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Atomic momentum distribution and Bose-Einstein condensation in liquid 4He under pressure
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Neutron-scattering measurements of the dynamic structure factor, S(Q,ω), of liquid 4He as a function of
pressure at high-momentum transfer, h̄Q, are presented. At high h̄Q the dynamics of single atoms in the liquid
is observed. From S(Q,ω) the atomic momentum distribution, n(k), the Bose-Einstein condensate fraction, n0,
and the final-state (FS) broadening function are obtained. The shape of n(k) differs from a classical, Maxwell-
Boltzmann distribution with higher occupation of low-momentum states in the quantum liquid. The width of
n(k) and the atomic kinetic energy, 〈K〉, increase with pressure but the shape of n(k) remains approximately
independent of pressure. The present observed and Monte Carlo (MC) calculations of 〈K〉 agree within error.
The condensate fraction decreases from n0 = 7.25% ± 0.75% at saturated vapor pressure (p � 0) to n0 =
3.2% ± 0.75% at pressure p = 24 bar, a density dependence that is again reproduced by MC calculations within
observed error. The FS function is the contribution to S(Q,ω) arising from the interaction of the struck atom with
its neighbors following the scattering. The FS function broadens with increasing pressure reflecting the increased
importance of FS effects at higher pressure.

DOI: 10.1103/PhysRevB.84.184506 PACS number(s): 61.05.fg, 67.10.Ba

I. INTRODUCTION

Bose-Einstein condensation (BEC) plays an essential role
and is widely observed in condensed matter.1 Superfluidity
and superconductivity arise from BEC.2–5 Superfluidity in
liquid 4He is a manifestation of BEC of preformed bosons
(4He atoms).6,7 Superconductivity follows from BEC of paired
fermions (Cooper pairs) and is generally limited by the
formation of the pairs. In dilute gases of trapped Bose alkali
atoms, essentially 100% of the atoms can Bose condense. BEC
in a gas of photons, in which the number photons is restricted,
has also recently been reported.8

BEC may be described as the condensation of a macro-
scopic fraction of the Bosons into one single-particle state,
usually the lowest-energy single-particle state or ground-state
orbital.5 For bosons in a trap, the wave functions of the natural
single-particle orbitals are determined chiefly by the trapping
potential and less so by the interparticle interaction. The natural
orbitals are most fundamentally determined by diagonalizing
the one-body density matrix (OBDM).5,9–11 BEC is detected by
the localization of the atoms in space when the atoms condense
into the lowest energy orbital.12–14

In a uniform liquid where there is no external potential, the
natural single-particle states are plane wave states enumerated
by the single particle momentum, k. In this case BEC is
associated with condensation into the zero-momentum (k = 0)
state. In a uniform system, BEC can be observed as the onset
of a peak in the momentum distribution, n(k), at k = 0 of
magnitude n0δ(k), where n0 is the condensate fraction. In
this case, the OBDM is the Fourier transform of n(k). In
strongly interacting liquid 4He fewer than 10% of atoms can
condense. Nonetheless, the resulting phase coherence in the
liquid enables superflow and other remarkable properties.

The atomic momentum distribution, n∗(k), of atoms in
the states k > 0 above the condensate in quantum gases,

liquids, and solids is also of great interest. In classical systems
where the momentum and position are independent variables,
n∗(k) is always a Gaussian function, the Maxwell-Boltzmann
distribution. In quantum systems where the momentum and
position are coupled via commutation relations, n∗(k) depends
on the interatomic potential, on the external potential, if any,
and contains important information on quantum effects and
interatomic correlations. In strongly interacting systems, n∗(k)
is a dominant part of n(k).

As proposed initially by Miller, Pines, and Nozières15 and
Hohenberg and Platzman,16 n(k) and n0 can be measured
in neutron scattering measurements of the dynamic structure
factor (DSF), S(Q,ω). At high-energy (h̄ω) and -momentum
(h̄Q) transfer from the neutron to the liquid, the neutron
strikes a single atom and S(Q,ω) is a broad function of ω

centered near the free-atom recoil frequency ωR = h̄Q2/2m

of width proportional to vR = h̄Q/m, the free atom recoil
velocity. In this momentum and energy transfer range, it
is convenient to express the energy transfer ω terms of
the y scaling variable y = (ω − ωR)/vR and introduce the
DSF J (Q,y) = vRS(Q,ω). The scattering is then centered
near y = 0 and the width is approximately independent of
Q. If the interaction of the struck atom with its neighbors
following the scattering can be ignored, denoted the impulse
approximation (IA), the J (Q,y) reduces to JIA(y), which is
entirely independent of Q. The condensate appears in JIA(y)
as a term n0δ(y) and JIA(y) has a width arising from Doppler
broadening by the atomic momentum distribution, n(k).

When there is interaction, the atoms struck by neutrons
collide with their neighbors following the scattering, denoted
final-state (FS) interactions. When FS effects are important,
the condensate is observed in J (Q,y) at y = 0 as a broadened
peak of width n0R(Q,y), where R(Q,y) is the FS function. It
is also observed in J (Q,y) at y �= 0 as a function that tracks
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R(Q,y). Because of FS effects, the observed J (Q,y) also
depends on Q. This dependence can be used to determine the
FS function. In the absence of FS effects R(Q,y)→ δ(y).

Early measurements of the atomic momentum distribution
and n0(T ) in liquid 4He using neutron inelastic scattering are
reviewed by Sokol,17 Glyde,18 Silver and Sokol,19 Glyde and
Svensson,20 Svensson and Sears,21 Svensson,22 and others.
They produced a wide range of n0 values,23 2% � n0 � 17%.
The different values of n0 arose chiefly from the different
treatment of the FS contributions to S(Q,ω). Sears et al.24

developed a method for treating FS effects based on an
additive expansion25 of S(Q,ω). Using this method and
reactor neutron measurements of S(Q,ω) at wave vectors
10 � Q � 13 Å−1, Sears et al.24 and Mook26 obtained the first
consistent values of n0, n0(0) = 13.9% ± 2.3% and n0(0) =
11% ± 3%, respectively. In an important step forward, Sokol
and collaborators17,27–31 made a series of measurements at
higher Q values (Q = 23 Å−1) drawing on the Intense
Pulsed Neutron Source spallation neutron source. They also
analyzed the data using the convolution method of treating
FS effects developed by Gersch and Rodriguez32 and the
FS function calculated by Silver and Sokol.19,33 They found
n0 = 10.0% ± 1.25% at low temperature (0.35 K) in liquid
4He at saturated vapor pressure (SVP) and an n0 that decreased
significantly with increasing pressure, to n0 = 5.5% ± 1.25%
at 24 bar.

