
PHYSICAL REVIEW B 84, 184516 (2011)

Fluctuations and order of antiferromagnetism induced by paramagnetic pair breaking
in superconducting vortex lattices
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Effects of the strong Pauli-paramagnetic pair breaking (PPB) on the vortex lattice in d-wave superconductors
are theoretically studied by putting emphasis on consequences of the PPB-induced antiferromagnetic (AFM)
ordering in the spatial modulation in the vortex lattice. It is shown that the PPB-induced AFM fluctuation
in the superconducting state leads to an enhancement of the vortex lattice form factor which is a measure
of spatial variations of the internal magnetic field and that the enhancement becomes more remarkable as an
AFM instability is approached. It is also demonstrated that the PPB-induced AFM ordering is assisted by the
vortex-lattice modulation, and thus, that the resulting AFM order is spatially modulated, while it is not localized
in the vortex cores but coexistent with the nonvanishing superconducting order parameter. These results are
discussed in connection with two phenomena observed in CeCoIn5, the anomalous field dependence of the vortex
lattice form factor and the AFM order appearing inside the high-field and low-temperature superconducting
phase.
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I. INTRODUCTION

An antiferromagnetic (AFM) instability occurring near a
superconducting (SC) phase with d-wave symmetry has been
repeatedly detected in experiments and discussed theoretically.
In zero field, the AFM and SC orders are competitive with each
other and tend not to coexist with each other.1 Recently, AFM
quantum critical phenomena near the SC pair-breaking field
Hc2(0) have been observed commonly in the heavy-fermion
superconductors such as CeCoIn5,2–4 pressured CeRhIn5,5

NpPd5Al2,6 and Ce2PdIn8,7 which indicates field-tuned prox-
imity of an AFM instability to the onset of the SC order.
However, these materials do not show any magnetic order in
the normal state: An AFM fluctuation is merely enhanced with
decreasing field toward Hc2(0) in the nonmagnetic normal
state. Further, it has been also clarified in CeCoIn5 that the
AFM fluctuation is enhanced as Hc2(0) is approached by
increasing the field in the SC phase. A basic origin of the
strong AFM fluctuation induced in the vicinity of Hc2(0) seems
to consist in characteristic features of these superconductors,
i.e., the strong Pauli-paramagnetic pair-breaking (PPB) effect
and a d-wave SC pairing symmetry. In our previous paper,8

we have shown that, in a SC phase with a d-wave pairing
symmetry, the PPB effect enhanced by increasing field and
decreasing temperature tends to induce an AFM order and
that the field-induced AFM fluctuation found below Hc2(0)
can be explained as a result of this novel PPB effect. In this
paper, we will extend our previous theory to describe spatial
variations of the AFM order in a SC vortex lattice by bearing
the experimental studies on CeCoIn5 in our mind.

CeCoIn5 is a spin-singlet superconductor with a layered
crystal structure along the c axis9 and its SC pairing symmetry
is believed to be of dx2−y2 type.10 In the SC state in a
magnetic field perpendicular to the basal plane (H ‖ c), an
anomalous field dependence of the vortex lattice form factor
(VLFF), which is a measure of spatial distribution of the
internal magnetic field in vortex lattice states, has been

observed in neutron scattering experiments. It has been known
that, although VLFF decreases with increasing field in the
conventional type II superconductors,11,12 it rather increases
with increasing field in CeCoIn5, and that the slope of VLFF
in this material becomes sharp abruptly in higher fields near
Hc2(0) at low temperatures.13,14 First, this intriguing behavior
has been explained as a result of strong PPB.15 However, the
origin of the abrupt increase in higher fields has not been
sufficiently explained there. In the preceding theoretical study
on VLFF in Ref. 15, the strong AFM fluctuation induced in
the SC state just below the Hc2(T ) curve3,4,18–20 is not taken
into account. If the AFM order and fluctuation occurring in
CeCoIn5 just below Hc2(0) are of a SC origin, it is rather
necessary to incorporate effects of the PPB-induced AFM
fluctuation in explaining VLFF data. In addition, a possible
relation between such a field-induced increase of VLFF and
the proposed FFLO state16,17 at the high-field end of the SC
phase should be considered.

On the other hand, in a magnetic field parallel to the
basal plane (H ‖ ab), the existence of a high-field and
low-temperature (HFLT) SC phase has been clarified pre-
viously and has been identified with a spatially modulated
Fulde-Ferrell-Larkin-Ovchinnikov (FFLO)21,22 vortex lattice
state.23,24 However, recent neutron scattering experiments have
shown that an AFM order with its staggered moment vector
oriented along the c axis exists only inside the HFLT phase.25,26

On the other hand, the doping experiment27 indicating that
the HFLT phase is quite sensitive to both the magnetic and
nonmagnetic impurities and is destroyed by quite a small
amount of nonmagnetic impurities supports the FFLO picture
on this HFLT phase.28 Further, a recent NMR measurement has
clarified the presence in the HFLT phase of normal state re-
gions possibly corresponding to the FFLO nodal planes of the
SC order parameter, while the AFM order in the HFLT phase is,
at least in the higher field region of the HFLT phase, apparently
homogeneous in real space.29 Although several microscopic
pictures on an AFM order in the d-wave superconductors in
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high fields have been proposed so far,30–32 these experimental
results are comprehensively explained by the scenario that
the HFLT phase is a realization of the longitudinal FFLO
vortex lattice state28 and that the AFM order observed inside
the HFLT phase is induced by PPB and favors coexistence
with the SC order.30 In Ref. 30, the spatial distribution of
the PPB-induced AFM order in the presence of the FFLO
modulation parallel to the applied magnetic field has been
theoretically investigated in the Pauli limit where the effect of
the in-plane vortex-lattice modulation is neglected. Although
the result obtained in the Pauli limit seems to give a correct
picture on spatial orderings over larger scales, the vortex
lattice modulation must be inevitably included to describe local
properties such as the internal magnetic field and the spatial
distribution of the AFM order. In this paper, we will investigate
the spatial distributions of the internal magnetic field brought
by the AFM fluctuation and a possible AFM order in the
presence of the vortex lattice, taking account of both the orbital
and Pauli-paramagnetic pair-breaking effects in the Ginzburg-
Landau (GL) approach where the perturbative expansion with
respect to the SC and AFM order parameters is used. It will
be shown that VLFF is enhanced by an additional magnetic
screening brought by the PPB-induced AFM fluctuation and
that the enhancement becomes more remarkable as an AFM
instability is approached, which suggests that the anomalous
field dependence of VLFF observed in CeCoIn5 in H ‖ c is due
to the PPB-induced AFM critical fluctuation. It will also be
discussed that the spatial modulation of the SC vortex lattice
enhances the AFM fluctuation, and thus that an AFM order
with a spatial modulation synchronized with the vortex lattice
appears. The modulated AFM is not localized in the vortex core
but prefers to coexist with a nonvanishing SC order, which is
the same tendency as that of the AFM order modulated by the
longitudinal FFLO structure of the SC order parameter.8,30

The outline of this paper is as follows: In Sec. II, we
introduce the theoretical model and derive a Ginzburg-Landau
(GL) free-energy functional and a Maxwell equation for the
internal magnetic field. The effect of the PPB-induced AFM
fluctuation on VLFF in the case with H ‖ c is discussed in
Sec. III. This is followed by Sec. IV in which we argue the
PPB-induced AFM order in the SC vortex lattice state in the
case with H ‖ ab. Summary is provided in Sec. VI.

II. FORMULATION

A. Electronic Hamiltonian

We start from the electronic Hamiltonian involving a kinetic
energy for noninteracting quasiparticles with the Zeeman
energy H0 and two interaction terms leading to d-wave
superconductivity HSC and antiferromagnetism HAFM. It can
be written as H = H0 + HSC + HAFM, where

H0 =
∑

σ

∫
r

ϕ†
σ (r)[ε(−i ∇ + |e|A(r))

− σμB gB(r)]ϕσ (r),

HSC = −|g|
∑

q

�̂†(q) �̂(q), (1)

HAFM = −U
∑

q

Ŝ†(q) · Ŝ(q)

with

ϕσ (r) = 1√
V

∑
p

ĉp,σ ei(p⊥·r⊥+ipzd j ),

�̂(q) = 1

2

∑
p,α,β

(−i σy)α,β wp ĉ−p+ q
2 ,αĉp+ q

2 ,β , (2)

Ŝ(q) =
∑
p,α,β

ĉ†p,α (σ )α,β ĉp+Q0+q,β .

Here, the layered crystal structure with an interlayer distance d

in the z direction is assumed, and a position of a quasiparticle r
is defined by (r⊥,dj ) with an integer j specifying the location
of the layer. The unit h̄ = c = kB = 1 is used throughout this
paper. In the Hamiltonian, ĉp,α is the annihilation operator
for a quasiparticle with momentum p and spin projection α,
ε(p) is a kinetic energy measured from the Fermi level EF ,
and the Zeeman energy is expressed as μB gB(r) with the
magnetic flux B(r), a g factor, and the Bohr magneton μB .
The vector potential A(r) is expressed as A(r) = A0(r) + a(r)
and is related to the magnetic flux by the equation

B(r) = ∇ × A(r) = H Ẑ + ∇ × a(r), (3)

where ∇ × A0(r) = H, and spatially varying internal magnetic
fields are given in terms of a(r). The direction of the uniform
external magnetic field H is denoted by Ẑ and will be fixed
along the z axis (Ẑ = ẑ) in H ‖ c case and the y axis (Ẑ = ŷ)
in H ‖ ab case. Concerning the interaction terms, |g| and U

are coupling constants with positive values, σi (i = x,y,z) are
the Pauli matrices, wp denotes a SC pairing symmetry, and
Q0 = (π/a,π/a,π/d) with a lattice constant a in the ab plane
is the commensurate nesting vector. In our model Hamiltonian,
antiferromagnetism is induced by the nesting property of the
dispersion ε(p) which, in the case with the perfect nesting,
satisfies the relation ε(p + Q0) = −ε(p).

In order to discuss AFM order and fluctuation in the SC
state, we introduce the SC pair field 	(q) and the AFM
staggered field m(q) which are defined by

	(q) = |g|〈�̂(q)〉, m(q) = U 〈Ŝ(q)〉, (4)

where 〈 〉 represents the statistical average. Here, 	(q) [m(q)]
plays the role of the SC [AFM] order parameter. In the mean-
field approximation, the interaction terms in the Hamiltonian
are expressed as

HSC = 1

|g|
∑

q

|	(q)|2 −
∑

q

(	(q) �̂†(q) + H.c.),

(5)

HAFM = 1

U

∑
q

|m(q)|2 −
∑

q

(m(q) · Ŝ†(q) + H.c.).

The structural properties of the SC gap, the Fermi surface,
and the antiferromagnetism in CeCoIn5 of our interest are
reflected in our theoretical model in the following manner:
Since the SC pairing symmetry wp of this material is of dx2−y2

type, the identity satisfied in the dx2−y2 pairing state

wp+Q0 = −wp (6)

will be used. In addition, since the electron 14th band,9 which
has the heaviest effective mass and thus is more effective for the
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antiferromagnetism as well as the d-wave superconductivity,
can be described by the tight-binding model with higher order
hopping terms included,30 a relation satisfied by the realistic
dispersion could be expressed as

ε(p + Q0) = −ε(p) + TcδIC, (7)

where the deviation from the perfect nesting condition is scaled
by the SC transition temperature Tc and is measured by the
dimensionless parameter δIC.33 Although δIC is p dependent in
general, δIC is assumed to be a constant value since the details
of the dispersion do not change our result qualitatively.30 Then,
the Fermi velocity vector vp defined by d ε(p)/d p satisfies
the relation vp+Q0 = −vp. Further, although in principle the
AFM moment vector m(q) can be oriented in any direction,
the two typical configurations, m ‖ H and m ⊥ H, will be
considered since, in CeCoIn5, the configuration m ‖ c ⊥ H
has been confirmed in the AFM order observed inside the
HFLT phase in the H ‖ ab case and m ‖ H would be realized
in the H ‖ c case if m were locked in the c axis.

