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Two routes to magnetic order by disorder in underdoped cuprates
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We study disorder-induced magnetism within the Gutzwiller approximation applied to the t − J model relevant
for cuprate superconductors. In particular, we show how disorder generates magnetic phases by inducing local
droplets of antiferromagnetic order which eventually merge and form a quasi-long-range ordered state in the
underdoped regime. We identify two distinct disorder-induced magnetic phases of this type depending on the
strength of the scatterers. For weak potential scatterers used to model dopant disorder, charge reorganization may
push local regions in between the impurities across the magnetic phase boundary, whereas for strong scatterers
used to model substitutional ions, a local static magnetic moment is formed around each impurity. We calculate
the density of states and find a remarkably universal low-energy behavior largely independent of both disorder
and magnetization. However, the magnetic regions are characterized by larger (reduced) superconducting gap
(coherence peaks) and a subgap kink in the density of states.
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I. INTRODUCTION

Local experimental probes have highlighted the importance
of intrinsic disorder and spatial inhomogeneity in the studies
of high-Tc superconductors. In particular, scanning tunneling
spectroscopy (STS) measurements have revealed nanoscale
modulations in the gap for quasiparticle excitations and the
local density of states (LDOS).1–4 Complementary to these
(energy resolved) density modulations, it is well known that
the spin density is also heterogeneous and exhibits spin-glass
behavior in the underdoped regime. This seems to apply
to both “clean” cuprates such as YBa2Cu3O6+x (YBCO)
where quasistatic SDW order is found in the far-underdoped
regime,7–10 and to intrinsically disordered materials such as
La2−xSrxCuO4 (LSCO) where the static spin correlations are
long range and persist for a large doping range well into the
superconducting dome.11–14 The size of the spin-glass phase
in temperature and doping is clearly enhanced by disorder. At
present a detailed understanding is lacking of the connection
between the modulated spin density and the STS tunneling
data.15

In order to further probe the effects of disorder, samples
with additional extrinsic impurities have also been studied.
Most notably, substitutional Zn ions strongly suppress Tc and
induce localized low-energy density of states resonances.16 In
the spin sector, Zn is known to slow down and eventually freeze
the spin fluctuations.13,17–19 For example, in near-optimally
doped LSCO increasing amounts of Zn substitution has been
shown to shift spectral weight into the spin gap and eventually
generate elastic magnetic peaks in the neutron response.18,20

A similar Zn-induced spin freezing has been obtained for
YBCO21,22 and is generally consistent with μSR data on
underdoped cuprates.23–27

Theoretical modeling of these experimental results are
complicated by the need to include both charges, spins, and
realistic disorder configurations.28–34 Within an unrestricted
Hartree-Fock approximation of the Hubbard model including
d-wave pairing one may acquire a qualitative understanding
of the disorder-induced magnetism; due to the splitting of
low-energy in-gap impurity states, it can be advantageous to

generate local AF order which may percolate and eventually
form a quasi-long-range ordered state.31,35,36 This scenario is a
many-impurity generalization of the well-known one-impurity
result of induced local magnetization37–43 and agrees with
transport measurements.44,45 Recently, the dynamics of spin
freezing by impurities, i.e., the shift of magnetic spectral
weight to low energies, were calculated explicitly and shown
to be consistent with this scenario as well.46

The above approach, while successful to an extent, has
obvious theoretical drawbacks. First, it cannot describe the
approach to the Mott insulator; underdoping has to be
understood as the effective increase of correlations represented
by U/t as one underdopes due to the suppression of screening,
but there is no way to calculate this effect systematically.
Second, the connection between correlations and pairing is
entirely artificial, since the BCS pairing term is added by hand
and treated in mean field. What is needed is a technique which
allows for the study of local variations of observable quantities
in the presence of disorder, which easily accounts at least
for the crude effects of strong correlations in the underdoped
regime.