Taking advantage of the increased neutron beam intensity
and improved instrumentation at the ISIS Spallation Neutron
Source, Rutherford Appleton Laboratory, we have measured
n0 with increased precision. A condensate fraction at SVP of
n0 = 7.25% ± 0.75% was observed.34 Similarly in 3He-4He
mixtures, again at SVP, an n0 that increases only slightly with
3He concentration, to n0 = 11.0% ± 3.0% at a 3He concen-
tration of 15%–20% was also observed.35 The treatment of FS
effects in these and the present measurements may be described
as an expansion of J (Q,y) at short scattering times in the spirit
proposed by Sears25 but within the convolution formulation of
Gersch and Rodriguez.32 The FS broadening function is also
determined from experiment. These measurements34–36 also
showed that n(k) in liquid helium is more sharply peaked
at low k than a Gaussian. This deviation from a Gaussian
can be described by a kurtosis of δ = 0.4. A number of
measurements of the atomic kinetic energy in liquid 4He
have been made at much higher Q (Q � 100 Å−1), where
FS effects are negligible, using the VESUVIO instrument at
ISIS. These measurements and a wide range of measurements
in other systems made using VESUVIO are reviewed by
Andreani et al.37

In this background we present neutron-scattering measure-
ments of J (Q,y) in liquid helium under pressure between SVP
and 24 bar at ISIS. The goal is to determine the condensate
fraction, n0, up to 24 bar to the same level of precision that it is
known at SVP. We are particularly interested in how much the
condensate fraction, n0, decreases with increasing pressure
between SVP (p � 0) and the solidification pressure (p =
25.3 bar). A second goal is to determine the shape and width
of n∗(k) and whether this shape changes with pressure. The FS
function is also determined as a function of pressure from ex-
periment. A short version of this work has already appeared.38

In the next section we describe the model OBDM, DSF, and
FS function R(Q,s) used to analyze data and the experiment.
In Sec. III we present the results and discuss them in Sec. IV.

II. EXPERIMENT AND DATA ANALYSIS

A. Model momentum distribution and OBDM

To represent n(k), we introduce the model momentum
distribution,24,39

n(k) = n0[δ(k) + f (k)] + A1n
∗(k). (1)

In fundamental treatments of Bose fluids the occupation
operators (ak) are separated into a condensate component
(a0 = √

n0) and an above-the-condensate component (ak,k �=
0). This leads to the separation of n(k) into n0δ(k) and
n∗(k) in Eq. (1) the condensate and the above-the-condensate
components, respectively. In interacting Bose fluids there is
also a coupling between these components represented by the
term

n0f (k) =
[

n0mc

2h̄(2π )3n

1

|k| coth

(
ch̄|k|
2kBT

)]
e−k2/(2k2

c ), (2)

where m is the mass, c is the sound velocity, and n = N/V is
the number density. This coupling arises from the scattering of
bosons from states above the condensate into the condensate
and vice versa. The scattering couples the single-particle [n(k)]
and density (phonon-roton) excitations. It is the coupling of
these excitations that leads to Eq. (2), which is derived and
valid for low-k modes where it is most important. The coupling
decreases at higher k values (k � 0.7 Å). We have multiplied
the derived f (k) by a Gaussian function exp[−k2/(2k2

c )] with
kc = 0.5 Å to cut off f (k) in a smooth fashion at higher k as
required. Eq. (2) is derived and discussed in Ref. 18. It is a
small term and including it in Eq. (1) reduces the n0 observed
by approximately 15%.

The Fourier transform of n(k) is the OBDM,

n(r) = 〈�+(r)�(0)〉/n = 〈e−ik·r〉 =
∫

dk n(k)e−ik·r.

(3)

The OBDM is a more fundamental quantity than n(k) since it is
well defined for both strongly interacting and noninteracting
systems. It represents the probability amplitude of simulta-
neously removing a particle from the origin and placing it
at point r. It is independent of the basis of the system. The
model OBDM corresponding to Eq. (1), the Fourier transform
of Eq. (1) for displacements r = Q̂ s parallel to the scattering
wave vector, Q, is

n(s) = n0[1 + f (s)] + A1n
∗(s). (4)

The constant A1 is determined by normalizing n(k) to unity,
that is, requiring n(s = 0) = 1. At s = 0, f (0) = 0.28. We
begin with n(s) in Eq. (4) as our basic model function that will
be fitted to the data.

B. Observed dynamic structure factor

In this section, we set out the expressions for the DSF that
we use to fit to the data. In inelastic neutron scattering from
pure liquid 4He, the coherent DSF, S(Q,ω), is always observed.
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The coherent S(Q,ω) includes the dynamic correlations
between atoms in the fluid. However, at high-momentum
transfer Q � 10–12 Å−1, where the static structure factor,
S(Q), reduces to one, the correlations have little impact and
the coherent S(Q,ω) reduces to the incoherent DSF, Si(Q,ω).
The Si(Q,ω) describes the response of the single atom that
is struck by the neutron. As discussed in the Introduction, at
large, constant Q, Si(Q,ω) is a broad function of ω peaked
at approximately at ωR of width proportional to vR and
magnitude inversely proportional to vR . In this regime, the
near impulse regime, it is convenient to express the energy
transfer in terms of the y-scaling variable and Si(Q,ω) as
J (Q,y) = vRS(Q,ω). The J (Q,y) peaks near y = 0 and is
approximately independent of Q.