B. Ginzburg-Landau free-energy functional

The free energy of this system is given by F =
−T ln Trc,c†,	,	∗,m(exp[−(H0 + HSC + HAFM)/T ]) + ∫

d3r

B2(r)/(8π ). In this paper, we derive the Ginzburg-Landau
(GL) free energy of a form expanded in powers of both |	(q)|
and |m(q)|, taking both the orbital and Pauli-paramagnetic
pair-breaking effects into account. Formally, the mean-field
GL free-energy density in the present system can be written
as

FGL(	,m) = F (2)
	 + F (4)

	 + F (6)
	 + F (2)

m + F (2,2)
	,m + F (4)

m ,

(8)

where F (l)
	 (F (l)

m ) is the lth-order term dependent only on |	|
(|m|), and the leading-order SC-AFM coupling term F (2,2)

	,m ,
which is proportional to |	|2 |m|2, is incorporated. We note
that, although the correction to the |m|4 term F (2,4)

	,m , which
is proportional to |	|2|m|4, should be also incorporated in
examining the character of the AFM transition, F (2,4)

	,m is
omitted here since we have already checked that it tends
to make the AFM transition a continuous one.30 First, we
determine the Hc2(T ) curve and the amplitude of the spatially
averaged gap function 	2 ≡ 〈|	(r)|2〉sp from the SC part of the
GL free energy F (2)

	 + F (4)
	 + F (6)

	 . This procedure in which
	 and m are separately considered is justified at least near the
second-order AFM transition. Since FGL(	,m = 0) takes the
form

FGL(	,0) = V2|	|2 + V4

2
|	|4 + V6

3
|	|6 (9)

with the coefficients Vi whose expressions reflect the
microscopic details, the discontinuous Hc2(T ) curve is

determined by

V2 = 3

16

V 2
4

V6
(10)

and the 	 which minimizes FGL(	,m = 0) is determined by

|	0|2 =
−V4 +

√
V 2

4 − 4V2V6

2V6
. (11)

Next, AFM fluctuation inside the SC phase determined by
FGL(	,0) will be discussed based on the usual GL theory
for the AFM part of the free energy F (2)

m + F (2,2)
	0,m

+ F (4)
m . The

AFM instability is determined by

1

m2

(
F (2)

m + F (2,2)
	0,m

) = 0, (12)

where m2 ≡ 〈|m(r)|2〉sp is the spatially averaged value of
the AFM order parameter. The m minimizing FGL(	0,m) −
FGL(	0,0) is determined by

|m0|2 = −1

2

(
F (2)

m + F (2,2)
	0,m

)/
m2

F (4)
m

/
m4

. (13)

To derive the GL free-energy functional FGL, we will
carry out the Feynman-diagrammatic calculation. Regarding
the field dependence of the quasiparticle Green’s func-
tion −〈Tτϕσ (r,τ ) ϕ†

σ (r′,0)〉 = T
∑

εn
Gεn,σ (r,r′) e−εnτ with a

fermion Matsubara frequency εn = πT (2n + 1), we will use
the quasiclassical approximation for the Green’s function
defined in the normal state Gεn,σ (r,r1), namely,

Gεn,σ (r,r1) 
 Gεn,σ (r − r1) ei|e| ∫ r1
r ds·A(s), (14)

where Gεn,σ (r − r1) is defined in the uniform normal state and
its Fourier transformation is given by

Gεn,σ (p) = (iεn − [ ε(p) − σ ITc])−1 (15)

with I = μB gH/Tc. The orbital pair-breaking effect, which
is brought by exp[i|e| ∫ ds · A(s)] in Eq. (14), can be fully
incorporated in the diagrammatic calculation by using the
relation34

exp

(
i2|e|

∫ r1

r
ds · A(s)

)
	(r1) = e−i(r−r1)·�(r)	(r) (16)

with

�(r) = −i ∇ + 2|e|A(r). (17)
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The quadratic, quartic, and sixth-order terms with respect to |	| have been already derived elsewhere23,35 and are
written as

F (2)
	 = 1

V

∫
r

	∗(r)

(
1

|g| − K̂
(2)
	 (�)

)
	(r),

K̂
(2)
	 (�) = T

2

∑
εn,σ

∑
p

|wp|2 Gεn,σ (p)G−εn,−σ (−p + �),

F (4)
	 = 1

2V

∫
r

K̂
(4)
	 (�i)	

∗(s1)	(s2)	∗(s3)	(s4)|si→r,

K̂
(4)
	 (�i) = T

2

∑
εn,σ

∑
p

|wp|4 Gεn,σ (p)G−εn,−σ (−p + �
†
1)G−εn,−σ (−p + �2)Gεn,σ (p + �

†
3 − �2), (18)

F (6)
	 = 1

3V

∫
r

K̂
(6)
	 (�i)	

∗(s1)	(s2)	∗(s3)	(s4)	∗(s5)	(s6)|si→r,

K̂
(6)
	 (�i) = −T

2

∑
εn,σ

∑
p

|wp|6 Gεn,σ (p)G−εn,−σ (−p + �
†
1)G−εn,−σ (−p + �6)

×Gεn,σ (p − �
†
1 + �2)G−εn,−σ (−p + �

†
1 − �2 + �

†
3)Gεn,σ (p − �6 + �

†
5).

The concrete expressions of the coefficients Vi in Eq. (9) are given in the Appendix. The AFM contributions in the GL free
energy are formally written as

F (2)
m =

∑
q

(
1

U
+ K̂ (2)

m (q)

)
|m(q)|2,

F (2,2)
	,m =

∑
q,q′

K̂
(2,2)
	,m (q,q′) m(q)m∗(q′), (19)

F (4)
m = 1

2

∑
qi (i=1−4)

K̂ (4)
m (qi) m(q1)m∗(q2)m(q3)m∗(q4).

The |m|2 terms are described by Feynman diagrams shown in Fig. 1. Figure 1(a) corresponds to F (2)
m , and F (2,2)

	,m consists of the

contributions described by the two types of diagrams (b) and (c) in Fig. 1. Then, K̂ (2)
m (q) and K̂

(2,2)
	,m (q,q′) are given by

1

U
+ K̂ (2)

m (q) =
(

1

U
+ 1

2

∑
σ

T
∑
εn

∑
p

Gεn,σ (p)Gεn,σ (p + Q0 + q)

)

= N (0)

(
ln

T

TN

+ 2πT
∑
εn>0

[
1

|εn| − 1

2

∑
σ

∑
sεn =±1

〈
i sεn

d
(−)
+,q

〉
FS

])
,

K̂
(2,2)
	,m (q,q′) = −1

2

∑
σ

T
∑
εn

∑
p

1

V

∫
r

[
2 |wp|2 Gεn,σ (p)Gεn,σ (p − Q0 − q)Gεn,σ (p − (q − q′))G−εn,−σ (−p + �1 + (q − q′))

−wpwp+Q0 Gεn,σ (p)Gεn,σ (p − Q0 − q)G−εn,−σ (−p + Q0 + q + �1)G−εn,−σ ( − p + �1 + (q − q′))
]

× ei r·(q−q′)	∗(r) 	(s1)|s1→r

= −1

2

∑
σ

2πT N (0)
∑
εn

(
i sεn

) ∫
r

ei r·(q−q′)	∗(r)

〈
2 |wp|2

[
1

d
(−)
σ,�1

d
(−)
σ,�1+q−q ′ d

(−)
+,q

+ 1

d
(−)
σ,�1

d
(−)
+,q d

(−)
+,q ′

]

−wpwp+Q0

[
− 1

d
(−)
σ,�1+q−q ′ d

(−)
+,q d

(+)
+,q ′

− 1

d
(+)
σ ,�1

d
(−)
+,q d

(+)
+,q ′

]
	(s1)

〉
FS

∣∣∣∣∣
s1→r

(20)

with

d
(±)
σ,�i

= 2i εn + 2σITc ± vp · �i ,
(21)

d
(±)
+,q = 2i εn + (σ + σ )ITc ± (TcδIC + vp · q),

where sεn
represents sgn(εn), the summation for the momentum p has been carried out by using the usual replacement

∑
p →

N (0)
∫

dε(p) 〈〉FS, N (0) is the density of state per spin at the Fermi level, 〈〉FS represents the angle average on the Fermi surface,
and the approximation ε(p + �) 
 ε(p) + vp · � (|�|/|p| � 1) is used. TN is the AFM transition temperature in the normal
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state. It should be noted that σ changes its sign depending on the orientation of m relative to the external magnetic field H, i.e.,
σ = σ for m ‖ H and σ = −σ for m ⊥ H.

By using the transformation

1

D
=

∫ ∞

0
dρ exp[−D ρ] (Re D > 0), (22)

Eq. (20) can be rewritten as

1

U
+ K̂ (2)

m (q) = N (0)

{
ln

T

TN

+
∫ ∞

0
dρ

[
2πt

sinh(2πt ρ)
− fcos(ρ,0)

〈
cos

((
δIC + T −1

c vp · q
)
ρ
)〉

FS

]}
(23)

and

K̂
(2,2)
	,m (q,q′) = N (0)

T 2
c

3∏
i=1

∫ ∞

0
dρi

1

V

∫
r

ei r·(q−q′)	∗(r)
1

2

∑
sεn =±1

4∑
j=1

Pj fcos

(
3∑

i=1

ρi, Aj

)

×
〈
|wp|2 exp

[
isεn

(
δIC(Bj + Cj ) + vp · q

Tc

Bj + vp · q′

Tc

Cj

)]
exp

[
isεT

−1
c vp · �1 Aj

]
	(s1)

〉
FS

∣∣∣∣
s1→r

, (24)

where the relation wp+Q0 = −wp is used, the functions

fcos(x,y) = 2πt

sinh[2πt x]
cos

(
I

[
2 y + σ + σ

σ
(x − y)

])
,

(25)

fsin(x,y) = 2πt

sinh[2πt x]
sin

(
I

[
2 y + σ + σ

σ
(x − y)

])

are introduced for convenience, and the coefficients Pj , Aj , Bj , and Cj are shown in Table I. In the same manner, K̂ (4)
m (qi) in

Eq. (19) is calculated as

K̂ (4)
m (qi) = T

∑
εn,σ

∑
p

Gεn,σ (p)Gεn,σ (p + Q0 + q2)Gεn,σ (p + q2 − q3)Gεn,σ (p + Q0 + q1) δ�q

= δ�q

N (0)

T 2
c

3∏
i=1

∫ ∞

0
dρi fcos

(
3∑

i=1

ρi,0

)
cos

(
δIC

(
3∑

i=1

ρi

))〈
cos

(
T −1

c [vp · q1(ρ1 + ρ2) + vp · q2(−ρ2 + ρ3)

+ vp · q3ρ2]
) + cos

(
T −1

c [vp · q1ρ1 + vp · q2(−ρ1 + ρ2) + vp · q3(ρ1 + ρ3)]
)〉

FS, (26)

where δ�q
denotes δq4,q1−q2+q3 .

Next, we calculate
∫

r ei r·(q−q′)	∗(r) exp[isεA T −1
c vp ·

�i]	(si)|si→r in Eq. (24). In the presence of a magnetic field,
the SC gap function 	(r) has a spatial modulation due to
vortices induced by the orbital pair-breaking effect. In this
paper, the SC gap function is assumed to take the form of a
familiar Abrikosov vortex lattice

	(r) = 	ϕ0(X,Y ) (27)

Δ Δ Δ

Δ

(a) (b) (c)

m m m m m m

FIG. 1. Feynman diagrams describing the second-order terms
with respect to the AFM order parameter |m| in the GL free energy.
The |m|2 term in the normal state F (2)

m is described by (a) and
the correction term brought by the SC order F (2,2)

	,m consists of the
contributions coming from the two types of diagrams (b) and (c). A
solid line denotes the quasiparticle Green’s function defined in the
normal state.

with

ϕ0(X,Y ) =
√

k√
π

∞∑
s=−∞

exp

[
i

(
sk

rH

Y + π

2
s2

)

− 1

2

(
X

rH

+ sk

)2]
, (28)

where rH is the magnetic length defined by rH = (2|e|H )−1/2

and a structure of the vortex lattice is specified by k. The coor-
dinate (X,Y ) denotes the plane perpendicular to the magnetic
field and is defined by (x,y) for Ẑ ‖ ẑ and (γ 1/2z,γ −1/2x) for
Ẑ ‖ ŷ, where γ denotes the ratio of the SC coherence length
in the basal (ab) plane to that in the direction along the c

TABLE I. Coefficients Pj , Aj , Bj , and Cj in Eqs. (24) and (30).

j Pj Aj Bj Cj

1 2 ρ1 + ρ2 ρ2 + ρ3 −ρ2

2 2 ρ1 ρ3 ρ2

3 −1 ρ1 ρ1 + ρ3 −ρ1 − ρ2

4 −1 ρ1 −ρ3 ρ2

184516-5
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axis and is expressed as
√

〈v2
p,x〉FS/〈v2

p,z〉FS. In our numerical

calculation, k =
√

π
√

3 describing the triangular lattice is
used since, in the high-field SC phase of CeCoIn5 in H ‖ c,

the square lattice characteristic of d-wave superconductors is
deformed into nearly triangular ones due to the strong PPB
effect.10,13 By using the identity23

exp

[
iA

vp · �

Tc

]
ϕ0(X,Y ) = exp

[
− 1

2
A2 (|η|2 − η∗2)

]
ϕ0(X + Aη∗√2rH ,Y ) (29)

with η = (vp,x + i vp,y)/(
√

2 rH Tc) for Ẑ ‖ ẑ and η = (γ 1/2vp,z + i γ −1/2vp,x)/(
√

2 rH Tc) for Ẑ ‖ ŷ, we obtain

K̂
(2,2)
	,m (q,q′) = N (0)

|	|2
T 2

c

3∏
i=1

∫ ∞

0
dρi

1

V

∫
r
ei(q−q′)·r ∑

K⊥

T
(2)

K⊥ eiK⊥·(X,Y )
4∑

j=1

Pj fcos

(
3∑

i=1

ρi, Aj

)
cos(δIC (Bj + Cj ))

×
〈
|wp|2 exp

[
− |η|2

2
A2

j

]
cos

(
η · K⊥rH√

2
Aj + vp · q

Tc

Bj + vp · q′

Tc

Cj

)
cosh

(
(η × K⊥rH )z√

2
Aj

)〉
FS

, (30)

where η = (Re η,Im η) and K⊥ = (Kx,Ky) is a reciprocal
lattice vector of the SC vortex lattice in the plane perpendicular
to the magnetic field. The details of the calculation in
incorporating the orbital pair-breaking effect and the useful
identities which will be used below are shown in the Appendix.