Here, we study disorder-induced magnetism within the
Gutzwiller approximation (GA) of the t-J model. The GA has
not been traditionally applied to include spin nondegeneracy,
but was extended to include antiferromagnetism by Ogata
and Himeda for the homogeneous case.47,48 The so-called
extended Gutzwiller factors (EGFs) have been applied to inho-
mogeneous problems by interpreting them in a site-dependent
manner. The site-dependent EGFs have been used to study
local magnetic moments around a nonmagnetic impurity,37

electronic states around a vortex core,49 and antiphase super-
conducting domain structures.50 More recently, a simplified
version of the EGFs, with the advantage that they reduce
to the well-defined extensively tested original site-dependent
Gutzwiller factors,51 has been used to examine the energetics
of the charge and spin stripe ordered superconducting state.52

We focus on two distinct cases: (1) weak scatterers with
impurity concentration equal to the doping level, nimp = δ,
modeling the disorder potential from out-of-plane dopants, and
(2) small concentrations, nimp = 1%–2%, of strong scatterers
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simulating the effects of substitutional disorder, e.g., Zn or
vacancies. In both cases, we find that disorder may induce AF
phases in the underdoped regime. The origin of the induced
magnetism is vastly different, however. In the former case
of dopant disorder, the redistributed charge density creates
local regions close to half filling in between the impurities,
pushing these areas across the bulk magnetic phase boundary.
We denote this kind of magnetic phases by type I. By
contrast, in the other case of substitutional disorder, even a
single impurity nucleates magnetization in its vicinity, and
the final spin structure consists of overlapping single-impurity
regions which may orient themselves in order to minimize the
exchange energy.31 This kind of disorder-induced magnetic
phase is called type II in this paper. The density of states
in the type I disordered phase largely retains its d-wave
V shape in agreement with experiments4–6 and consistent
with earlier theoretical studies.32,44,53,54 Surprisingly, however,
the magnetic regions exhibit a larger superconducting gap
and reduced associated coherence peaks in agreement with
the general characteristics of the large-gap regions in the
experimental STS data. Finally we discuss additional subgap
features in the LDOS which could function as fingerprints for
local magnetism in tunneling experiments.

II. MODEL

The t-J Hamiltonian, defined on a 2D lattice, is given by

Ht−J = −
∑
(ij )σ

PG(tij ĉ
†
iσ ĉjσ + H.c.)PG + J

∑
〈ij〉

Ŝi · Ŝj , (1)

where c
†
iσ creates an electron at site i with spin σ . Si is the

spin operator for site i and PG is the Gutzwiller projector
defined by PG = ∏

i(1 − n̂i↑n̂i↓), where n̂iσ = ĉ
†
iσ ĉiσ is the

spin-dependent number operator. For all results shown in
this paper we have used J/t = 0.3 and t ′ = −0.25t . In
Eq. (1), 〈ij 〉 denotes nearest-neighbor sites with associated
hopping amplitude t whereas (ij ) refers to both nearest- and
next-nearest-neighbor sites with hopping amplitudes t and
t ′, respectively. Disorder is introduced into the system by N

pointlike scatterers

Himp =
∑

i

Vi n̂i . (2)

To solve the t-J model, the no double occupancy constraint has
to be approximated. Zhang et al.55 introduced the Gutzwiller
approximation (GA) to replace the Gutzwiller projectors in
Eq. (1); in this paper we use a simplified version of the EGFs
giving rise to the following renormalized Hamiltonian:

H = −
∑
(ij )σ

gt
ij tij (ĉ†iσ ĉjσ + H.c)

+
∑
〈ij〉

J

[
g

s,z
ij Ŝ

s,z
i Ŝ

s,z
j + g

s,xy

ij

(
Ŝ+

i Ŝ−
j + Ŝ−

i Ŝ+
j

2

)]

+
∑

i

Vi n̂i . (3)

The simplified EGFs depend on the local values of the
magnetic and pairing order parameters, the local kinetic

energy, and hole density defined by

mi = 〈�0|Ŝz
i |�0〉, (4)

�ijσ = σ 〈�0|ĉiσ ĉj σ̄ |�0〉, (5)

χijσ = 〈�0|ĉ†iσ ĉjσ |�0〉, (6)