The Fourier transform of Si(Q,ω), the intermediate DSF
Si(Q,t), is similarly conveniently expressed in terms of the
length s = vRt conjugate to y. In these variables, the Fourier
transform of J (Q,y) is

J (Q,y) = 1

2π

∫
ds eiysJ (Q,s), (5)

where J (Q,s) is the intermediate DSF written in the length
variable, s.

The intermediate DSF in the IA is also exactly the OBDM,

JIA(s) = n(s) = n0[1 + f (s)] + A1n
∗(s). (6)

This equality also makes n(s) a natural function to fit to the
data. The observed intermediate DSF is

J (Q,s) = JIA(s)R(Q,s), (7)

where R(Q,s) is the FS broadening function that takes account
of the interaction of the struck atom with its neighbors.
Equation (7) can be taken as the definition of the FS function.
As discussed below we obtain functions for both n∗(s) and
R(Q,s) by making an expansion of J (Q,s) in powers of s that
is qualitatively correct up to s6 and determine the parameters
in the expansion by fits to experiment. In this way R(Q,s) is
determined experimentally and is a function of pressure.

At high wave vector and energy transfer, the scattering time
is short. The recoil distance s = vRt traveled by the struck
atom within the scattering time is also short. For short s the
intermediate DSF in Eq. (7) can be written as

J (Q,s) =
〈
Ts exp

[
−i

∫ s

0
ds ′kQ(s ′)

]〉
. (8)

In this expression Ts(Tt ) is the distance (time) ordering
operator and h̄kQ = h̄(k · Q̂) is the momentum of the struck
atom along Q. From Eq. (8) we see that J (Q,s) depends only
on the momentum of the struck atom, the initial momentum
kQ(0) and the momentum after it has traveled a distance s

away from the scattering event. The kQ(s) differs from kQ(0)
as a result of collisions of the recoiling struck atom with its
neighbors, the FS effects. If we ignore these FS collisions so
that kQ(s) = kQ(0) for all s, J (Q,s) reduces to the IA,

JIA(s) = 〈e−ikQs〉. (9)

The IA assumes that the momentum kQ of the struck atom
is constant and not changed from its initial value after the
scattering (no FS interactions). By comparing Eqs. (3) and (9)

we see that the intermediate DSF in the IA is the OBDM for
displacements r = Q̂ s parallel to Q.

To obtain the expressions for JIA(s) and the FS function
R(Q,y) that we fit to data, we make cumulant expansions of
Eqs. (8) and (9). The cumulant expansion of the OBDM Eq. (9)
gives, up to terms in s6,

J ∗
IA(s) = n∗(s) = exp

[
−α2s

2

2!
+ α4s

4

4!
− α6s

6

6!

]
, (10)

where

α2 = 〈
k2
Q

〉
,

α4 = 〈
k4
Q

〉 − 3
〈
k2
Q

〉2
,

(11)
α6 = 〈

k6
Q

〉 − 15
〈
k4
Q

〉〈
k2
Q

〉 + 30
〈
k2
Q

〉3
are cumulants of n(s). This cumulant expansion contains
terms in n∗(s) only, terms arising from atoms above the
condensate which contribute at short s in Eqs. (7) and (9).
The condensate contribution, which is long range in s, has to
be added separately to n∗(s) in Eq. (8) as discussed below. The
model JIA(s) has four parameters, n0, α2, α4, and α6. These are
determined as a function of pressure by fitting to experiment
in the Results section below.

The model FS function R(Q,s) that we fit to data is obtained
by making a cumulant expansion of the intermediate DSF
J (Q,s) in Eq. (8). The terms in J (Q,s) = n∗(s)R(Q,s) that
belong to n∗(s) [the Q-independent terms in Eq. (10)] are
identified and the remaining terms arise from R(Q,s). Up to
powers s6, this gives

R(Q,s) = exp

[
iβ3s

3

3!
+ β4s

4

4!
− iβ5s

5

5!
− β6s

6

6!
+ · · ·

]
.

(12)

Expressions for the coefficients βn are

β3 = a3/λQ,

β4 = a4/(λQ)2,

β5 = a52/(λQ)3 + a54/λQ,

β6 = a62/(λQ)4 + a64/(λQ)2,

where the anm are independent of Q and λ = h̄2/m = 1.0443
meV Å2 in liquid 4He. Expressions for the anm can be derived
from the moments of J (Q,y) and expressions up to a64 have
been obtained.25,39 The lowest two are a3 = 〈∇2v(r)〉/6 and
a4 = 〈(∇v)2〉/3, where v(r) is the total potential seen by the
struck atom. In applications34,40 we have found that β4 is
negligible. Similarly, the a54 term in β5 and the a62 term in
β6 are also small and can be neglected. In this way R(Q,s)
reduces to three terms,

R(Q,s) = exp

{
i(a3/λQ)s3

3!
− i[a52/(λQ)3]s5

5!

− [a64/(λQ)2]s6

6!

}
, (13)

which depend on three parameters, a3, a52, and a64. These
parameters are determined as a function of pressure by fits of
the total J (Q,y) to experiment in the Results section below.
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The expressions in Eqs. (10) and (13) were derived for a
fluid without a condensate. When there is BEC, we assume
that we can replace the n∗(s) in Eq. (10) with n(s) in Eq. (6),
which contains the condensate without affecting the short time
expansions. This is based on the picture that the condensate
term, n0[1 + f (s)], in n(s) is small and a long-range function in
s. As a result, adding it to n∗(s) should not change significantly
the expansion of J (Q,s) at short distances s. Empirically, we
have found that R(Q,y) is the same within precision above Tλ

[where n(s) = n∗(s)] and below Tλ [where n(s) �= n∗(s)].