According to Eq. (30), the SC-AFM coupling term is
nonvanishing only when (qx − q ′

x, qy − q ′
y, qz − q ′

z) is equal

to −(Kx,Ky,0) in Ẑ ‖ ẑ and −(γ −1/2Ky,0,γ 1/2Kx) in Ẑ ‖ ŷ.

C. Vortex lattice form factor and the internal magnetic field

In the vortex lattice state, the SC gap function is ex-
pressed as |	(X,Y )|2 = ∑

K⊥ T
(2)

K⊥ exp[i K⊥ · (X,Y )]. Then,
the longitudinal flux distribution B(X,Y ) Ẑ is also expressed
with K⊥,

B(X,Y ) =
∑
K⊥

FK⊥ exp[i K⊥ · (X,Y )]. (31)

The Fourier component |FK⊥| with the smallest |K⊥| �= 0
corresponds to VLFF which is, in the neutron scattering exper-
iment, obtained from the integrated intensity of a diffraction
peak.13 Since VLFF measures the inhomogeneous part of the
magnetic flux, the problem results in obtaining the spatially
varying internal magnetic field.

We derive a Maxwell equation relating the internal mag-
netic field b(r) ≡ ∇ × a(r) in Eq. (3) to screening currents
from the saddle point equation of the total free energy with
respect to A δF/δA = 0; i.e., 〈δH0/δA〉|A=A0 + ∇ × [∇ ×
A(r)]/(4π ) = 0. Then, the Maxwell equation is given by

− 1

4π
∇ × B(r) 
 T

∑
εn,σ

∑
p

(−|e|vp)Gεn,σ (p; r) − ∇

×
(

T
∑
εn,σ

∑
p

μBg σ Gεn,σ (p; r)

)
Ẑ, (32)

where higher order terms in A have been dropped in
Eq. (32) because their contributions are negligibly small
within the quasiclassical approximation, and Gεn,σ (p; r) is a
Fourier transformation of the quasiparticle Green’s function
Gεn,σ (r,r′) and will be given later. On the right-hand side of
Eq. (32), the first term is the usual term expressing the current
density, while the second term arises from the Zeeman term.36

In this paper, we will use the perturbative expansion for the
quasiparticle Green’s function with respect to both |	| and
|m|. Then, Gεn,σ (p; r) can be written as

Gεn,σ (p; r) = G(2)
εn,σ

(p; r) + G(4)
εn,σ

(p; r)

+G(0,2)
εn,σ

(p; r) + G(2,2)
εn,σ

(p; r) (33)

with

G(2)
εn,σ

(p; r) = −Gεn,σ (−p + �1)G−εn,−σ (p)Gεn,σ (−p + �
†
2) |wp|2 	(s1)	∗(s2)|si→r,

G(4)
εn,σ

(p; r) = Gεn,σ (−p + �1 − �
†
2)G−εn,−σ (p + �

†
2)Gεn,σ (−p)G−εn,−σ (p + �3)Gεn,σ (−p − �3 + �

†
4)

× |wp|4 	(s1)	∗(s2)	(s3)	∗(s4)
∣∣
si→r,

G(0,2)
εn,σ

(p; r) =
∑
q,q′

m(q) m∗(q′) ei(q−q′)·r Gεn,σ (−p − q′)Gεn,σ (−p − Q0)Gεn,σ (−p − q),

G(2,2)
εn,σ

(p; r) = −
∑
q,q′

m(q) m∗(q′) ei(q−q′)·r Gεn,σ (−p + �1 − q′)Gεn,σ (−p + �
†
2 − q)

[|wp|2
{
Gεn,σ (−p − Q0 + �1)

×Gεn,σ (−p + �1 − q)G−εn,−σ (p + q) + (�1 ↔ �
†
2, q ↔ q′)} + |wp|2

{
G−εn,−σ (p + q′)G−εn,−σ (p + Q0)

×G−εn,−σ (p + q) + Gεn,σ (−p + Q0 + �1)G−εn,−σ (p − Q0)Gεn,σ (−p + Q0 + �
†
2)
}

184516-6
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−wpwp+Q0

{
Gεn,σ (−p + Q0 + �1)G−εn,−σ (p − Q0)G−εn,−σ (p − q′) + (�1 ↔ �

†
2, q ↔ q′)

}]
×	(s1) 	∗(s2)|si→r, (34)

where G(n)
εn,σ

and G(n,2)
εn,σ

denote the contributions proportional
to |	|n and |	|n|m|2, respectively. The contribution G(0)

εn,σ
has

been dropped since it only gives a spatially uniform flux.
We note that the SC fourth-order term G(4) is incorporated
since, in the case with strong PPB of our interest, |	| is finite
even on the Hc2(T ) curve at low temperatures due to the
first-order Hc2 transition and higher order SC contributions
are not safely negligible. The contributions G(2), G(4), and
G(0,2) are described by the Feynman diagrams (a), (b), and
(c) in Fig. 2, respectively. The SC-AFM coupling term G(2,2)

consists of the contributions described by the three types of
Feynman diagrams (d)–(f) in Fig. 2.

Equation (32) indicates that the magnetic flux can be written
as

B(r) = HẐ + b(2)
	 (r) + b(4)

	 (r) + b(0,2)
m (r) + b(2,2)

	,m(r), (35)

where b(l)
	 (r) and b(l,m)

	,m (r) are the internal magnetic fields
coming from G(l)

εn,σ
and G(l,m)

εn,σ
, respectively. First, the second-

order contribution b(2)
	 (r) will be calculated. By using the

transformation (22), we have

T
∑
εn

∫
dε(p) G(2)

εn,σ
(p; r) = T

∑
εn

|wp|2 −2πi sεn

d
(+)
σ,�1

d
(+)

σ,�
†
2

	(s1)	∗(s2)

∣∣∣∣∣
si→r

= 1

Tc

∫ ∞

0
dρ1 dρ2

2πt

sinh[2πt(ρ1 + ρ2)]

1

2

∑
sεn =±1

(
isεn

)
exp

[
isεn

I 2σ (ρ1 + ρ2)
]

× |wp|2 exp
[
isεn

T −1
c (ρ1vp · �1 + ρ2vp · �

†
2)
]
	(s1)	∗(s2)

∣∣∣∣∣
si→r

. (36)

Further, with the help of Eq. (A3), we obtain

−b(2)
	 (r)

4π
= Ẑ

2|e|vF rH N (0)|	|2
Tc

∫ ∞

0
dρ1 dρ2

∑
K⊥�=0

T
(2)

K⊥ eiK⊥·(X,Y )
〈|wp|2 b̂

(2)
K⊥,vp

(ρ1,2) e− |η|2
2 (ρ1+ρ2)2 〉

FS,

b̂
(2)
K⊥,vp

(ρ1,2) = cos

(
η · K⊥rH√

2
(ρ1 − ρ2)

)[
fcos(ρ1 + ρ2,ρ1 + ρ2)

(vp × K̃ rH )Ẑ
vF |K̃ rH |2 sinh

(
(η × K⊥rH )z√

2
(ρ1 + ρ2)

)

+ I

π

rH

ξ0
fsin

(
ρ1 + ρ2,ρ1 + ρ2

)
cosh

(
(η × K⊥rH )z√

2
(ρ1 + ρ2)

)]
, (37)

where vF is the Fermi velocity in the pure two-dimensional system and ξ0 is the SC coherence length at T = 0 defined by
ξ0 = vF /(2π Tc). Here, the term proportional to (i|e|vp) is transformed, with the rotation operator ∇ × · · ·, in the form

∑
K⊥�=0

ivp fK⊥(vp)eiK⊥·(X,Y ) 
 ∇ ×
( ∑

K⊥�=0

(vp × K̃)Ẑ
|K̃|2 fK⊥(vp)eiK⊥·(X,Y )

)
Ẑ, (38)

where K̃ is defined by K̃ = (Kx,Ky,0) for Ẑ ‖ ẑ and K̃ = (γ −1/2Ky,0,γ 1/2Kx) for Ẑ ‖ ŷ.
To check the result obtained here, we consider the internal field near Tc at nearly zero magnetic field, i.e., in the GL region.

We take the limit t → 1 and H → 0 (or equivalently, η → 0) in Eq. (37) in the H ‖ c case. Then, the contribution arising from
the Zeeman term, which is proportional to I in Eq. (37), vanishes, and the remnant orbital contribution is expressed as

lim
T →Tc,H→0

−b(2)
	 (r)

4π
= 2π |e|v2

F N (0)|	|2
T 2

c

∑
K⊥

T
(2)

K⊥ eiK⊥·r⊥
∫ ∞

0
dρ

ρ1 + ρ2

sinh[2π (ρ1 + ρ2)]

〈
|wp|2

(vp × K⊥)2
z

v2
F |K⊥|2

〉
FS

= CGL
|	|2
T 2

c

∑
K⊥

T
(2)

K⊥ eiK⊥·r⊥

〈
|wp|2

(vp × K⊥)2
z

v2
F |K⊥|2

〉
FS

(39)

with

CGL ≡ 4|e|v2
F N (0)

(2π )2

7

8
ζ (3), (40)
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KAZUSHI AOYAMA AND RYUSUKE IKEDA PHYSICAL REVIEW B 84, 184516 (2011)

where
∫ ∞

0 dρ ρ2/ sinh[2π ρ] = 4
∑

n�0 1/[2π (2n + 1)]3 is used. Equation (39) is a well-known familiar form of the internal
magnetic field obtained in the GL region.34

Next, we will calculate the fourth-order contribution b(4)
	 (r). By carrying out the integral

∫
dε(p) and using the transformation

(22), we have

T
∑
εn

∫
dε(p) G(4)

εn,σ
(p; r) = T

∑
εn

( − 2π isεn

)|wp|4
[

1

d
(+)
σ,�1

d
(+)

σ,�
†
2

d
(+)
σ,�3

d
(+)

σ,�
†
4

+ 1

d
(+)
σ,�1

d
(+)

σ,�
†
2

d
(+)

σ,�
†
4

d
(+)

σ,�
†
2−�3+�

†
4

+ 1

d
(+)
σ,�1

d
(+)
σ,�3

d
(+)

σ,�
†
4

d
(+)

σ,�1−�
†
2+�3

]
	(s1)	∗(s2) 	(s3)	∗(s4)

∣∣∣∣∣
si→r

= − 1

T 3
c

1

2

∑
sεn =±1

(
isεn

) 4∏
i=1

∫ ∞

0
dρi

2πt

sinh
[
2πt

(∑4
i=1 ρi

)] exp

[
isεn

I2σ

(
4∑

i=1

ρi

)]
3∑

j=1

|wp|4

× exp
[
i sεn

T −1
c (vp · �1 αj + vp · �

†
2 βj + vp · �3 γj + vp · �

†
4 δj )

]
	(s1)	∗(s2)

×	(s3)	∗(s4)

∣∣∣∣∣
si→r

, (41)

where the coefficients αj , βj , γj , and δj are shown in Table II. With the combined use of Eqs. (A4) and (38), we obtain

− b(4)
	 (r)

4π CGL
= −Ẑ

8π

7ζ (3)

rH

ξ0

|	|4
T 4

c

k√
2π

∑
K⊥�=0

T
(4)

K⊥ eiK⊥·(X,Y )
∞∑

l1,l2=−∞
T (4)(l1,l2,K⊥)

4∏
i=1

∫ ∞

0
dρi

×
3∑

j=1

〈
|wp|4 b̂

(4)
k⊥,p(ρj ) exp

[
− |η|2

2

(
α2

j + β2
j + γ 2

j + δ2
j + (αj + γj )(βj + δj )

)]

× exp

[
− 1

8
Re(η2)((αj − γj )2 + (βj − δj )2)

]
exp

[
i

1

8
Im(η2)((αj − γj )2 − (βj − δj )2)

]〉
FS

, (42)

b̂
(4)
k⊥,p(ρj ) = fcos

(
4∑

i=1

ρi,

4∑
i=1

ρi

)
(vp × K̃rH )Ẑ

vF |K̃rH |2 [cos(Vj ) sinh(Wj ) − i sin(Vj ) cosh(Wj )]

+ I

π

rH

ξ0
fsin

(
4∑

i=1

ρi,

4∑
i=1

ρi

)
[cos(Vj ) cosh(Wj ) − i sin(Vj ) sinh(Wj )]

with

Vj = (η · K⊥rH )

2
√

2
{(αj + γj ) − (βj + δj )} − Im(η)

k√
2

{
(l1 − l2)(αj − γj ) −

(
l1 + l2 + KyrH

k

)
(βj − δj )

}
,

(43)

Wj = (η × K⊥rH )z

2
√

2
{(αj + γj ) + (βj + δj )} − Re(η)

k√
2

{
(l1 − l2)(αj − γj ) +

(
l1 + l2 + KyrH

k

)
(βj − δj )

}
.