δi = 1 − 〈�0|n̂i |�0〉, (7)

where |�0〉 denotes the unprojected ground-state wave func-
tion. The simplified EGFs are given as

gt
ijσ = gt

iσ gt
jσ , (8)

gt
iσ =

√
2δi(1 − δi)

1 − δ2
i + 4m2

i

1 + δi + σ2mi

1 + δi − σ2mi

, (9)

g
s,xy

ij = g
s,xy

i g
s,xy

j , (10)

g
s,xy

i = 2(1 − δi)

1 − δ2
i + 4m2

i

, (11)

g
s,z
ij = g

s,xy

ij

2
(
�̄2

ij + χ̄2
ij

) − 4mimjX
2
ij

2
(
�̄2

ij + χ̄2
ij

) − 4mimj

, (12)

Xij = 1 + 12(1 − δi)(1 − δj )
(
�̄2

ij + χ̄2
ij

)
√(

1 − δ2
i + 4m2

i

)(
1 − δ2

j + 4m2
j

) , (13)

where �̄ij = ∑
σ

�ijσ

2 and χ̄ij = ∑
σ

χijσ

2 . Note that the simpli-
fied EGFs allow for �↑ �= �↓. The rewriting in Eqs. (8)–(13)
of the EGFs is identical to that used by Yang et al.52

A direct diagonalization of the Hartree-Fock Hamiltonian
HH−F obtained from a mean-field decoupling in Eq. (3) is
not sufficient because the simplified EGFs also depend on the
order parameters. Instead, the energy has to be calculated from
the mean-field Hartree-Fock Hamiltonian and then minimized
with respect to the unprojected wave function |�0〉 under the
constraints of both fixed total electron density

∑
i ni = Ne

and fixed wave function normalization 〈�0|�0〉 = 1.52 This is
equivalent to minimizing the function

W = 〈�0|HH−F |�0〉 − λ(〈�0|�0〉 − 1)−μ

(∑
i

n̂i−Ne

)
,

(14)

which leads to the following renormalized mean-field Hamil-
tonian:

Hmf =
∑
(ij )σ

∂W

∂χijσ

ĉ
†
iσ ĉjσ + H.c.

+
∑
〈ij〉σ

∂W

∂�ijσ

σ ĉiσ ĉj σ̄ + H.c. +
∑
iσ

∂W

∂n̂iσ

n̂iσ , (15)

with the self-consistent equations

∂W

∂χijσ

= −δij,〈ij〉J

(
g

s,z
ij

4
+ g

s,xy

ij

2

χ∗
ij σ̄

χ∗
ijσ

)
χ∗

ijσ − gt
ijσ tij

− δij,〈ij〉
J

4
(|�ij↑|2 + |�ij↓|2 + |χij↑|2 + |χij↓|2

− 4mimj )
dg

s,z
ij

dχijσ

, (16)

184511-2



TWO ROUTES TO MAGNETIC ORDER BY DISORDER IN . . . PHYSICAL REVIEW B 84, 184511 (2011)

0.05 0.1 0.15 0.2 0.25
0

0.1

0.2

0.3

δ

m

χ

Δ

FIG. 1. (Color online) Phase diagram for the homogeneous case
with commensurate (π,π ) AF order m, pairing order parameter �,
and kinetic energy χ [see Eqs. (4)–(6)].

where δij,〈ij〉 is equal to one if i and j are nearest neighbors
and zero otherwise.

∂W

∂�ijσ

= −J

(
g

s,z
ij

4
+ g

s,xy

ij

2

�∗
ij σ̄

�∗
ijσ

)
�∗

ijσ

−J

4
(|�ij↑|2 + |�ij↓|2 + |χij↑|2 + |χij↓|2 − 4mimj )

× dg
s,z
ij

d�ijσ

, (17)

∂W

∂niσ

= − (μ − Vi) + 1

2
σ

∑
j

g
s,z
ij Jmj

−J

4

∑
j

(|�ij↑|2 + |�ij↓|2 + |χij↑|2

+ |χij↓|2 − 4mimj )
dg

s,z
ij

dniσ

−J

2

∑
jσ ′

(χ∗
ij σ̄ ′χijσ ′ + �∗

ij σ̄ ′�ijσ ′)
dg

s,xy

ij

dniσ

−
∑
jσ ′

tij
dgt

ijσ ′

dniσ

(χijσ ′ + χ∗
ijσ ′). (18)