C. Experiment

The data reported here were collected using the MARI time-
of-flight (TOF) spectrometer located at the ISIS spallation
neutron facility, Rutherford Appleton Laboratory, UK. MARI
was chosen because it has a combination of high incident
energies (up to 1 eV possible) and a wide and almost
continuous angular detector coverage (3 ◦ to 135 ◦ in steps
of 0.43 ◦) making it ideal to simultaneously access a large
range in energy and momentum transfer. Due to the pulsed
nature of the source, data collection is performed in TOF in
which the time of arrival of a neutron in the detector, relative
to when they leave the moderator, determines its energy loss or
gain after scattering from the sample. The momentum transfer
depends on the TOF and the scattering angle of the neutron.

Commercial-grade 4He (0.3 ppm of 3He) was condensed in
a cylindrical aluminum sample cell of volume 100 cm3 that
is thermally anchored to the mixing chamber of a Vericold
dry dilution fridge with a base temperature of 40 mK. Highly
neutron absorbing boron nitride (BN) was used as shielding
material to reduce undesirable background scattering from
the sample cell end caps and exposed parts of the fridge. In
addition, to minimizing multiple scattering within the 4He
sample, 1-mm-thick BN disks were placed perpendicularly to
the cylindrical axis, essentially splitting the sample volume
into five smaller cylinders. Temperature was measured using
a calibrated RuO2 sensor and the pressure was monitored
using a pressure transducer situated in an external gas panel
containing a 4-liter buffer volume. The incident neutron energy
was determined to be 720 meV.

Data were successfully collected as follows: at base
temperature (40 to 75 mK) in the superfluid phase and at
pressure, p = 0, 7.5, 12, 15, 20, and 24 bar; in the normal
phase (2.3 K) and at p = 12, 20, and 24 bar; and additionally
for p = 24 bar at T = 1.0, 1.5, and 2.0 K.

The data collected in TOF were then converted to energy
transfer (h̄ω) at constant scattering angle and subsequently
to constant scattering vector Q using standard procedures.
A detailed discussion of the data transformation from TOF
to S(φ,ω) and then to S(Q,ω) is given by Andersen et al.41

As discussed in Sec. II, we expressed the DSF as J (Q,y) =
(h̄Q/m)S(Q,ω), which is weakly Q dependent as a result
of FSE. The experimental data were transformed to J (Q,y)
for Q = 20 to 29 Å−1 in steps of 0.5 Å−1 and a sample
of the data are shown in From Figs. 1 and 2. Since the
observed J (Q,y) consists of a convolution of the underlying
momentum distribution, the FS function and the instrumental
resolution function, for a quantitative analysis of the data, the
instrumental resolution function must be accurately known.

FIG. 1. (Color online) Observed data, the DSF J (Q,y) folded
with the instrument resolution, at wave vector Q = 27.5 Å−1. Shown
is J (Q,y) versus y of liquid 4He at low temperature in the Bose
condensed phase (blue diamonds) and in the normal liquid phase
(red circles) at three pressures, where y = (ω − ωR)/vR is the energy
transfer, ωR = h̄Q2/2m, and vR = h̄Q/m. The difference between
J (Q,y) in the Bose condensed and normal liquid phases decreases
with increasing pressure, reflecting a decreasing condensate fraction.
(The 12-bar and 24-bar data are from Ref. 38.)

The instrument resolution was calculated using Monte Carlo
simulation, as discussed in Ref. 34.

III. RESULTS

A. Data and fits to data

Figure 1 shows the observed DSF, J (Q,y), at constant wave
vector Q = 27.5 Å−1 as a function of y at three pressures.
Figure 2 shows similar data at SVP taken from Ref. 34. From
Figs. 1 and 2, we see that J (Q,y) at low temperature in the
Bose condensed phase has a higher peak at y � 0 than J (Q,y)
in the normal phase. This reflects the contribution from the
condensate, chiefly from the term n0R(Q,y) in J (Q,y). The
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FIG. 2. (Color online) As Fig. 1 for liquid 4He at SVP (from
Ref. 34).

width of the additional peak at y � 0 at low temperature
is set by the width of the FS function R(Q,y). The term
n0R(Q,y) can also be seen in the data at finite y. The height
of the additional peak at low temperature clearly decreases
with increasing pressure displaying directly the decrease in
condensate fraction with increasing pressure. Figure 3 shows
fits to the data at three pressures. Specifically, the model
OBDM, given by Eqs. (6) and (10), was multiplied by the FS
function R(Q,s) [Eq. (13)] and Fourier transformed as given
by Eq. (5) to obtain J (Q,y). The J (Q,y) was convoluted
with the MARI instrument resolution function and fitted to
the data. The MARI resolution function is shown as a dotted
line in Fig. 3. The values of the condensate fraction n0 that
provide the best fit are indicated in Fig. 3. The best values
are determined both by the height of the peak at y � 0 and
by the shape of J (Q,y) in the wings at y � ±2 Å−1. The
sensitivity of the fit to the value of n0 is displayed in Fig. 4.
The best overall fit at all y values is obtained with n0 = 3.5%.
In Fig. 4 we see that the fitted J (Q,y) for n0 = 3.5% lies
somewhat below the data in the peak region at y = 0. This
suggests that the FS function is too broad in the peak region,
a point we return to in the Discussion. With only three terms,
the FS function has a limited flexibility. The four parameters,
n0, α2, α4, and α6 in the OBDM, n(s) in Eqs. (6) and (10),
and the three parameters a3/λ, a52/λ

3 , and a64/λ
2 in the

FS function R(Q,s) in Eq. (13) were all determined by fits
to the data. Specifically, the parameters were determined as
those which provided a best overall fit to the data at each
Q value at each pressure. Typically, three to four parameters
could be determined in a single fit at a given Q and pressure.
The parameters as defined above should all be independent of
Q. The actual Q dependence of n0 and α2 emerging from
the fits is shown in Figs. 5 and 6. There we see that the
parameters providing the best fit fluctuate with Q reflecting
the statistical nature of the data but are independent of Q.
There was clearly correlation between the values of α2 and
n0 in n(s) obtained at a given Q. This can be seen in the