Concerning the internal magnetic field induced by the AFM order, the leading order |m|2 term which does not include |	| is
straightforwardly calculated as

−b(0,2)
m (r)

4πCGL
= Ẑ

8π

7ζ (3)

r2
H

ξ 2
0

I

π

∫ ∞

0
dρ1 dρ2 fsin(ρ1 + ρ2,0) cos(δIC(ρ1 + ρ2))

× 1

T 2
c

∑
q,q′

m(q) m∗(q′) ei(q−q′)·r〈 cos
(
T −1

c vp · q ρ1 + T −1
c vp · q′ ρ2

)〉
FS. (44)

We note that when the AFM moment is perpendicular to a magnetic field (σ = −σ ), b(0,2)
m (r) vanishes since fsin(x,0) = 0 in

m ⊥ H.
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The internal magnetic field brought by the SC-AFM coupling b(2,2)
	,m(r) can be derived in the same manner as that used in

obtaining b(2)
	 (r). T

∑
εn

∫
dε(p) G(2,2)

εn,σ
(p; r) is calculated as

T
∑
εn

∫
dε(p) G(2,2)

εn,σ
(p; r)

= −2π T
∑
εn

(
i sεn

)∑
q,q′

m(q) m∗(q′) ei(q−q′)·r
(

|wp|2
[

1

d
(+)
σ,�1

d
(+)

σ,�
†
2

d
(+)
σ,�1+q−q ′ d

(−)
+,q ′

+ 1

d
(+)
σ,�1

d
(+)

σ,�
†
2

d
(−)
+,q ′d

(−)
+,q

+ 1

d
(+)

σ,�
†
2

d
(−)
+,q ′d

(−)
+,qd

(−)

+,�1−�
†
2+q

+ (�1 ↔ �
†
2, q ↔ q′)

]
+ |wp|2

[
1

d
(+)
σ,�1

d
(+)

σ,�
†
2

d
(+)
σ,�1+q−q ′ d

(+)
+,q

+ 1

d
(+)
σ,�1

d
(+)

σ,�
†
2

d
(+)

σ,�
†
2−q+q ′ d

(+)
+,q ′

+ 1

d
(+)
σ,�1

d
(+)

σ,�
†
2

d
(+)
+,q ′d

(+)
+,q

+ 1

d
(−)
σ ,�1

d
(−)

σ ,�
†
2

d
(−)
+,q ′d

(−)
+,q

+ 1

d
(−)
σ ,�1

d
(−)
+,q ′d

(−)
+,qd

(−)

+,�1−�
†
2+q

+ 1

d
(−)

σ ,�
†
2

d
(−)
+,q ′d

(−)
+,qd

(−)

+,−�1+�
†
2+q ′

]

−wpwp+Q0

[
− 1

d
(−)
σ ,�1

d
(−)
+,q ′d

(+)
+,qd

(−)

+,�1−�
†
2+q

− 1

d
(+)

σ,�
†
2

d
(−)
+,q ′d

(+)
+,qd

(−)

+,�1−�
†
2+q

− 1

d
(+)

σ,�
†
2

d
(+)
σ,�1+q−q ′ d

(−)
+,q ′d

(+)
+,q

+ (�1 ↔ �
†
2, q ↔ q′)

])
	(s1) 	∗(s2)

∣∣∣∣∣
si→r

(45)

= − 1

T 3
c

1

2

∑
sεn =±1

(
isεn

) 4∏
i=1

∫ ∞

0
dρi

2πt

sinh
[
2πt

(∑4
i=1 ρi

)] 12∑
j=1

exp

[
isεn

I

(
2σej + (σ + σ )

(
4∑

i=1

ρi − |ej |
))]

× exp
[ − isεn

δIC(cj + dj )
]

exp
[
i sεn

T −1
c (vp · �1 aj + vp · �

†
2 bj − vp · qdj − vp · q′cj )

]
× (|wp|2 {δj,1−3[1 + (�1 ↔ �

†
2, q ↔ q′)] + δj,4−9} + wpwp+Q0 δj,10−12[1 + (�1 ↔ �

†
2, q ↔ q′)])	(s1) 	∗(s2)

∣∣∣∣∣
si→r

,

where ej = aj + bj and the coefficients pj , aj , bj , cj , and dj are shown in Table III. Then, we obtain

−b(2,2)
	,m(r)

4πCGL
= − 8π

7ζ (3)

rH

ξ0

|	|2
T 4

c

∑
q,q′

m(q) m∗(q′)
∑

K⊥�=0

T
(2)

K⊥ eiK⊥·(X,Y ) ei(q−q′)·r

×
4∏

i=1

∫ ∞

0
dρi

12∑
j=1

pj cos(δIC(cj + dj ))
〈|wp|2 b̂

(2,2)
K⊥,vp

(ρj ; q,q′) e− |η|2
2 (aj +bj )2 〉

FS,

b̂
(2,2)
K⊥,vp

(ρj ; q,q′) = cos

(
(η · K⊥rH )√

2
(aj − bj ) + vp · q′

Tc

cj + vp · q
Tc

dj

)
(46)

×
[
fcos

(
4∑

i=1

ρi, ej

)
(vp × K̃′rH )Ẑ

vF |K̃′rH |2 sinh

(
(η × K⊥rH )z√

2
(aj + bj )

)

+ I

π

rH

ξ0
fsin

(
4∑

i=1

ρi, ej

)
cosh

(
(η × K⊥rH )z√

2
(aj + bj )

)]
,

where the relation wp+Q0 = wp is used and K̃′ is defined
by K̃′ = (Kx + qx − q ′

x,Ky + qy − q ′
y,0) for Ẑ ‖ ẑ and K̃′ =

(γ −1/2Ky + qx − q ′
x,0,γ 1/2Kx + qz − q ′

z) for Ẑ ‖ ŷ.
In this paper, we use the following form of the reciprocal

lattice vector:

K⊥rH = m1 (π/k,0) + m2 (0,k) (47)

with integers m1 and m2. Then, the summation for K⊥ is
replaced with

∑
m1,m2

, and T
(2)

K⊥ in Eq. (37) and T
(4)

K⊥ in Eq. (42)

are concretely given as follows:

T
(2)

K⊥ = δm1+m2,even cos

(
π

2
m2(m1 + m2)

)

× exp

[
−1

4

(
(m1π )2

k2
+ (m2k)2

)]
, (48)

T
(4)

K⊥ = δm1+m2,even exp

[
− i

π

4
m2(m1 + m2)

]

× exp

[
− 1

8

(
(m1π )2

k2
+ (m2k)2

)]
.

184516-9



KAZUSHI AOYAMA AND RYUSUKE IKEDA PHYSICAL REVIEW B 84, 184516 (2011)

r

Δ Δ

(a)

r

ΔΔ

Δ Δ

(b)

Δ

Δ

r

Δ

Δ
r

(d) (f)

m mm

m m m

r

Δ Δ

(e)

r

(c)

m m

FIG. 2. Feynman diagrams for the SC and AFM contributions
to the internal magnetic field. Here, the diagrams (a), (b), (c), and
(d)–(f) denote the contributions proportional to |	|2, |	|4, |m|2, and
|	|2|m|2, respectively. For the |	|2|m|2 terms, not all the diagrams
but only typical ones are shown: a diagram with two wavy lines on a
single solid line (d), one with two wavy lines separated by the vertex
(e), and one with two wavy lines separated by the pair field |	| (f).
The two diagrams (d) and (e) and the diagram (f) denote the internal
fields arising from the free energies described by the diagram (b) in
Fig. 1 and the diagram (c) in Fig. 1, respectively.

Since the triangular lattice k =
√

π
√

3 is assumed, there
are six (m1,m2) combinations with the shortest |K⊥| �= 0,
±(1,1), ±(1, −1), and ±(2,0), so that the equality |F±1,1| =
|F1,±1| = |F±2,0| is satisfied in an isotropic system. However,
in the present system, an asymmetry occurs in the six |Fm1,m2 |
components because of the anisotropy originating from the
d-wave pairing symmetry or the layered crystal structure. As a
result, the equality |F±2,0| = |F1,±1| is not satisfied any longer,
while the equality |F±1,1| = |F1,±1| is still satisfied. Since the
four (m1,m2) points with the same |Fm1,m2 | value, ±(1,1) and
±(1, − 1), correspond to the spots with the strongest neutron
scattering intensity in the experiments, we will calculate |F1,1|
which is given by

F1,1 = 1

V

∫
r

[
b(2)

	 (r) + b(4)
	 (r) + b(0,2)

m (r) + b(2,2)
	,m(r)

]
× exp[−i (π/k,k) · (X,Y )]. (49)

The form factor |F1,1| is easily obtained by using Eqs. (37),
(42), (44), and (46) since b(l)

	 and b(l,m)
	,m in these equations

are already expanded with the reciprocal lattice vector K⊥. In
the results of our calculation below, |F1,1| is normalized by
4πCGL.

In the present theory, the layered crystal structure is
reflected in the anisotropy of the Fermi velocity vector vp.
Although the expression of vp should be derived from the

TABLE II. Coefficients αj , βj , γj , δj in Eqs. (41) and (42).

j αj βj γj δj

1 ρ1 ρ2 ρ3 ρ4

2 ρ1 ρ2 + ρ3 −ρ3 ρ3 + ρ4

3 ρ1 + ρ2 −ρ2 ρ2 + ρ3 ρ4

TABLE III. Coefficients pj , aj , bj , cj , dj in Eqs. (45) and (46).

j pj aj bj cj dj

1 2 −ρ2 ρ1 + ρ2 ρ4 ρ2 + ρ3

2 2 ρ1 + ρ3 ρ2 ρ3 + ρ4 −ρ3

3 2 ρ1 ρ2 ρ4 ρ3

4 1 ρ1 ρ2 + ρ3 −ρ3−ρ4 ρ3

5 1 ρ1 + ρ3 ρ2 ρ3 −ρ3 − ρ4

6 1 ρ1 ρ2 −ρ3 −ρ4

7 1 −ρ1 − ρ2 ρ2 ρ3 ρ2 + ρ4

8 1 ρ2 −ρ1−ρ2 ρ2 + ρ3 ρ4

9 1 −ρ1 −ρ2 ρ3 ρ4

10 −2 −ρ1 − ρ2 ρ2 ρ3 ρ2 − ρ4

11 −2 −ρ2 ρ1 + ρ2 ρ3 ρ2 − ρ4

12 −2 ρ1 ρ2 ρ1 + ρ3 −ρ1 − ρ4

realistic dispersion, for brevity we use the following simplified
form of vp:

vp = vF {1 − (J/EF )[1 − cos(pzd)]}1/2(x̂ cos φ + ŷ sin φ)

+ Jd sin(pzd)ẑ, (50)

where J is an interlayer coupling constant. The Fermi
velocity vector introduced here corresponds to that of the
corrugated cylindrical Fermi surface. Then, the anisotropy
of the SC coherence length γ can be expressed as γ =
2
√

1 − J/EF /(πJ/EF ) and the angle average on the Fermi
surface is defined by

〈A〉FS =
∫ 2π

0

d φ

2π

∫ π

−π

d (pzd)

2π
A. (51)

In the numerical calculation below, J/EF = 0.2 and pF d = π

are used, and then γ = 2.85 is obtained.
In the numerical calculation, the magnetic field H is

normalized by the orbital limiting field in the pure two-
dimensional system H

(orb)
2D (0) = 0.28/(|e|ξ 2

0 ). Then, the two
field-dependent energy scales μBgH and vF /(2π rH ) which
correspond to the paramagnetic pair-breaking effect and the
orbital one, respectively, are expressed as follows:

I = μBgH

Tc

= h αM,j

π

2eγE

H
(orb)
2D (0)

H
(orb)
j (0)

= 0.882 αM,j

H
(orb)
2D (0)

H
(orb)
j (0)

h,

(52)
ξ0

rH

= vF

2π rH Tc

= ξ0

√
2|e|H (orb)

2D (0)
√

h

= 0.748
√

h,

where the Maki parameter αM,j = √
2 H

(orb)
j (0)/Hp(0) mea-

sures the strength of the paramagnetic pair-breaking effect
and h = H/H

(orb)
2D (0) is the normalized magnetic field. Here,

Hp(0) = πTc/(
√

2eγE μBg) 
 1.2 Tc/μBg is the Pauli limit-
ing field at T = 0, where γE = 0.577 is the Euler constant,
while H

(orb)
j (0) is the orbital limiting field at T = 0 for

fields parallel to the j direction. For the parameters used in
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our calculation, H (orb)
c (0) = 1.266 H

(orb)
2D (0) and H

(orb)
ab (0) =

4.871 H
(orb)
2D (0) are obtained.

III. ANTIFERROMAGNETIC FLUCTUATION IN H ‖ c

In this section, we consider effects of the PPB-induced
AFM fluctuation on VLFF in H ‖ c case and discuss the
origin of the anomalous field dependence of VLFF observed
in CeCoIn5.13,14 Throughout this section, αM,c = 5.8 is used
in obtaining the main results. The temperature-field phase
diagram obtained by minimizing FGL(	,m = 0) is shown in
the inset in Fig. 5, where the Hc2 transition at low temperatures
is of first order, and a possible FFLO vortex lattice state
appearing just below the Hc2(T ) curve as a narrow HFLT
region16,17 is neglected because it does not affect the SC
properties in the field range of our interest. In fact, we will
demonstrate later in Sec. IV C that, even if the FFLO vortex
lattice is taken into account, VLFF in the H ‖ c case will
be hardly affected by a FFLO spatial structure. Below, we
will show results of our calculation in two cases, m ⊥ H
and m ‖ H, since the direction of m relative to the external
magnetic field H has not been confirmed in the H ‖ c case.