Here σ̄ denotes the opposite spin of σ . The derivatives of
the EGFs entering these equations can be straightforwardly
derived from Eqs. (8)–(13). We have solved these unrestricted
equations self-consistently by iteration on 24 × 24 lattices,
by diagonalization of the Bogoliubov–de Gennes (BdG)

equations associated with the excitation operators γ̂
†
nσ and γ̂nσ

defined by ĉi↑ = ∑
n(uni↑γ̂n↑ + v∗

ni↑γ̂
†
n↓).42,56

At low doping, such a simple iterative procedure fails
to converge in the inhomogeneous case because dgt

ijσ /dniσ

diverges when the local density approaches half filling, δ = 0.
Therefore, small changes in the electron density between
consecutive iterations causes large jumps in dgt

ijσ /dniσ . In
this paper, we therefore restrict the doping level of the
inhomogeneous cases to be larger that δ > 0.115 where
iterations are sufficient for obtaining numerical convergence.
On the other hand, for the homogeneous case allowing for
a superconducting and a commensurate AF phase, the phase
diagram can be easily mapped out for δ > 0.026 and is shown
in Fig. 1. This phase diagram is similar to that obtained, e.g.,
in Refs. 48,57. Note that the phase boundary for the magnetic
order in Fig. 1 is valid only for a standard (π,π ) AF order. At
finite doping striped magnetic order can also be stabilized
within a similar approach,52 exhibiting a slightly different
phase boundary.

III. RESULTS

We begin the results section by discussing the case of dopant
disorder, i.e., nimp = δ, where each scatterer is relatively
weak, Vi = t . In previous studies of unrestricted Hartree-Fock
applied to the Hubbard model it was found that each dopant
induced local magnetization, leading to a scenario where
the amount of disorder-induced magnetization is proportional
to the doping level contrary to experiments.31 Such an
approach, however, does not include any band widening with
increased doping, and can be made consistent with the lack
of magnetization in the overdoped regime only by requiring
U/t to be a decreasing function of doping. The present model
naturally includes the effects of strong correlations in the
underdoped regime and, as seen from Fig. 2, the dopant
disorder indeed induces a finite magnetization but only at low
doping levels. The magnetic phase shown in Fig. 2, which
we denote type I, is incommensurate as seen from Fig. 4(a),
and disorder induced as verified by a vanishing magnetization
in the absence of disorder (not shown). The origin of the
magnetization is a charge redistribution caused by the weak
impurities: It is energetically favorable for the electrons to
be located away from the disorder sites which then push these
local regions across the magnetic phase boundary similar to the
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FIG. 2. (Color online) Type I behavior. Magnetization shown in a real-space field of view for doping levels close to the magnetic phase
transition of the clean system δ = 0.115,0.125,0.13,0.135 (left to right). The black dots show the positions of the impurities. The dopant
disorder is modeled with a potential strength Vi = t and nimp = δ, where nimp is the impurity concentration and δ the doping level. As seen, the
dopant-induced magnetic regions gradually disappear as the doping increases.
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FIG. 3. (Color online) Type II behavior. Magnetization shown in a real-space field of view in the presence of 1% [(a), (c)] and 2% [(b), (d)]
strong impurities with Vi = 100t for doping δ = 0.14 [(a), (b)] and δ = 0.15 [(c), (d)].

homogeneous case shown in Fig. 1. Clearly, this mechanism
is dominant at low doping where regions more readily reach
the local critical doping level.