FIG. 3. (Color online) Observed J (Q,y) (open circles) at low
temperature showing fits (solid lines) of the model J (Q,y) given by
Eqs. (5), (6), (7), and (13) to the data. Both the observed and the fitted
J (Q,y) include the MARI instrument resolution function shown by
the dotted line. The condensate fraction, n0, in the model that provides
the best fit clearly decreases with increasing pressure.

parameters shown in Figs. 5 and 6 at 20 bar. However, we
found that the parameters of n∗(s) and R(Q,s) were reasonably
independent. By using parameter values averaged over Q and
iterating between the determination of the parameters in n(s)
and R(Q,s), we were able to determine all seven parameters
with reasonable precision. The values of n0, α2, and a3/λ

were best determined and the values of α6 and a64/λ
2 least

well determined. The values of the parameters n0, α2, α4, and
α6 in the momentum distribution determined by a best fit to
data are listed in Table I. A condensate fraction of 7% at SVP
is obtained from the present data. This agrees within error with
our previous value34 of 7.25%. The n0 decreases from 7% at
SVP to 3.2% at 24 bar.
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FIG. 4. (Color online) Observed J (Q,y) (open circles) at T =
0.065 K and p = 20 bar showing fits to data with a preset condensate
fraction. The best least squares fit is n0 = 3.5%. Note that when n0 is
set at 5% the fit is good in the peak region but not good at y � ±2 Å−1,
where the n0R(Q,y) term is still important.

Figure 7 shows the parameters α2, α4, and α6 of the
OBDM that are listed in Table I as a function of pressure.
We note first that the α2 parameter, which sets the width
of the Gaussian component of the OBDM and of n∗(k),
decreases with temperature. The α2 and the width of the
momentum distribution n∗(k) is larger at high temperature
in the normal liquid phase than at low temperature in the
Bose condensed phase. This temperature dependence of α2

is somewhat unexpected since the temperature is already low
and the width is dominated by zero point effects. The drop
in α2 corresponds to a drop in the atomic kinetic energy of
approximately 2.0 K, between T = 2.3 K and T � 0.05 K, the
same as the change in the temperature. We return to this point
below. The α2 increases with increasing pressure reflecting an
increased localization of the atoms and a broadening of the
momentum distribution with pressure. The α4 parameter also
increases with increasing pressure so that the kurtosis of the
distribution, δ = α4/α2

2, remains approximately independent
of pressure at δ = 0.40. Within precision, α6 is independent of
pressure.

The pressure dependence of the parameters a3/λ, a52/λ
3 ,

and a64/λ
2 of the FS function are listed in Table II and shown

in Fig. 8. All three of the parameters increase with increasing
pressure. There is a substantial compensation between the
parameters a3/λ and a52/λ

3 . In fitting the present data, we
found best fit values of both a3/λ and a52/λ

3 that were larger
than those obtained34 in fits to previous data. For example,
the present and previous values of a3/λ and a52/λ

3 at SVP
are compared in Table II showing that the present values are
significantly larger. However, a plot of the two FS functions in
Fig. 9 shows that the two FS functions are actually very similar.
This is because of the significant compensation between a3/λ

and a52/λ
3 .

FIG. 5. Condensate fraction, n0, obtained from fits of Eq. (6) to
data at several wave vectors, 23 Å � Q � 28Å, and pressures SVP
and 20 bar. The best fit n0 fluctuates from Q to Q, reflecting the
statistical error of the data, but n0 is independent of Q.

B. OBDM, momentum distribution, and condensate fraction

The function, n(s), representing the OBDM that we have
fitted to the data is given by Eqs. (6) and (10). The parameters
in n(s) obtained from the fits to data are listed in Table I and
shown in Fig. 7. The part of the OBDM that represents the
fluid above the condensate, n∗(s), given by Eq. (10), is shown
in the top panel of Fig. 10 at SVP and 24 bar. The n∗(s) which
is short range in s is clearly narrower at 24 bar than at SVP.
The narrowing arises from the increased localization of the
atoms in space as they are compressed to higher density. The
increased localization at higher density is induced by the hard
core component of the interatomic potential. The bottom panel
of Fig. 10 shows the corresponding momentum distribution,
n∗(k), which is broader at 24 bar than at SVP. Since n∗(k) is
normalized to unity, the broader n∗(k) at 24 bar must also be
smaller at k = 0 to preserve normalization.

The full OBDM, given by Eqs. (6), which include the
condensate component, n0[1 + f (s)], is shown in Fig. 5 of
Ref. 38. For s � 3.0 Å, the n∗(s) is effectively zero and n(s)
reduces to the long-range component given by n0[1 + f (s)].
The magnitude of the long-range component is set by the
condensate fraction n0. The reader is referred to Ref. 38 for
further discussion of the OBDM.
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FIG. 6. The parameter α2 = 〈k2
Q〉, which sets the width of the

Gaussian component of the OBDM in Eq. (10) obtained from fits to
data at several wave vectors, 23 Å � Q � 28 Å , and pressures SVP
and 20 bar. The α2 fluctuates from Q to Q but is independent of Q.

The condensate fraction extracted from the OBDM is shown
in Fig. 11. The n0 decreases from 7.25% ± 0.75% at SVP to
3.2% ± 0.75% at 24 bar. At the liquid/solid boundary, p =
25.3 bar, n0 � 3.0%. The increased localization of the atoms
in space at higher density means that a smaller fraction can
be localized in a single state in k space. In Fig. 11 we see
that the diffusion Monte Carlo (DMC) values of Moroni and
Boninsegni42 and the path integral ground state (PIGS) values
of Rota and Boronat43 agree well with our observed value.

Taken together, the present observed and calculated n0 provide
a reliable value of the condensate fraction at low temperature in
liquid 4He as a function of pressure. In the top panel of Fig. 12,
we compare the full momentum distribution with its Gaussian
component which is obtained by setting the terms in s4 and s6

equal to zero in Eq. (10). The full n∗(k) has larger occupation
of low momentum states than a Gaussian. The OBDM n∗(s)
obtained from the present data at SVP is compared with that
determined at SVP in Ref. 34 in the bottom panel of Fig. 12.
The agreement is very good with some difference at large s.