A. Paramagnetic pair-breaking effect on VLFF

First, PPB effects on VLFF in the case without AFM fluctu-
ation will be discussed. Figure 3 shows the field dependencies
of VLFF at t = 0.1 for αM,c = 0.01 (dotted curve), αM,c = 3.5
(dashed one), and αM,c = 5.8 (solid one). As one can see in
Fig. 3, VLFF is enhanced especially at high fields by the PPB
effect. For the sufficiently large αM,c, VLFF increases with
increasing field while it decreases in the case with the small
αM,c. The inset in Fig. 3 shows the regular plots of VLFF

 1×10

 1

 0.6  0.7  0. 8  0. 9 1

-9

 1×10-6

 1×10-3

|F  |1,1
2

H/H         (0)

0.5

c2,c

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.5  0.6  0.7  0.8  0.9  1
 0

 0.002

 0.004

 0.006

H/Hc2,c(0)

FIG. 3. (Color online) Logarithmic plots of VLFF |F1,1|2 at t =
0.1 as a function of magnetic field scaled by the upper critical field
at T = 0 Hc2,c(0) for various values of Maki parameter αM,c. Here,
|F1,1|2 is normalized by (4πCGL)2. Dotted, dashed, and solid curves
correspond to the cases with αM,c = 0.01, αM,c = 3.5, and αM,c =
5.8, respectively. The form factor |F1,1|2 is enhanced by strong PPB
at high fields, and as a result, the slope changes its sign from negative
to positive. The inset shows the regular plot of the |F1,1|2 curves
shown in the main panel, where the results for αM,c = 0.01 (dotted
curve) and αM,c = 5.8 (solid one) are measured by the left and right
vertical axes, respectively.

as a function of magnetic field scaled by Hc2,c(0) in the two
cases, αM,c = 0.01 and αM,c = 5.8. The difference in the field
dependence of VLFF can be clearly seen. To see that VLFF
measures spatial distributions of the internal magnetic field,
the longitudinal internal magnetic fields b(2)

	 (r) + b(4)
	 (r) in the

cases with αM,c = 0.01 and αM,c = 3.5 are shown in Figs. 4(b)
and 4(c), respectively. In the SC vortex lattice state shown in
Fig. 4(a), the internal field in the direction along the applied
magnetic field is induced at the vortex core as a result of the
magnetic screening outside the vortex core. The anisotropic
structure of b(2)

	 (r) + b(4)
	 (r) around the vortex core is due to the

mismatch between the fourfold d-wave pairing symmetry and
the sixfold triangular lattice symmetry. Comparing (b) with (c),
one can see that, due to the PPB effect, the magnetic flux is
concentrated inside the vortex core as a result of the enhanced
magnetic screening outside the vortex core. The enhancement
of VLFF shown in Fig. 3 is understood as a consequence of
the concentration of the magnetic flux inside the vortex core,
or equivalently, the enhanced magnetic screening outside the
vortex core.15 The increasing behavior in the field dependence
of VLFF due to strong PPB has been already argued by Ichioka
and Machida who discussed this issue quantitatively by using
the quasiclassical approximation where the SC gap and both of
the two pair-breaking effects are fully taken into account.15 The
qualitative consistency of our result with their result indicates
that the perturbative expansion with respect to |	| used here
is valid in the discussion on VLFF.

B. AFM fluctuation induced inside the SC phase

Next, we will show that PPB enhanced sufficiently by
increasing the external magnetic field induces AFM fluctuation
inside the d-wave SC state. Since this novel PPB effect has
been already studied thoroughly elsewhere30 in both m ⊥ H
and m ‖ H, in this subsection, we will only give a brief review
of this PPB effect with an example of our result in the case
with m ⊥ H.

Figure 5 shows the field dependence of the SC-AFM
coupling termF (2,2)

	0,m
for δIC = 0.005 in m ⊥ H. Since Eq. (12)

determines the AFM instability, negative values of F (2,2)
	0,m

indicate that an AFM ordering or an enhancement of AFM
fluctuation tends to occur in the SC state. Noting the physical
implication ofF (2,2)

	0,m
, one can see that, due to PPB enhanced by

decreasing temperature and increasing field, AFM fluctuation
is induced in sufficiently low-temperature and high-field
regions, while in higher temperature and lower field regions,
the AFM fluctuation is suppressed by the SC order. The field
hCP at which the AFM fluctuation is strongest is fixed at the
Hc2 transition. The jump seen at the Hc2 transition is due to
the finite SC energy gap |	| originating from the first-order
nature of the Hc2 transition. These results suggest that the
PPB-induced AFM fluctuation gets stronger toward Hc2(0)
inside the d-wave SC state with finite |	| and that the strong
AFM fluctuation with hCP located just below the Hc2 transition
at the extremely low temperature causes the quantum critical
phenomena around Hc2(0). It should be emphasized that the
result obtained here is not accidental to the GL expansion but
intrinsic to the present system. This novel effect of strong PPB
has been theoretically confirmed in the Pauli limit case where
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FIG. 4. (Color online) Spatial structures of the SC gap |	(r̃)|2 (a) and the longitudinal internal magnetic fields normalized by 4πCGL,
b(2)

	 (r̃) + b(4)
	 (r̃), for weak PPB (αM,c = 0.01) (b) and slightly strong PPB (αM,c = 3.5) (c) at t = 0.1 and H/Hc2,c(0) = 0.96 in the case with

no AFM fluctuation. r̃ denotes the dimensionless coordinate defined by r̃ = r/rH . Due to the PPB effect, the magnetic flux is concentrated
inside the vortex core as a result of the enhanced magnetic screening outside it, which is reflected in the enhancement of VLFF shown in Fig. 3.
The anisotropy of the internal field around the vortex core is brought by the mismatch between the d-wave pairing symmetry and the triangular
lattice one.

|	| is fully taken into account.30 We note that in m ‖ H, the
AFM fluctuation is also induced inside the SC phase by the
PPB effect (see Figs. 4 and 9 in Ref. 30). As a typical example
of physical phenomena caused by the PPB-induced AFM
fluctuation in the SC vortex state, we will discuss effects of
the PPB-induced AFM quantum critical fluctuation on VLFF,
bearing the experimental data on CeCoIn5 in our mind.

C. Effects of AFM fluctuation on VLFF

Below, we will examine effects of the AFM fluctuation on
VLFF. Feynman diagrams for the internal field brought by the

-0.1

-0.05

 0

 0.05

 0.1

 0.15

 0.2

 0.25

h
 0.29 0.26  0.28  0.3 0.27

 0.14

 0.22

 0.3

0  0.1  0.2  0.3

h

t

FIG. 5. (Color online) Field dependencies of the SC-AFM
coupling term in the free energy F (2,2)

	0,m in H ‖ c case with m ⊥ H at
t = 0.02 [lower (red) curve], t = 0.06 [middle (blue) one], and
t = 0.1 [upper (green) one]. In obtaining the result, αM,c = 5.8 and
δIC = 0.005 are used. The Hc2(T ) curve obtained is shown in the inset,
where an arrow denotes the point at which the Hc2 transition changes
its nature from the second order to the first one and the FFLO vortex
lattice is neglected here. To make it easy to grasp which region in the
phase diagram is considered, the temperatures t = 0.02, t = 0.06,
and t = 0.1 are indicated by the left (red) vertical line, the center
(blue) one, and the right (green) one, respectively, in the inset. PPB
enhanced strongly by increasing field and decreasing temperature
induces AFM fluctuation inside the SC state. The large energy gain
in F (2,2)

	0,m just below the Hc2 transition at the low temperature indicates
that the AFM fluctuation gets stronger toward Hc2(0).

AFM fluctuation are shown in Fig. 6, where a wavy line denotes
the AFM fluctuation and b(0,2)

m has been dropped since it only
gives a spatially uniform contribution to the magnetic flux.
Then, the spatially varying internal magnetic field is written
as b(2)

	 (r) + b(4)
	 (r) + b(2,2)

fluc (r), where

b(2,2)
fluc (r)

4πCGL
= 8π

7ζ (3)

rH

ξ0

|	|2
T 2

c

∑
q

〈|m(q)|2〉
T 2

c

×
∑

K⊥�=0

T
(2)

K⊥ eiK⊥·r⊥
4∏

i=1

∫ ∞

0
dρi

12∑
j=1

pj

× 〈|wp|2 b̂
(2,2)
K⊥,vp

(ρj ; q,q) e− |η|2
2 (aj +bj )2 〉

FS. (53)

Here, the commensurate AFM fluctuation (δIC = 0) is assumed
for brevity. The properties of the AFM fluctuation are
specified by the AFM correlation function 〈|m(q)|2〉 which
is introduced phenomenologically through the approximation
〈|m(q)|2〉 
 T

∑
ωn

χ (q,iωn) with the familiar form of the
susceptibility38–41

χ (q,i ωn)

= 1

N (0)

ξ 2(h,t) ξ−2
N

1 + ξ 2(h,t)|q × ẑ|2 + |ωn|/
[
�0ξ−2(h,t) ξ 2

N

] ,
(54)

where ξN and �0 are a length scale and an energy scale
characteristic of the AFM fluctuation, respectively, ξ (h,t) is
the correlation length which diverges at an AFM instability,

FIG. 6. Feynman diagrams for the contribution from the AFM
fluctuation to the internal magnetic field. The diagrams (a), (b), and
(c) are obtained by connecting two wavy lines in the diagrams (d),
(e), and (f) in Fig. 2, respectively. A wavy line represents the AFM
fluctuation.
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and the two-dimensional fluctuation is assumed in Eq. (54)
based on the experimental data.37 Since, as we discussed in the
previous subsection, the AFM fluctuation strongly enhanced at
hCP gets stronger with decreasing temperature, we assume that
the AFM instability is located at an extremely low temperature
and the high field hCP. Then, the correlation length is consid-
ered to take the form ξ (h,t) = ξN (t + |1 − h/hCP|)−1/2.41,42

We note that the condition ξ (h,t)−2 = 0 corresponds to
Eq. (12) which determines the instability of the PPB-induced
AFM order. Since χ (q,i ωn) has a dominant contribution at
q = 0, we will calculate the right-hand side of Eq. (53) by
using the evaluation b̂

(2,2)
K⊥,vp

(ρj ; q,q) 
 b̂
(2,2)
K⊥,vp

(ρj ; 0,0). Then,
the part relevant to the summation for q in Eq. (53) is
calculated as∑

q

〈|m(q)|2〉


 qc

(2π )2

∫ εc

−εc

dω coth

(
ω

2T

)∫ ∞

0

d(q2)

4π
Im χR(q,ω)

= 1

N (0) ξ 2
N

qc εc

(2π )3

∫ 1

0
dx coth

(
εc

2T
x

)

× tan−1

(
εc

�0

ξ 2(h,t)

ξ 2
N

x

)
, (55)

where χR is the retarded susceptibility and the replace-
ment

∑
q → 1

(2π)3

∫
dqz

∫
dφ

∫
qdq is used. In the numerical

calculation below, εc = 2Tc, �0 = EF , N (0) = p2
F /(2π2vF ),

qc = pF are used. We believe that the approximation used
here, 〈|m(q)|2〉 
 T

∑
ωn

χ (q,iωn), which corresponds to set-
ting ωn 
 0 in the quasiparticle Green’s function with an
ωn dependence, properly gives the AFM contribution since
χ (q,i ωn) has a dominant contribution at ωn = 0. On the other
hand, it is known that the ωn dependence in the Green’s
function produces the imaginary part of the self-energy of
a quasiparticle described by the Feynman diagram (a) in
Fig. 6. Since the imaginary part of the self-energy, namely, the
quasiparticle damping, suppresses the PPB effect,23 it cannot
be neglected in examining any PPB effect. By carrying out the
diagrammatic calculation, we can evaluate the imaginary part
of the self-energy near the Fermi surface as follows:

Im �R
σ (kF ,0) 
 π2T

4

ξ (t,h)

pF ξ 2
N

(
1 +

[
ξ (h,t)

2πξ0

(
	ε

Tc

)]2)−1/2

(56)

with 	ε = −TcδIC + (σ + σ ) ITc (for details, see the
Appendix). In the expression (56), a familiar form of the
quasiparticle damping caused by the AFM spin fluctuation
near the hot spot40 is extended so that it includes the Zeeman
energy shift. Noting that the direction of m relative to H is
reflected in 	ε, one can see in Eq. (56) that the quasiparticle
damping is more effective in m ⊥ H than in m ‖ H. In
examining the effects of the AFM fluctuation, we take the
quasiparticle damping into account with the substitution
εn → εn + sgn(εn) Im �R

σ (kF ,0), which is equivalent to the
replacement

1

sinh[2πt x]
→ exp

[−2 x Im �R
σ (kF ,0)

]
sinh[2πt x]

(57)

 0.2

 0.8

 1.4

 2.0

 0.2

 0.6

 1.0

 1.4

 1.8

 0.16  0.2  0.24  0.28

(a)

(b)

h

|F   |1,1
2

|F   |1,1
2

FIG. 7. (Color online) The |F1,1(h)|2 curves obtained numerically
in H ‖ c case with m ⊥ H (a) and with m ‖ H (b), where solid (dotted)
curves correspond to the case with (without) the additional internal
magnetic field brought by the PPB-induced AFM fluctuation. The
form factor |F1,1|2 is normalized by (4πCGL)2. Highest (red), middle
(blue), and lowest (green) curves are the |F1,1(h)|2 ones obtained at
t = 0.02, t = 0.06, and t = 0.1 in the inset in Fig. 5, respectively.
Regarding the parameters relevant to the AFM fluctuation, ξN = 0.6ξ0

with ξ0pF = 7.0 and δIC = 0 are used and hCP = 0.289 is assumed
so that the location of the AFM instability field is below Hc2(0). In
the high-field and low-temperature region, VLFF is enhanced by the
PPB-induced AFM critical fluctuation.

in Eqs. (25). In the evaluation of the amplitude of the SC order
parameter 	0, the replacement (57) is also used.

Figure 7 shows the field dependencies of VLFF |F1,1|2 in
the H ‖ c case with m ⊥ H (a) and m ‖ H (b), where solid
and dotted curves correspond to the cases with and without
the internal magnetic field brought by the PPB-induced AFM
fluctuation, respectively, at t = 0.02 [highest (red) curves], t =
0.06 [middle (blue) ones], and t = 0.1 [lowest (green) ones].
The AFM instability field hCP is assumed to be located below
Hc2(0) so that hCP is consistent with both the experimental
result suggestive of the AFM critical point below Hc2(0)3,18,19

and our theoretical result shown in Fig. 5. In both m ⊥ H and
m ‖ H, VLFF at the low temperature t = 0.02 is remarkably
enhanced in the high-field range by the PPB-induced AFM crit-
ical fluctuation, and as a result, the slope of the |F1,1(h)|2 curve
becomes sharper. On the other hand, in m ⊥ H [Fig. 7(a)],
VLFF is rather suppressed by the PPB-induced AFM fluctua-
tion at t = 0.06, while in m ‖ H [Fig. 7 (b)], the enhancement
of VLFF due to the AFM fluctuation can be seen at the
same temperature. To understand the physical origin of the
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FIG. 8. (Color online) Spatial distributions of the longitudinal internal magnetic field normalized by 4πCGL without the AFM contribution
b(2)

	 (r̃) + b(4)
	 (r̃) (a), the internal field brought by the AFM fluctuation b(2,2)

fluc (r̃) in m ‖ H (b), and b(2,2)
fluc (r̃) in m ⊥ H (c) at t = 0.06 and h = 0.25

in the case with αM,c = 5.8, where dominant contributions coming from the Fourier components ±(2,0), ±(1,1), and ±(−1,1) are extracted
from the full internal fields. The inset of (a) shows the full internal field b(2)

	 + b(4)
	 . Although higher Fourier components become relatively

large at low temperatures and express the flux distribution at short length scales, the tendency of the distribution is well described by the six
components listed above. Enhancement of the magnetic flux in the vortex core region and its reduction outside the vortex core are commonly
seen in both b(2)

	 (r̃) + b(4)
	 (r̃) and b(2,2)

fluc (r̃) in m ‖ H, while in b(2,2)
fluc (r̃) in m ⊥ H, the magnetic flux is enhanced outside the vortex core.

The difference in b(2,2)
fluc (r̃) in two cases, m ‖ H and m ⊥ H, is reflected in VLFF shown in Fig. 7.

enhancement and the suppression of VLFF due to the PPB-
induced AFM fluctuation, spatial distributions of the internal
field brought by the AFM fluctuation b(2,2)

fluc (r) in m ‖ H and
m ⊥ H at t = 0.06 and h = 0.25 are shown in Figs. 8(b) and
8(c), respectively. For comparison, the internal field without
the AFM contribution b(2)

	 (r) + b(4)
	 (r) at the same temperature

and field is also shown in Fig. 8(a). In Fig. 8, the contributions
from the six Fourier components with the shortest |K⊥|,
±(2,0), ±(1,1), and ±(1, − 1), are extracted from the full
summation for K⊥ so that one can easily grasp the tendency
of the flux distribution. Although, as shown in the inset in (a),
b(2)

	 (r) + b(4)
	 (r) with the full summation for K⊥ has a short

length scale structure due to relatively large higher Fourier
components, the tendency of the distribution is well described
by the six components listed above. As one can see in Fig. 8,
enhancement of the magnetic flux in the vortex core region
and its reduction outside the vortex core are commonly seen in
both b(2)

	 (r) + b(4)
	 (r) and b(2,2)

fluc (r) in m ‖ H, while, in b(2,2)
fluc (r)

in m ⊥ H, the magnetic flux is enhanced outside the vortex
core, in other words, the magnetic screening outside the vortex
core is suppressed. This result suggests that the enhancement
(suppression) of VLFF due to the AFM fluctuation corresponds
to the promotion (reduction) of the magnetic screening outside
the vortex core. Further, comparing Fig. 7(a) with Fig. 5, we
can see that it depends on a sign of the SC-AFM coupling
term F (2,2)

	0,m
whether the AFM contribution b(2,2)

fluc (r) promotes
the magnetic screening or prevents it. In the high-field and low-
temperature region where F (2,2)

	0,m
is negative, b(2,2)

fluc (r) enhances
VLFF, while in the lower field and higher temperature region
where F (2,2)

	0,m
is positive, b(2,2)

fluc (r) suppresses VLFF. Noting
that from the viewpoint of the SC order, negative values of
F (2,2)

	0,m
indicate that the stability of the SC order is enhanced

by the AFM fluctuation, we can understand the mechanism
of the enhancement of VLFF due to the PPB-induced AFM
fluctuation as follows: The SC state becomes more stable due
to the PPB-induced AFM fluctuation, then the SC magnetic
screening is promoted, and as a result, VLFF is enhanced

by the internal magnetic field originating from the promoted
screening current. The falling-down behavior toward the Hc2

transition in the |F1,1(h)|2 curves is more remarkable in m ⊥ H
than in m ‖ H, which is due to the fact that the amplitude
of the SC energy gap is much suppressed by the stronger
quasiparticle damping in m ⊥ H.

The increasing behavior in the field dependence of VLFF
becomes remarkable due to the enhanced magnetic screening
caused by the PPB-induced AFM fluctuation. Further, the
obtained field dependencies of VLFF in lowering temperature
in both m ⊥ H and m ‖ H are consistent with the experimental
data on CeCoIn5.14 Considering these facts, we could conclude
that the strong AFM fluctuation around Hc2(0) observed
in CeCoIn5 in H ‖ c is the PPB-induced AFM fluctuation
enhanced strongly by increasing field and decreasing tem-
perature and that the abrupt increase of VLFF at high fields
is a consequence of the magnetic screening enhanced by the
PPB-induced AFM critical fluctuation.

Concerning the direction of the AFM moment vector m,
we cannot rule out alternative possibilities of m ⊥ H or m ‖
H by comparing our theoretical result with the experimental
data. However, from the experimental data showing that the
configuration m ‖ c is realized in H ‖ ab,25,26 it is inferred
that m is locked along the c axis. Further, noting that the AFM
fluctuation in the normal state is suppressed by the Zeeman
effect in m ‖ H while it is not affected by the Zeeman effect
in m ⊥ H, the absence of the AFM order in the SC phase in
H ‖ c seems to be understood as a result of the suppression of
the AFM fluctuation with m ‖ c in the normal state.

IV. ANTIFERROMAGNETIC ORDER IN H ‖ ab

In this section, we discuss a possible AFM order realized in
vortex states in the d-wave superconductor with strong PPB.
Throughout this section, we assume that the AFM moment
vector is perpendicular to the magnetic field m ⊥ H ‖ ab,
since the configuration m ‖ c has been established in the AFM
order observed in the HFLT phase of CeCoIn5 in the H ‖ ab
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case. In the parallel field, strong PPB induces the longitudinal
FFLO vortex lattice state in the HFLT corner in the phase
diagram35 and the FFLO region is large so that it may not be
ignored. Although the FFLO state is not taken into account in
the analysis on the PPB-induced AFM order in the SC vortex
lattice, we will discuss effects of FFLO spatial structures on
the AFM order and also on VLFF later.

A. Modulated antiferromagnetic order in the SC vortex lattice

Below, we consider the situation where the PPB-induced
AFM fluctuation becomes so strong that an AFM order appears
inside the SC state, i.e., (F (2)

m + F (2,2)
	0,m

)/m2 < 0. Because the
SC gap function has the vortex-lattice modulation, an AFM
order with a spatial modulation synchronized with the vortex
lattice is expected to appear instead of the spatially uniform
AFM order. Possible modulated AFM orders are classified
into two types: the AFM order localized in the normal-state
region, namely, in vortex cores, and the one coexistent with
the SC order. Since we consider the spatial distribution of the
PPB-induced AFM order in the presence of a potential brought
by the SC vortex lattice through the SC-AFM coupling term
F (2,2)

	,m , it is natural to assume that m(r) takes the following
form:

m(X,Y ) = m√
1 + w2

∑′
K⊥�=0

∣∣T (2)
K⊥

∣∣2
×

(
1 + w

∑
K⊥�=0

′
T

(2)
K⊥ exp[iK⊥ · (X,Y )]

)
,

(58)

or equivalently,

m(q) = m√
1 + w2

∑′
K⊥�=0

∣∣T (2)
K⊥

∣∣2
(
δq,0 + w T

(2)
K⊥ δq,K̃⊥�=0

)
,

(59)

where w is a variational parameter to be determined by
minimizing (F (2)

m + F (2,2)
	0,m

)/m2, and
∑′

K⊥�=0 denotes the
K⊥ summation only for the lowest Fourier components,
(m1,m2) = ±(1,1), ±(1, − 1), and ±(2,0). We believe that
the restricted summation for K⊥ gives correct results because
the contribution from higher Fourier components will be
negligibly small and will not affect the results. It should be
noted that negative (positive) values of w indicate the AFM
order enhanced (suppressed) in the vortex core.

In obtaining spatial structures of AFM orders, we assume
that the magnetic flux is uniform. Since, in general, an inho-
mogeneous internal field is induced by a spatially modulated
AFM order, the induced inhomogeneous field may affect the
spatial structure of the AFM order. In this study, however,
we neglect the internal field brought by the AFM order
for the following two reasons: First, the leading-order AFM
contribution b(0,2)

m (r) vanishes because of the configuration
m ⊥ H and does not affect the magnetic flux at all. Second, the
internal field brought by the AFM order thorough the SC-AFM
coupling b(2,2)

	,m(r) is considered to be negligibly small since,
as we will see later, the transition to the AFM order occurs
at a relatively high field so that the amplitude of the AFM
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FIG. 9. (Color online) Example of the numerically obtained
temperature-field phase diagram of the PPB-induced AFM order
inside the d-wave SC vortex lattice state in H ‖ ab case, where
a thick (black) solid curve and a thin (red) solid one denote the
first-order Hc2 transition and the second-order transition to the AFM
order with a spatial modulation commensurate with the vortex lattice
structure, respectively. For comparison, the onset of the spatially
uniform AFM order in the SC vortex lattice is also shown as a dashed
(red) curve. The parameters used in obtaining the phase diagram
are αM,ab = 7.5, δIC = 0.001, and TN/Tc = 0.027. The PPB-induced
AFM order becomes more stable in the vortex state with the spatial
modulation commensurate with the vortex-lattice structure. The inset
shows the spatial profiles of the SC gap |	(x̃)|2 (dashed curve) and the
modulated AFM order |m(x̃)|2 [solid (red) one] along the trajectory
x̃ between neighboring vortex centers. The PPB-induced AFM order
realized in the d-wave SC vortex state is not localized in the vortex
core but coexistent with the SC order.

order parameter will not grow to a large value with increasing
field.