The origin of the magnetization in Fig. 2 is different
from the disorder-induced AF studied previously, which we
denote by type II, where each impurity gives rise to a local
magnetization.31,37–43 In the single-impurity case, each defect
gradually “freezes” magnetic fluctuations as correlations or
the impurity potential increase, shifting spectral weight from
high to low energies, eventually accumulating in a local
ω = 0 peak. Within the present model, we reproduce the
latter mechanism in the limit of strong scatterers as shown
in Fig. 3. Specifically, Fig. 3 shows a situation with Vi = 100t

for nimp = 1% [(a), (c)] and nimp = 2% [(b), (d)], and doping
δ = 0.14 [(a), (b)] and δ = 0.15 [(c), (d)]. Though care must
be taken when extrapolating single-impurity to many-impurity
effects in d-wave superconductors,36,40,58–60 the results shown
in Fig. 3 can be explained from overlapping single-impurity
magnetizations. The result agrees with the general notion that
enough strong scatterers at a given doping level can lead to
static magnetic order. For higher doping levels larger concen-
trations of impurities are needed to freeze the spins as shown
explicitly by comparing, e.g., Figs. 3(a) and 3(c).18,20,21,46

Next we focus on the result shown in Fig. 2(a). Figure 4
shows other relevant physical quantities for this parameter
set: (a) the Fourier transform of the magnetization, (b) the
absolute value of the magnetization |mi |, (c) the electronic
charge density ni , (d) the gap map extracted from the LDOS,
(e) the peak height extracted from the LDOS, and (f) the
gap map extracted from the LDOS without the possibility
for magnetic order. A comparison of Figs. 4(b) and 4(c)
verifies the direct correlation between the local density and the
induced magnetization for type I behavior. Hence, the origin of
the magnetization is local phase transitions caused by charge
modulations with regions closer to half filling pushed across
the magnetic phase boundary (see Fig. 1).

The LDOS Ni(ω) can be obtained from

Ni(ω) =
∑

n

gN
iσ [|uniσ |2δ(ω − En) + |vniσ |2δ(ω + En)],

(19)

where i denotes the site index, n is the index of the
eigenstates with BdG eigenvalue En, and gN

iσ = δi/(1 − niσ )
is the Gutzwiller renormalization factor originating from
the “hopping” between different times entering Eq. (19).53

Surprisingly, the local superconducting gap shown in Fig. 4(d)

extracted from the LDOS is larger in the magnetic regions
of the system contrary to the expectation from a conventional
competitive scenario. The larger gap results from a combined
effect of (1) lower effective doping in the magnetic regions
and hence a larger local pairing order parameter (see Fig. 1)
caused by the impurity-induced redistribution of the electron-
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FIG. 4. (Color online) (a) Fourier transform of the magnetization
averaged over 10 distinct impurity configurations. (b) Absolute value
of the magnetization |mi |. The white dots show the positions of the
impurities. (c) Electronic charge density ni . (d) Gap map extracted
from the LDOS (half the distance to the positive coherence peak).
(e) Peak height extracted from the LDOS (positive coherence peak).
(f) Gap map extracted from the LDOS, but where the possibility for
magnetic order is removed by hand. The parameters are identical to
those used in Fig. 2(b).
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density, which is enhanced by the magnetic order, and (2) a
renormalization of the local pairing constant in the presence
of magnetization dominated by the last term proportional to
mimj in Eq. (17) (see also Fig. 7 below). Comparing the
gap map with and without magnetic order in Fig. 4(d) and
Fig. 4(f) clearly illustrates that magnetic order contributes
significantly to the spatial modulation of the gap measured
by STS in the underdoped regime.1–4 However, the two
bulk arguments above are not sufficient to explain the entire
modulation in Fig. 4(d) indicating a nontrivial effect of the
spatial inhomogeneity.

The peak height of the coherence peaks also varies in real
space and tends to be anticorrelated with the local gap mag-
nitude as seen from Fig. 4(e). This anticorrelation is a direct
consequence of gN

iσ in Eq. (19) which reduces the low-energy
spectral weight in large gap regions due to their closer prox-
imity to half filling. The anticorrelation between local gap and
coherence peak height is consistent with STM measurements61

which motivated a picture of locally modulated pairing in
the cuprate superconductors.62–64 Within the present strong-
coupling approach, we find a similar anticorrelation for type I
disorder-induced magnetization in the underdoped regime.