C. Final-state function

The FS functions at SVP and at 24 bars are compared
in Fig. 13. There we see that R(Q,s) is a smoothly varying
function of s and goes uniformly from 1.0 at s = 0 to zero at
approximately s = 4 Å. In the absence of FS effects R(Q,s) =
1 at all s. The FS function in J (Q,s) = JIA(s)R(Q,s) serves
to cut off the IA at a finite s value so that JIA(s) can no
longer be observed in J (Q,s). Particularly, this means that the
condensate fraction in JIA(s) can be observed out to s � 4 Å
only. This limits the accuracy to which n0 in JIA(s) can be
determined. In contrast the R(Q,y) is an oscillating function
of y and apparently very complicated. The representation in y

shows that R(Q,y) has a broad peak at y = 0. In the absence
of FS effects when R(Q,s) = 1, the peak is a δ function,
R(Q,y) = δ(y). The peak is broad if R(Q,s) goes to zero at
a small value of s. The peak is broader at p = 24 bar than
at SVP. Finally, the present R(Q,s) at SVP is compared with
that obtained from previous data at SVP in Fig. 9. There is
some difference arising chiefly from the different values of the
parameters a3/λ and a52/λ

3 obtained in the two cases.

D. Atomic kinetic energy

The kinetic energy per atom, 〈K〉, of liquid and solid helium
has been extensively investigated.37,45 It is a fundamental prop-
erty since it forms part of the total energy, E = 〈K〉 + 〈V 〉.
The atomic kinetic energy reflects the degree of quantumness
of the system, of confinement of the atoms in space by
their neighbors and the interatomic correlations. In a classical
system, 〈K〉 = (3/2)kBT , an energy of (1/2) kBT for each

TABLE I. Parameters in the OBDM, JIA(s) = n(s), given by Eqs. (6) and (10). The atomic momentum distribution is the 3D Fourier
transform of n(s). The parameters are determined by fitting the total DSF J (Q,y) given by Eq. (5) to data as shown, for example, in Fig. 3.
The SVP* values are from Ref ( 34).

P T ᾱ2 ᾱ4 ᾱ6 n0

(bar) (K) (Å−2) (Å−4) (Å−6) (%)

24 0.055 1.10 ± 0.02 0.49 ± 0.10 0.30 ± 0.20 3.2 ± 0.75
24 2.10 1.18 ± 0.02 0.51 ± 0.10 0.30 ± 0.25
20 0.065 1.08 ± 0.02 0.51 ± 0.10 0.25 ± 0.20 3.5 ± 0.75
20 2.30 1.15 ± 0.02 0.56 ± 0.10 0.38 ± 0.20
15 0.065 1.05 ± 0.02 0.49 ± 0.10 0.25 ± 0.20 4.4 ± 0.75
12 0.065 1.00 ± 0.02 0.42 ± 0.10 0.30 ± 0.20 4.4 ± 1.00
12 2.30 1.08 ± 0.02 0.52 ± 0.10 0.39 ± 0.30
7.5 0.075 0.93 ± 0.02 0.39 ± 0.12 0.32 ± 0.20 5.2 ± 1.00
SVP 0.045 0.85 ± 0.02 0.28 ± 0.05 0.38 ± 0.05 7.0 ± 0.75
SVP* 0.5 0.897 ± 0.02 0.46 ± 0.05 0.38 ± 0.04 7.25 ± 0.75
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FIG. 7. (Color online) Parameters α2, α4, and α6 that describe the
OBDM of the liquid above the condensate, n∗(s), given by Eq. (10),
as obtained from fits to the present data. The atomic momentum
distribution n∗(k) is the Fourier transform of n∗(s). The α2 that
determines the Gaussian component of n∗(s) and n∗(k) is larger in
the normal liquid phase than in the Bose condensed phase. The α4

and α6 are independent of temperature within precision.

translational degree of freedom of the atom. In a quantum
system, the momentum and position of atoms are coupled. If
the atoms are confined in space the 〈K〉 must increase. The
〈K〉 can decrease somewhat if the atomic motion is highly
correlated in space. A higher correlation means the wave
function can be broader and the width in momentum space
and 〈K〉 can be smaller.

Ceperley et al.45 have determined 〈K〉 in the liquid and
solid 4He over a wide range of density and temperature,

TABLE II. Parameters in the FS function R(Q,s) given by
Eq. (13) obtained by fitting the total DSF J (Q,y) given by Eq. (5) to
data. An example of R(Q,s) is shown in Fig. 13. The SVP* values
are from Ref. ( 34) (λ = h̄2/m = 1.0443 meV Å−1 = 12.12 K Å−1).

P (ā3/λ) ( ¯a52/λ
3) ( ¯a64/λ

2)
(bar) (Å−4) (Å−8) (Å−8)

24 8.5 ± 0.8 9500 ± 2000 400 ± 200
20 8.0 ± 0.8 8000 ± 800 400 ± 100
15 7.6 ± 1.0 8500 ± 2000 400 ± 150
12 7.4 ± 1.2 7800 ± 1500 240 ± 150
7.5 5.5 ± 0.5 5000 ± 600 180 ± 70
SVP 5.3 ± 0.5 4400 ± 600 170 ± 60
SVP* 2.43 ± 0.25 2560 ± 300 215 ± 25

chiefly at higher temperature, T � 5 K. At lower temperature
the 〈K〉 in the solid depends almost entirely on the solid
density and little on the temperature. This reflects the highly
quantum nature of the solid (zero point energy dominates the
thermal energy) and that phonon energies change little with
temperature. In contrast, the 〈K〉 in the liquid increases with
increasing temperature.45,46 At low temperature, below 2.3 K,
it increases because the condensate fraction is decreasing and
because the phonon-roton mode energies are decreasing with
increasing temperature. Between 2.3 K and 5 K it increases
less rapidly but increases rapidly again at higher temperature.