Figure 9 shows an example of the temperature-field phase
diagram of the PPB-induced AFM order inside the d-wave SC
vortex lattice state in H ‖ ab, where a thin (red) solid curve and
a dashed (red) one denote the transition curve to the AFM order
with a vortex-lattice modulation and the one to the spatially
uniform AFM order, respectively, and both of them are second-
order transition curves. As one can see in the main panel of
Fig. 9, the stability region of the PPB-induced AFM order
is expanded by the modulation synchronized with the vortex
lattice, and an example of the spatial structure of the modulated
AFM order is shown in the inset of Fig. 9. As we will discuss
later, the PPB-induced AFM order is not localized in the vortex
core but coexistent with the SC order. Figures 10(a) and 10(b)
show the field dependence of F (2)

m + F (2,2)
	0,m

and that of the
variational parameter w at t = 0.03 in Fig. 9, respectively. For
comparison, results in the case with αM,ab = 0.01 are shown
in the figures as dotted (green) curves. Figure 10 suggests two
important results. First, the AFM order with the vortex-lattice
modulation becomes more stable in the vortex state than the
uniform one. Second, as clearly seen in Fig. 10(a), in the case
with αM,ab = 7.5, the AFM order appearing inside the SC
state lowers the free energy, while in the case with αM,ab =
0.01, it never lowers the free energy. In the case with weak
PPB, the conventional competitive nature between SC and
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FIG. 10. (Color online) Field dependencies of F (2)
m + F (2,2)

	0,m

(a) and the variational parameter w (b) at t = 0.03 in Fig. 9. For
comparison, results in the case with αM,ab = 0.01 are also shown
in the figures as dotted (green) curves. In (a), one can see that the
occurrence of the AFM order in the high-field SC phase lowers the
free energy in the case with strong PPB, while in the case with
weak PPB, it never lowers the free energy. Further, as shown in (b),
the optimized value of w is positive in the case with strong PPB,
suggesting the AFM order coexistent with the SC order, while in the
case with weak PPB, the familiar competition between the two orders
is indicated by negative values of w.

AFM orders is reflected in the free-energy cost and negative
values of w, which suggests that in systems with a sufficiently
large TN/Tc in zero field, the AFM order localized in the
vortex cores, i.e., in the normal-state region where |	| = 0 can
appear,43,44 as shown in Fig. 11(c). In contrast, as denoted by
a solid curve in Fig. 10(b), optimized values of the variational
parameter in the case with strong PPB are positive, indicating
the AFM order coexistent with the SC order. An example of the
spatial distribution of this PPB-induced AFM order is shown
in Fig. 11(b), where the spatial structure of the vortex lattice is

shown in Fig. 11(a). The AFM order is suppressed in the vortex
core and enhanced in the region with large |	|. The profiles of
the SC gap |	(x)|2 and the PPB-induced AFM order |m(x)|2
along the trajectory x between neighboring vortex centers are
shown in the inset of Fig. 9.

Although we have used a small value for δIC in the above
numerical calculation, the PPB-induced AFM order becomes
much stable in the SC phase as |δIC| is increased.8 On the
other hand, the incommensurate wave vector observed in the
AFM order appearing inside the HFLT phase of CeCoIn5

25,26

seems to originate from the deviation from the perfect nesting
condition of the Fermi surface,30 which suggests that the
deviation |δIC| is large enough and the momentum dependence
in |δIC| should be taken into account in the detailed discussion
on the AFM order in the HFLT SC phase.

Our result obtained here for the PPB-induced AFM order
in the SC vortex lattice is consistent with recent NMR data
suggesting that the AFM order in the HFLT phase of CeCoIn5

is spatially extended without being localized in the normal-
state region.29 Although the longitudinal FFLO vortex lattice
state is ignored in the above calculation, the theoretical study
taking account of the longitudinal FFLO modulation along H
without in-plane vortex-lattice structures included shows that,
at least in the high-field side of the FFLO state, the AFM order
is not localized in the FFLO nodal planes on which |	| = 0,
but coexistent with the SC order.30 These results obtained in
the two approaches, which are complementary to each other,
suggest that the PPB-induced AFM order coexistent with the
SC order may be stabilized at least in the high-field side of the
longitudinal FFLO vortex lattice state.

B. VLFF in the modulated AFM order

We will briefly discuss the effects of the PPB-induced
AFM order on VLFF. A red solid (dashed) curve in Fig. 12
denotes the field dependence of VLFF at t = 0.03 in Fig. 9
in the presence (absence) of the PPB-induced AFM order
modulating with the vortex lattice. Here, the variational
parameter w in Eq. (58) is determined by minimizing
FGL(	0,m) − FGL(	0,0), while the amplitude of the AFM
order parameter |m| is obtained by using Eq. (13). The form
factor is enhanced by the PPB-induced AFM order as a result
of the additional magnetic screening brought by the occurrence
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FIG. 11. (Color online) Spatial structures of the SC gap |	(r̃)|2 (a) and the modulated AFM order |m(r̃)|2 in the cases with αM,ab = 7.5
(b) and αM,ab = 0.01 (c) at t = 0.03 and H/Hc2,ab(0) = 0.75 in Fig. 10. The coordinates x̃ and z̃ are dimensionless and defined as x̃ = γ −1/2x/rH

and z̃ = γ 1/2z/rH , respectively. The figures (b) and (c) correspond to w = 0.63 and w = −0.15, respectively. In the case with strong PPB, the
AFM order coexists with the SC order, while in the case with weak PPB, the AFM order competes with the SC order and is localized in the
vortex cores.
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FIG. 12. (Color online) Field dependence of VLFF |F1,1|2 at t =
0.03 in Fig. 9 obtained in the mean-field approximation, where |F1,1|2
is normalized by (4πCGL)2. A red solid (dashed) curve corresponds
to the result in the presence (absence) of the PPB-induced AFM
order with the vortex-lattice modulation. Although VLFF is enhanced
by the occurrence of the AFM order, the enhancement is not so
remarkable compared with that brought by the PPB-induced AFM
fluctuation. The |F1,1(h)|2 curves including the longitudinal FFLO
spatial variation of the SC order parameter ignored here are shown in
Fig. 13.

of the PPB-induced AFM order, like in the case only with the
PPB-induced AFM fluctuation examined in Sec. III. However,
the enhancement of VLFF brought by the AFM order is
quite small compared with that brought by the AFM critical
fluctuation. We expect an additional AFM fluctuation around
the nonvanishing AFM order parameter, which has not been
taken into account in obtaining Fig. 12, to further enhance
VLFF.

C. Internal magnetic field in the longitudinal
FFLO vortex lattice state

So far, we have not examined effects of the longitudinal
FFLO structure of the SC order parameter on the internal field
and VLFF which should be seen in the HFLT corner in the
phase diagram.35 Below, we examine the flux distribution in
the longitudinal FFLO vortex lattice although, in turn, an AFM
order will be neglected for brevity in contrast to the case of
Fig. 12.

In the longitudinal FFLO vortex lattice state, the SC gap
function is expressed in the form

	(r) = 	ϕ0(X,Y )
√

2 cos(QZ) (60)

with the modulation wave vector QẐ parallel to the magnetic
field. This FFLO modulation in the SC order parameter
affects the internal field through the operator acting on the
SC gap function exp[iAvp · �]	(r) = √

2	 exp[iAvp ·
�⊥]ϕ0(X,Y ) exp[iA(vp · Ẑ)(−i ∇Z)] cos(QZ), and
then, the Maxwell equation −∇ × b(2)

	 (r)/(4πCGL) =
∇ × (

∑
K⊥�=0[m(+)

K⊥,Q + m
(−)
K⊥,Q cos(2 QZ)]ei K⊥·(X,Y ))Ẑ is

obtained. It can be shown that the Maxwell equation has
a solution with a transverse component in b(2)

	 (r).36 The

resulting O(|	|2) contribution to the internal field is expressed
in the form

−b(2)
	 (r)

4πCGL
= Ẑ

∑
K⊥�=0

[
m

(+)
K⊥,Q + |K̃⊥|2 m

(−)
K⊥,Q

|K̃⊥|2 + (2Q)2
cos(2 QZ)

]

× ei K⊥·(X,Y ) −
∑

K⊥�=0

2 i Q K̃⊥ m
(−)
K⊥,Q

|K̃⊥|2 + (2Q)2

× sin(2 QZ)ei K⊥·(X,Y ), (61)

where

m
(±)
K⊥,Q = 8π

7ζ (3)

rH

ξ0

|	|2
T 2

c

∫ ∞

0
dρ1 dρ2 T

(2)
K⊥

〈|wp|2 b̂
(2)
K⊥,vp

(ρ1,2)

× e− |η|2
2 (ρ1+ρ2)2

cos[Q (vp · Ẑ)(ρ1 ± ρ2)]
〉
FS. (62)

As one can see in Eq. (61), the transverse magnetic field
is induced by the finite FFLO modulation (Q �= 0) and
the longitudinal magnetic flux varies along the FFLO
modulation. An example of the flux distribution in the
longitudinal FFLO vortex lattice is shown in Fig. 13(a).
One can see that outgoing and incoming fields are induced
and, correspondingly, the longitudinal magnetic flux varies
along the FFLO modulation. The experimentally measured
VLFF is expected to reflect the internal field which is
spatially averaged over the range [−π/Q,π/Q] in the Z

direction. Then, the transverse incoming and outgoing fields
cancel each other. The |	|4 contribution to the spatially
averaged internal magnetic field is given by replacing
b̂

(4)
K⊥,vp

(ρj ) in Eq. (42) by b̂
(4)
K⊥,vp

(ρj ) [cos (Q (vp · Ẑ) (αj −
βj − γj + δj )) /2 + cos (Q(vp · Ẑ)(αj + βj )) cos(Q (vp · Ẑ)(
γj + δj ))]. Figure 13(b) shows typical |F1,1(h)|2 curves in
the longitudinal FFLO vortex lattice without an AFM order,
where solid (blue) and dotted curves correspond to the
results with and without the FFLO longitudinal modulation,
respectively, and the arrow denotes the FFLO transition
field. In obtaining the result, the modulation Q is determined
self-consistently from the GL free-energy functional,35 and
further, it is confirmed that the FFLO transition is of second
order. As one can see in the figure, VLFF is suppressed by the
longitudinal FFLO modulation and the slope of the |F1,1(h)|2
curve changes its sign quite close to the FFLO transition field.
An abrupt falling behavior in VLFF has been experimentally
observed near the transition between the low-field SC phase
and the HFLT one in the H ‖ ab case,45 which seems to
imply the formation of the longitudinal FFLO vortex lattice
state in the HFLT phase. On the other hand, an AFM order
and corresponding AFM fluctuation which are not taken
into account in the above argument about the FFLO state
may affect the result. It should be noted, however, that the
quasiparticle damping brought by the AFM critical fluctuation
should suppress the PPB effect so that the onset of the FFLO
transition field in the above calculation should be shifted to
a higher field and that the FFLO region should be narrower.
In order to investigate the high-field and low-temperature
SC phase in H ‖ ab, further studies taking account of the
longitudinal FFLO vortex lattice, the PPB-induced AFM
order, and fluctuation around the AFM transition consistently
will be needed.
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FIG. 13. (Color online) Spatial flux distribution (a) and the |F1,1(h)|2 curves normalized by (4πCGL)2 (b) in the longitudinal FFLO vortex
lattice state. The AFM order and fluctuation are not taken into account in obtaining these results. The structure of this state is schematically
shown in (a) where a solid (black) vertical line, a vertical wavy (green) curve, and horizontal dashed lines indicate a vortex line extending along
the applied field, the FFLO modulation, and the nodal planes on which |	| = 0, respectively. The left upper (lower) panel in (a) shows the
numerically obtained transverse field on the surface QZ = π/4 (QZ = −π/4) in the FFLO state with 2πξ0Q = 0.55 appearing at t = 0.1 and
h = 0.65, where a (black) dot denotes the vortex center. An outgoing field from the vortex center is seen at QZ = π/4, while on the surface
QZ = −π/4, rather an incoming field is induced. Correspondingly, the longitudinal magnetic flux at the vortex core denoted by vertical (blue)
arrows varies along the applied field with its minimum at the nodal plane and maximum at the surface on which |	| is the largest. In (b), (blue)
solid and (blue and black) dotted curves denote the |F1,1(h)|2 ones with and without the longitudinal FFLO modulation at t = 0.1, respectively,
and the arrow denotes the corresponding second-order transition field to the longitudinal FFLO vortex state. The VLFF is suppressed due to
the FFLO spatial modulation of the SC order parameter.