Representative curves for N (ω) in different local gap
regions are shown in Figs. 5(a) and 5(b), where one
clearly sees the anticorrelation between local gap and co-
herence peak height. As discussed previously, the presence
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FIG. 5. (Color online) LDOS N (ω) vs energy ω. (a) LDOS for
two sites in Fig. 2(b) (red curve is from a large-gap region [site
(13,21)], blue in a small-gap region [site (13,11)]. (b) LDOS for
the same two sites but in Fig. 2(d). (c) Spatially averaged LDOS
corresponding to the four panels in Fig. 2 (black δ = 0.115, green
δ = 0.125, blue δ = 0.13, and red δ = 0.135). (d) The spatially
averaged LDOS for a dirty d-wave superconductor with t ′ = −0.25t ,
J = 1.1t , and nimp = 0%,1%,5%,10%,20% (bottom to top at ω =
0). The calculations were done using 20 × 20 or 24 × 24 lattices with
10 × 10 supercells and (d) was averaged over 10 different impurity
configurations. An artificial broadening of the delta functions in
Eq. (19) with η = 0.016 was used to smoothen the curves slightly.
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FIG. 6. (a) The local chemical potential μi in the x direction for a
24 × 24 system containing a single impurity with Vi = t (dashed) or
Vi = 100t (solid). The impurity is situated at site = 13 and δ = 12.5.
(b) The same as (a) but cut off right before the impurity site to
highlight the spatial dependence away from the impurity site.

of a robust V-shaped density of states at low energies is
novel and not contained within models that ignore elec-
tronic correlations.32,44,53,54 This can be seen explicitly from
Figs. 5(c) and 5(d) where we compare the spatially aver-
aged LDOS within the present model and a conventional
Bogoliubov–de Gennes approach.53 The latter model clearly
piles up states inside the gap. By contrast, the spatially
averaged LDOS shown in Fig. 5(b) corresponding to the four
panels in Fig. 2 displays a remarkably universal low-energy
density of states. The magnetization at low doping causes
additional minor structure inside the gap. We interpret these
subgap kinks as a disordered version of a similar in-gap kink
caused by altered contours of constant energies in a model with
bulk coexistence of AF and d-wave superconducting order.15,65

Such features could serve as tunneling fingerprints of local
magnetism in the underdoped regime.

Next, to underline the importance of minimizing the energy
and to understand the difference between a strong and weak
scatterer we define a “local chemical potential” μi defined
from

∂W

∂niσ

= − (μ − Vi) + μi. (20)

Figure 6 shows the local chemical potential μi for different
impurity potentials. It is clear from Fig. 6(a) that μi works
against the impurity potential on the impurity site since a
larger Vi leads to a smaller μi . However, the renormalization
of the impurity potential by μi has the largest impact on
weak impurity potentials because μi takes values in the
range [0,2.15]. Figure 6(b) illustrates how μi varies for
the neighboring sites depending on the impurity potential.
For weak impurities μi spreads out the impurity potential,
while for large impurity potentials μi attracts electrons to the
neighboring sites. The dominant contribution to μi turns out to
be dgt

ijσ /dniσ which is related to the kinetic energy. Thus for
weak impurity potentials, the holes on the impurity site tend to
gain kinetic energy by spreading out as a consequence of the
change in the effective hopping integral, while the opposite
is the case for a strong impurity. To summarize, the strong
correlations treated within the GA affect the impurity potential
in two distinct ways. First, the suppression of the electron
density at the impurity site i enhances the effective hopping
integral teff = gt

ij t which acts as a healing of the damage done
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by the impurity. Second, the electron density redistributes to
minimize the energy because the Gutzwiller factors themselves
depend on the electron density. The redistribution of the
electron density is enforced by the local chemical potential
which also tends to work against the impurity potential.