Ceperley et al.45 find that the 〈K〉 is somewhat lower
in the solid than in the liquid at the same density. This
indicates that the atomic motion is somewhat more correlated
in the solid than in the liquid. The difference increases with
increasing temperature since the 〈K〉 in the liquid increases
with temperature. The extensive literature on the 〈K〉 at
temperatures of 4 K and above is reviewed by Andreani et al.37

The 〈K〉 in liquid 4He at T = 0 K as a function of
density has been accurately calculated using Green’s function
Monte Carlo47 (GFMC) and DMC48 methods. At SVP, the
temperature dependence of the 〈K〉 between 1.18 K and 3.33 K
has been accurately calculated by path integral Monte Carlo46

(PIMC). We can determine the 〈K〉 in this temperature and
density range for comparison from our measured momentum
distribution as

〈K〉 =
(

h̄2

2m

) ∫
dkn(k)k2. (14)

Inserting the n(k) given by Eq. (1), we find that the condensate
term makes a negligible contribution with all the 〈K〉 arising
from the n∗(k) term. At low temperature in the Bose condensed
phase, the resulting 〈K〉 is

〈K〉 = 3h̄2

2m
A1α2. (15)

The constant A1 is determined by requiring that n(k) be
normalized to unity. This normalization requires n(s = 0) =
n0[1 + f (s = 0)] + A1 = 1. With f (s = 0) = 0.28, we have
A1 = 1 − 1.28n0. Using the low-temperature values of α2 and
n0 in Table I, we obtain the 〈K〉 at T � 0.5 K listed in Table III.

In the normal phase, where n0 is zero and A1 = 1, Eq. (15)
reduces to 〈K〉 = (3h̄2/2m) α2. The values of the 〈K〉 in the
normal phase at T � 2.3 K, using the α2 values in Table I, are
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FIG. 8. Parameters that describe the FS broadening function,
R(Q,s), given by Eq. (13) and its Fourier transform, R(Q,y), as
a function of pressure.

listed in Table IV. The 〈K〉 values are shown as a function of
pressure in Fig. 14.

Figure 15 shows the present 〈K〉 as a function of density.
There we see that the GFMC and DMC values47,48 of the 〈K〉
at T = 0 K agree well with the present low temperature values.
The PIMC values at SVP (ρ = 0.1451 g/cm3) agree well
with the present and previous34 values at SVP. This agreement
serves to confirm both the experiment and MC results, since
today MC values are very reliable. The 〈K〉 increases with
increasing density as the atoms become more localized in
space by their neighbors at higher density. Also shown are
〈K〉 at 4.25 K observed by Herwig et al.49 and calculated

FIG. 9. (Color online) Comparison of the present and previous
(Ref. 34) determinations of the FS function R(Q,y) at SVP.

by Ceperley and Pollock.55 The 〈K〉 clearly increases with
increasing temperature.

Figure 16 shows the present 〈K〉 values in the liquid
compared with those in the solid. The line through the solid
〈K〉 is simply a best-fit straight line through all the points,
observed and calculated. The line through the low-temperature
liquid data is a quadratic but a straight line over this short
density range fits equally well. The comparison of the solid
〈K〉 and the liquid 〈K〉 at low temperature in Fig. 16 confirms,
within error, that the 〈K〉 of the two differ little at the
liquid/solid boundary at low temperature, as demonstrated

FIG. 10. (Color online) The OBDM, n∗(s), given by Eq. (8) and
its Fourier transform the 3D momentum distribution, n∗(k), for the
liquid above the condensate at SVP and 24 bar.
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.

FIG. 11. (Color online) Condensate fraction, n0, at low temper-
ature (T � 0.075 K) in liquid 4He versus pressure (solid circles)
obtained from fits to the present data. Also shown are PIGS values
calculated by Rota and Boronat (Ref. 43) and DMC values by Moroni
and Boninsegni (Ref. 42) (Moroni 2004). At SVP, values calculated
by Boninsegni et al. (Ref. 44) (open triangle) and observed previously
(Ref. 34) (solid square) are also shown (from Ref. 38).

previously by Ceperley et al.45 At higher temperature the 〈K〉
in the liquid is higher than that in the solid at the boundary,
since the liquid 〈K〉 increases with temperature while that in
the solid is approximately independent of temperature, again
as shown previously.45

IV. DISCUSSION

A. Condensate fraction

In the present measurements, we find a condensate fraction
that decreases with increasing pressure from from n0 =
7.25% ± 0.75% at SVP (p � 0) to n0 = 3.2% ± 0.75% at
pressure p = 24 bar. These values are significantly less than
those found initially in the pioneering measurements of Snow
et al.31 The pressure dependence is also different. The n0 of
Snow et al. are compared with the present n0 in Fig. 6 of
Ref. 38.

The condensate fraction can also be obtained from the
difference in kinetic energy of the liquid in the normal
and superfluid phases, a method proposed by Sears.56 The
central assumption is that the difference between 〈K〉 above
and below Tλ arises solely from BEC. The expression for
n0 can be obtained from Eq. (15). Specifically, the 〈K〉 in
the normal phase is 〈K〉N = 3h̄2

2m
α2(N ), where α2(N ) is the

second moment of n∗(k), the atomic momentum distribution
of the atoms above the condensate in Eq. (1), in the normal
phase. In contrast, at T �, 0 where there is BEC, the 〈K〉
is 〈K〉0 = 3h̄2

2m
A1α2(0), where α2(0) is the second moment

of n∗(k) in the superfluid phase at T � 0 and A1 = 1 −
f (s = 0)n0. If we assume the α2 does not change with
temperature [α2(0) = α2(N )], then n0 is obtained from the 〈K〉
as n0 = [1 − 〈K〉0/〈K〉N ]/f (s = 0), where f (s = 0) = 1.28.
The 〈K〉N and 〈K〉0 are determined experimentally from the
second moment of JIA(y) above and below Tλ. Using this

FIG. 12. (Color online) The full n∗(k) has larger occupation of
low-momentum states than a Gaussian. The OBDM n∗(s) obtained
from the present data at SVP is compared with that determined at
SVP in Ref. 34. The agreement is very good with some difference at
large s.

method, in two separate measurements57,58 of 〈K〉, Mayers
et al. find n0 = 15% ± 4% and n0 = 8.8% ± 0.3% at SVP.