In the last of this subsection, we will discuss effects of the
longitudinal FFLO modulation on VLFF in the H ‖ c case.
The HFLT phase appearing just below the Hc2(T ) curve as
a narrow region in the H ‖ c case16,24 has been considered
to be a realization of the longitudinal FFLO vortex lattice.17

On the other hand, VLFF obtained in the neutron scattering
experiment does not show any structure around the transition
between the HFLT phase and the lower field phase,14 in
contrast to the abrupt falling behavior in the H ‖ ab case
discussed above. The absence of a precursor of the FFLO
state in VLFF in the H ‖ c case may be due to the fact that
the effect of the FFLO modulation on VLFF is too small just
above the FFLO transition to be seen. Although VLFF should
be suppressed by the FFLO modulation Q, drastic suppression
cannot be seen because, in the H ‖ c case, the stability region
of the FFLO state is quite narrow and Q cannot grow to a
large value. We believe that if VLFF is detected in sufficiently
high resolution, the onset of the FFLO transition should be
observed in VLFF in the H ‖ c case.

V. SUMMARY

Antiferromagnetic (AFM) fluctuation and order induced
inside a d-wave superconducting (SC) phase by strong Pauli-
paramagnetic pair breaking (PPB)8 have been theoretically
studied, focusing on how they are affected by spatial mod-
ulations of a SC vortex lattice. Based on the microscopic
calculation taking account of both orbital and paramagnetic
pair-breaking effects, we have shown that, with increasing
field and decreasing temperature, the SC vortex lattice state
becomes more stable by inducing AFM fluctuation inside it:
From the viewpoint of the SC order, the magnetic screening
is promoted by the induced AFM fluctuation in the high-field

SC phase. In other words, the AFM order can more easily
appear inside the SC vortex lattice state than in the normal
state. These implications have been concretely discussed in
connection with the anomalous SC phenomena observed in
CeCoIn5. First, in the H ‖ c case where the AFM quantum
critical behavior around Hc2(0) is experimentally observed,
such appearance of the AFM fluctuation in the SC state
in higher fields has been explained as a result of the PPB
enhanced with increasing field. Then, it is found that the
vortex lattice form factor (VLFF) is enhanced by the additional
magnetic screening brought by the coupling between the
induced AFM fluctuation and the spatial modulation of the
SC vortex lattice and that the VLFF’s enhancement becomes
very remarkable as the AFM instability is approached. The
obtained temperature and field dependencies of VLFF are
consistent with the experimental result,13,14 which suggests
that the anomalous field dependence of VLFF observed in
the experiments is a consequence of the PPB-induced AFM
critical fluctuation. Second, in the H ‖ ab case where an AFM
order with m ⊥ H appears inside the SC phase in CeCoIn5, it
is found that the vortex-lattice modulation promotes the AFM
fluctuation and that, as a result, a spatially modulated AFM
order synchronized with the vortex lattice is stabilized in the
SC vortex state. In contrast to the conventional competitive
nature between the AFM and SC orders, the PPB-induced
AFM order in the vortex lattice coexists with the nonvanishing
SC order parameter and does not localize in the vortex cores.
The spatial modulation peculiar to the longitudinal FFLO
state, which seems to be realized in the HFLT phase of
CeCoIn5,29 has been neglected in our analysis on the AFM
order. According to the theoretical study taking account of
the longitudinal FFLO modulation in the Pauli limit without
vortex lattice structures included,30 a possible PPB-induced
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AFM order in the high-field side of the FFLO state is not
localized in the FFLO nodal plane but prefers to coexist with
the nonvanishing SC order parameter. The unconventional
coexistence of the AFM and SC orders, obtained in the two
approaches complementary to each other, is consistent with
a picture on the HFLT phase of CeCoIn5 suggested from the
recent NMR data.29 Further, our study on the effects of the
longitudinal FFLO spatial modulation and the AFM order on
VLFF performed additionally has shown that, as well as the
AFM fluctuation, the AFM order enhances VLFF, while the
longitudinal FFLO modulation leads to a significant reduction
of VLFF similar to that seen in CeCoIn5. These results on
the magnetic properties in high-field superconductors with
strong PPB imply that the HFLT state of CeCoIn5 is a
coupled phase composed of a PPB-induced AFM order and
the d-wave SC order accompanied by the longitudinal FFLO
modulation.
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APPENDIX

1. Orbital pair-breaking effect

Here, we show the details of the calculation in obtaining
Eq. (29) and derive equations useful in incorporating the
orbital pair-breaking effect. In the case with H ‖ ẑ [H ‖ ŷ],
the vector potential can be expressed as A0 = (0,Hx,0) [A0 =
(Hz,0,0)], and then, [�x,�y] = −ir−2

H ([�z,�x] = −ir−2
H )

is satisfied. In the H ‖ ẑ case, by introducing the operators
�± = rH (�x ± i�y)/

√
2, we obtain

exp
[
iA T −1

c vp · �
] = e− |η|2

2 A2
eiA η∗�+ eiA η�− ,

eiA η∗�+ = e(iAη∗rH /2)2[�x,i�y ] e−(A η∗rH /
√

2) �y

× ei(A η∗rH /
√

2) �x , (A1)

where the operator identity e[Â,B̂] = e−[Â,B̂]/2 eÂ eB̂ is used. In
the H ‖ ŷ case, (�x,�y) is replaced by (γ −1/2�z,γ

1/2�x) in
Eq. (A1). Equation (29) is obtained by using Eq. (A1). Since
the Fourier transformation of ϕ0(X + αrH ,Y )ϕ∗

0 (X + βrH ,Y )
with the reciprocal lattice vector K⊥ = (Kx,Ky) is calculated
as

∫
dX dY

LXLY

ϕ0(X + αrH ,Y )ϕ∗
0 (X + βrH ,Y )e−iK⊥·(X,Y )

= T
(2)

K⊥ e− 1
4 (α−β)2

exp

[
i
KxrH

2
(α + β)

]
exp

[
− KyrH

2
(α − β)

]
, (A2)

T
(2)

K⊥ = δKy rH
k

+ k
π

KxrH ,even| Ky rH
k

:integer cos

(
π

2

KyrH

k

[
KyrH

k
+ k

π
KxrH

])
exp

[
− 1

4
|K⊥rH |2

]
,

we obtain

exp
[
isεn

T −1
c

(
vp · �1 α + vp · �

†
2 β

)]
ϕ0(s1)ϕ∗

0 (s2)
∣∣
si→(X,Y )

= e− 1
2 [α2(|η|2−η∗ 2)+β2(|η|−η2)]ϕ0(X + sεαη∗√2rH ,Y )ϕ∗

0 (X − sεβη
√

2rH ,Y )

= exp

[
− |η|2

2
(α + β)2

] ∑
K⊥

T
(2)

K⊥ eiK⊥·(X,Y ) exp

[
isεn

(
(η · K⊥rH )√

2
(α − β) + i

(η × K⊥rH )z√
2

(α + β)

)]
. (A3)

In the same manner, the identity corresponding to the fourth-order term is given by

exp
[
i sεn

T −1
c (vp · �1 α + vp · �

†
2 β + vp · �3 γ + vp · �

†
4 δ)

]
ϕ0(s1)ϕ∗

0 (s2)ϕ(s3)ϕ∗
0 (s4)

∣∣
si→(X,Y )

= exp

[
− |η|2

2
(α2 + β2 + γ 2 + δ2 + (α + γ )(β + δ))

]
exp

[
− 1

4
((α − γ )2η∗ 2 + (β − δ)2η2)

]

× k√
2π

∑
K⊥

T
(4)

K⊥ eiK⊥·(X,Y )
∞∑

l1,l2=−∞
T (4)(l1,l2,K⊥)

× exp

[
isεn

(
− iη∗ k√

2
(l1 − l2)(α − γ ) − iη

k√
2

(
l1 + l2 + KyrH

k

)
(β − δ)

)]

× exp

[
isεn

(
(η · K⊥rH )

2
√

2
{(α + γ ) − (β + δ)} + i

(η × K⊥rH )z

2
√

2
{(α + γ ) + (β + δ)}

)]
,
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T
(4)

K⊥ = δ k
π

KxrH + Ky rH
k

,even| Ky rH
k

:integer exp

[
− i

π

4

KyrH

k

(
k

π
KxrH + KyrH

k

)]
exp

[
− 1

8
|K⊥rH |2

]
,

T (4)(l1,l2,K⊥) = cos
(

π

2

(
k

π
KxrH + KyrH

k

)
(l1 + l2)

)

× exp

[
i
π

4

(
(l1 − l2)2 −

(
l1 + l2 + KyrH

k

)2)]
exp

[
− k2

4

(
(l1 − l2)2 +

(
l1 + l2 + KyrH

k

)2)]
, (A4)

where l1 and l2 are integers.

2. GL coefficients Vi in Eq. (9)

Since the GL coefficients Vi in Eq. (9) have been already
derived elsewhere,23,35 we only show the final expressions of
Vi which are given by

V2 = 1

2
ln(h) +

∫ ∞

0
dρ

[
1

ρ
exp

(
− π2ξ 2

0

r2
H

ρ2

)

− fcos(ρ,ρ)

〈
|wp|2 exp

(
− |η|2

2
ρ2

)〉
FS

]
,

V4 = 2
3∏

i=1

∫ ∞

0
dρi fcos

(
3∑

i=1

ρi,

3∑
i=1

ρi

)〈
|wp|4

× exp

[
− 1

2

(
− 1

2
R24 + R14

)]
cos(I4)

〉
FS

, (A5)

V6 = −6
5∏

i=1

∫ ∞

0
dρi fcos

(
5∑

i=1

ρi,

5∑
i=1

ρi

)〈
|wp|6

× exp

[
− 1

2
(R16 + R26)

]
cos(I6)

〉
FS

,

where

R14 = |η|2
(

3∑
i=1

ρ2
i + ρ2(ρ3 + ρ1)

)
,

R24 = Re(η2)
[
ρ2

2 + (ρ3 − ρ1)2],

I4 = Im(η2)

4

[
ρ2

2 − (ρ3 − ρ1)2
]
,

R16 = |η|2
(

e1 + e2 + e3 + 2

3
e4e5

)
,

R26 = Re(η2)

(
e1 + e2 + e3 − e2

4 + e2
5

3

− 2

3
(e6 + e7 + e8 + e9)

)
,

I6 = Im(η2)

4

(
e1 + e2 − e3 − e2

4 − e2
5

3

− 2

3
(e6 + e7 − e8 − e9)

)
,

e1 = (ρ3 + ρ5)2 + (ρ3 + ρ4)2,

e2 = (ρ1 + ρ4 + ρ5)2,

e3 = ρ2
3 + ρ2

4 + (ρ2 − ρ5)2,

e4 = ρ1 + 2(ρ3 + ρ4 + ρ5),

e5 = ρ2 − ρ3 − ρ4 − ρ5,

e6 = (ρ4 − ρ5)2 + (ρ1 + ρ5 − ρ3)2,

e7 = (ρ1 + ρ4 − ρ3)2,

e8 = (ρ3 − ρ4)2 + (ρ2 + ρ3 − ρ5)2,

e9 = (ρ2 + ρ4 − ρ5)2. (A6)

3. Imaginary part of the self-energy

The self-energy of a quasiparticle is expressed as39

�σ (k,iεn) = T
∑
ε1

∑
q

Gε1,σ (k + Q0 − q) χ (q,i(εn − ε1)). (A7)

After carrying out an analytic continuation, we obtain the imaginary part of the self-energy on the Fermi surface as follows:

Im �R
σ (k,0) = 1

2π

∑
q

∫ ∞

−∞
dxImGR

−i x,σ (k + Q0 − q)Im χR(q,x)

[
coth

(
x

2T

)
− tanh

(
x

2T

)]


 qc

4(2π )2

∫
dφ

2π

∫
d(q2) δ(ε(k + Q0 + q) + σI Tc)

ξ 2(h,t)

N (0)ξ 2
N

2T

1 + ξ 2(h,t) q2
, (A8)

where �R is the retarded self-energy, GR is the retarded Green’s function, and the inequality |x|/2T � 1 is used. Since the δ

function in Eq. (A8) is reduced to

δ(TcδIC + vk · q − (σ + σ )I Tc) = θ (q2 − [	ε/vF ]2)

q vF | sin φ0| δ(φ − φ0) (A9)
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with φ0 = cos−1 (	ε/(q vF )), we obtain

Im �R
σ (kF ,0) = πT

2

1

N (0)ξ 2
N

qc

(2π )2 vF

∫ ∞

(	ε/vF )2
dq2 1√

q2 − (	ε/vF )2

1

ξ−2(h,t) + q2

= π2T

2(2π )2

qc pF

N (0) vF

1

pF ξ 2
N

(ξ−2(h,t) + (	ε/vF )2)−1/2. (A10)
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