IV. CONCLUSIONS

In this work, we have studied disorder-induced magneti-
zation within the t-J model with correlations treated using
the Gutzwiller approximation to implement the no-double-
occupancy constraint. In general, the inclusion of correlations
strong enough to describe band narrowing and other crude
features of the Mott transition locally was seen to justify the
phenomenological description of underdoping in terms of a
renormalized Hubbard U/t used until now in Hartree-Fock
treatments of disordered correlated d-wave superconductors.
However, some unexpected subtleties were also discovered. In
the case of dopant disorder where the impurity concentration
equals the doping level and the individual disorder potentials
are weak, local charge reorganization can induce regions with
finite magnetization located away from the impurities. On the
other hand, strong scatterers locally pin AF regions which may
merge and eventually form a quasi-long-range ordered spatial
structure. Remarkably, the LDOS at low energies remains
largely disorder independent whereas the superconducting gap
(coherence peak height) extracted from the LDOS is increased
(decreased) in the magnetic regions present in the underdoped
regime.

The goal of this analysis is to work toward a theory incorpo-
rating disorder, superconductivity, and correlations capable of
describing local spectroscopies of cuprates across the phase di-
agram. Perhaps the most successful approach thus far, in terms
of reproducing the many statistical observables reported by
STM, has been the phenomenology of Nunner et al.62 To some
extent this success was only possible, however, because (a)
correlations were neglected and doping dependence ignored,
and (b) an impurity was assumed ad hoc to add independent
Coulomb and pairing potentials to the system. The present
work has attempted primarily to address the deficiency repre-
sented by (a). Earlier works, notably Ref. 66, also incorporated
disorder and correlation in the superconducting state, but ne-
glected both the modulation of the pairing interaction by disor-
der and the possibility of local magnetism. The latter effect has
been shown here to lead to some of the important correlations
present in μSR, neutron scattering, and STM; in particular
the anticorrelation between peak height and gap amplitude has
been exhibited in the locally ordered magnetic phases.

On the other hand, the modulation of the pairing potential
represented by the exchange constant J in the model renormal-
ized by the local Gutzwiller factors is relatively weak, as shown
in Fig. 7. Thus the positive correlations of the gap size with
the O defect position, identified as crucial in McElroy et al.,61

will not occur in the present model when the correlations
become weak enough in the overdoped phase. From Fig. 7
one can see that the impurities cause local reductions of J

because the Gutzwiller factor gs is a decreasing function of
the doping level. The present approach, therefore, does not
include the possibility, discussed in Nunner et al.,62 that the
defect distorts the lattice locally leading to a different pairing
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FIG. 7. (Color online) Real-space plot of the effective exchange
coupling J̃i = ∑

j J̃ij /4, where j are the four nearest neighbors to
site i, obtained from J̃ij = 1

2

∑
σ

∂W

∂�σ
/�σ shown for a configuration

of weak impurities (type I disorder) with nimp = δ = 0.125 similar to
Fig. 4.

interaction, as represented, e.g., by a local enhancement of
J . Local impurity enhancements of J are also obtained by
explicitly including the different impurity potentials on the
two sites involved in the exchange process.67 The notion of
local J enhancement has been explored by Maska et al.,67

Foyevstova et al.,68 Johnston et al.,69 and Khaliullin et al.70

with model-dependent results; all however indicate that sizable
modulations of the pairing interaction can indeed occur. These
effects have been left out of the current approach, but will be
included in our future studies of this problem. They will lead to
enhanced inhomogeneity without magnetism in the overdoped
case, as well as to the broadening of the large-gap coherence
peaks observed in Ref. 4.

For completeness, we mention a second possibility71 to
explain the defect-gap correlations at optimal to overdoping,
that a second source of disorder is present, correlated with
the O dopants, and not imaged in the experiment of McElroy
et al.61 This scenario is plausible but requires the existence of a
second, independent source of disorder. In addition, it has been
found in density functional theory structural studies that both
in the O dopant case and that of the structural supermodulation,
CuO4 half octahedra are tilted in identical ways by the
perturbation,72,73 and are correlated empirically the same way
with the gap modulations,61,74,75 lending credence to the idea
that a single set of O dopants is the primary driver of the
structural distortions and gap changes. We therefore believe
that the combination of effect of electronic correlations as
described here, together with a practical description of the
modulation of the pairing gap, should provide a complete
description of the statistics of local STM observables over
the whole phase diagram.
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