x’, and p — p/,
where p L % (see Fig. 1). Hence,

Tr{In(BG ™)}
dxdx’
/ = ZZA QK (@.v)ALG,v),  (AB)

oy

xG,(r'r,t" — (A7)

where
Koo(qv) =YY (Tr{G(x.x".p; +q.p, + q.0 + v)
PP, @
xoyG'(x',.x, — pys — Pas — w)o,}), (A9)
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and both Green’s functions are the particle one,?! that is,
G = G,. [In Eq. (A8), d =dy +ds is the total width of
the sandwich.] We use the notations w = w, =7T(2n + 1)
for the fermionic Matsubara frequencies, and v = v, = 7 T2¢
for the bosonic frequencies. Note that q, p,, and p, are
two-dimensional vectors normal to x.

Inserting these results into the expression for the action [see
Eq. (A2)], the Gaussian fluctuation-induced partition function,
Zy 2, takes the form

Zhy = /D{Ax(q,v),Aj,(q,v)}e‘Sz, (A10)
with
* S(x —x')
S, = ZZ/dxdx A%(q.v) <,B o
Elexf(q,v)> Au(q,v) (A11)

(here V is the attractive interaction; in units of energy x
length). In the Cooper limit, the bosonic variable A takes
only two values as a function of x, Ay(q,v) for 0 < x <
dy, and Ag(q,v) for —dg < x < 0. Therefore, the action
becomes

S =Y > Alq.nS@.Ag.v), (A12)
q v
where
~ dyNyiy! 0
S(q,v)=ﬂ[N NIV _}
0 dgNgrg!
_i dlz\’K:NN(qu) dsa;NK:Ns(an) . (AI3)
dydKgy(q,v)  diKgs(q,v)

./\~/N(s) denotes the density of states of the normal (su-
perconducting) layer per unit length, and Af(q,v) =
{AN(q,v),A%(q,v)}.

The functlons K.v(q,v) [Eq. (A9)], are calculated by
extending the method employed in Refs. 24 and 25 to include
the dependence on v and on the two-dimensional wave vector
q. The calculation is valid in the dirty limit [in which
(D/27T)"/? is much larger than the mean-free path of the
relevant metal, where D is the diffusion coefficient]. For
simplicity, we omit the vector potential from this calculation;
its effect is incorporated into the result at the end of Sec. II.

We follow the derivation given in Ref. 24 and be-
gin by presenting the response function K in the
form

(Al4)

1
d_zlcxx’(qsv) - Zw Hxx’(q’vaw)'

Had the normal part of the bilayer filled the entire space, then
H . = H;i],), where

Hﬁivf)(q,v,w)
= /dqxeiqx(xfx/) N .
20| + |v| 42/, + Dy(q* + g2)
(A15)
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We have allowed for scattering off magnetic impurities
in this metal, whose effect is presented by the spin-
flip rate 1/7,. (The effect of scattering off nonmagnetic
impurities is contained in the diffusion coefficient.) As
seen from Eq. (A15), the function HS,) obeys a diffusion
equation

82
(|2w| + V| +2/1 + Dy’ = Dy

) H™(q,v,0)

= 27Ny 8(x — x). (A16)

Quite similarly, when the S metal fills the entire space one
finds

2
<|2w| + vl + Dsq’ — Dy Mz) Hy)(q.v,0)
= 27 N8(x — x').

Here it was assumed that the S metal is not doped
with magnetic impurities. It follows that in order to find
H,,» of the double layer, one has to solve the set of

(A17)
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equations
2

0
(|2a)| + vl +2/t + DNq2 _ DNW) H, .(q,v,w)

= 271./%,8()6 —x, x>0,
32
(|2a)| + v + Dyq* — DSW) H_.(q,v,0)
=2 N8(x —x'), x' <0, (A18)

with the appropriate boundary conditions. Such a scheme has
been undertaken in Refs. 24 and 25, leading to the result

N3
ﬁ? (q, l),a)),
dyNy +dgN

aNyN,
%P(q,v,a)),
dyNy +dgNy

HNN((], V,w) =

Hy(q,v,0) = Hgp(q,v,0) =
TN
dy N, +d N

where 7 (q,v,w) was defined in Eq. (20).
Inserting Eqs. (A14) and (A19) into Eq. (A13) brings the
action S [Eq. (A12)] into the form (17).

Hgo(q,v,0) = y(q,v,w), (A19)
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