The n0 determined from the 〈K〉 are generally larger
than those determined by fits of the same model n(k) to
data. This is because part of the decrease in 〈K〉 below
Tλ arises from a decrease in α2. Assuming α2 is constant
and that all the change in 〈K〉 arises from BEC leads to
an overestimate of n0. To illustrate this effect we use the
present values of α2 and 〈K〉. The difference between α2

in the normal phase and at low temperature is shown in
Table I and Fig. 7. Using the kinetic energies in Tables III
and IV, 〈K〉N = 16.3 ± 0.3 K and 〈K〉0 = 14.25 ± 0.3 K at
SVP and the expression in the paragraph above, we obtain
n0 = 9.8% � 10%. We may correct this n0value for the change
in α2 by estimating the change in 〈K〉 arising from α2 alone.
This is δ〈K〉 = 〈K〉N − 〈K〉0 = 〈K〉N [1 − α2(0)/α2(N)] �
0.041〈K〉N � 0.67 K. Thus, approximately 30% of the drop
in 〈K〉 below Tλ arises from α2 so that n0 is overestimated
by approximately 30%. The corrected n0 is n0 � 7%, in
agreement with present value obtained by fitting n(k) in Eq. (1)
to data at SVP. The relative correction for the change in α2 will
be much larger at higher pressure where n0 is smaller.

As shown in Fig. 11, the condensate fractions calculated by
MC methods agree very well with the present observed values.
This confirms the accuracy of the MC calculations, at least
over this limited pressure range. Over a wider pressure range,
the MC calculations find that n0 decreases from n0 = 28% at
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FIG. 13. (Color online) Final-state function R(Q,s) and its
Fourier transform R(Q,y) given by Eq. (13) at SVP and at 24 bar.
The R(Q,s) goes to zero at smaller values of s and R(Q,y) broadens
at higher pressure (lower panel from Ref. 38).

the spinodal density (ρ = 0.1063 g/cm3)(p � −10 bar)42 to
n0 = 0.5% at p = 300 bar.59 At high pressure, the calculated
n0 decreases exponentially with increasing pressure59 but does
not go to zero. Whenever there is BEC, the bulk liquid will
have a superfluid density of ρS = 1 at T = 0 K independent
of the magnitude of n0. Thus, bulk liquid 4He is expected to
remain superfluid up to high pressures.

TABLE III. The atomic kinetic energy 〈K〉 of liquid 4He at low
temperature. When there is a condensate, 〈K〉 = 3h̄2

2m
A1 α2, where

A1 = 1–1.28n0, as discussed in the text (h̄2/m = 1.0443 meV Å−1 =
12.12 K Å−1).

P T n0 A1 ᾱ2 〈K〉
(bar) (K) (%) (Å−2) (K)

SVP 0.045 7.0 ± 0.75 0.910 0.86 ± 0.02 14.25 ± 0.3
7.5 0.075 5.2 ± 1.0 0.933 0.93 ± 0.03 15.8 ± 0.4
12 0.065 4.4 ± 1.0 0.944 1.00 ± 0.02 17.2 ± 0.4
15 0.065 4.4 ± 0.75 0.944 1.05 ± 0.02 18.1 ± 0.3
20 0.065 3.5 ± 0.75 0.955 1.08 ± 0.02 18.75 ± 0.3
24 0.055 3.2 ± 0.75 0.959 1.10 ± 0.02 19.2 ± 0.3

TABLE IV. The atomic kinetic energy 〈K〉 in normal liquid 4He at
the temperatures indicated (h̄2/m = 1.0443 meV Å−1= 12.12 K Å−1).

P T ᾱ2 〈K〉
(bar) (K) (Å−2) (K)

SVP* 2.3 0.897 ± 0.02 16.3 ± 0.3
12 2.3 1.08 ± 0.02 19.6 ± 0.3
20 2.3 1.15 ± 0.02 20.9 ± 0.3
24 2.1 1.18 ± 0.02 21.45 ± 0.3

In equilibrium, bulk liquid 4He solidifies to a crystalline
solid at 25.3 bar. MC calculations predict a negligible
condensate fraction in perfect crystalline solid helium.60–62

If, however, the solid is held in an amorphous rather than a
crystalline structure in simulations, then a condensate fraction
of n0 � 0.5% is predicted.61 A solid containing vacancies is
also predicted to have a condensate fraction; for example,
n0 = 0.09% for a vacancy concentration of cV = 0.6% at
p � 40 bars63 and n0 = 0.23% for a cV = 1% at pressure
p = 54 bars.64 An amorphous solid is observed65–67 in porous
media if the pore diameter is d � 50 Å. The static structure
factor of the amorphous solid differs little from that of the
liquid.65–67 Assuming the liquid and amorphous solid have
similar condensate fractions, the values of n0 observed here
suggest that there will be a small but finite n0(n0 � 0.5%–
1.0%) in amorphous solid helium at pressures p � 40 bar.
A condensate fraction has not been observed in crystalline
solid helium40,68,69 at these pressures, even when the surface
area is large.69 An upper limit of n0 � 0.3% has been set.69

Observation of a condensate fraction in solid helium would
be an unambiguous verification of the reports of possible
superflow in solid helium.70–72

B. Momentum distribution

To obtain a functional form for the momentum distribution,
n∗(k), we made a cumulant expansion of the OBDM in
Eq. (10). The leading term in the expansion is a Gaussian

FIG. 14. (Color online) Atomic kinetic energy, 〈K〉, of liquid
4He versus pressure in the normal phase and at low temperature
in the Bose condensed phase. The 〈K〉 is given by (3h̄2/2m)A1α2,
where A1 = 1 − n0[1 + f (s = 0)] and f (s = 0) = 0.28 and h̄2/m =
12.12 K Å2 = 1.0443 meV Å2. The T = 0 K, DMC calculated values
of Moroni et al. (Ref. 48) are also shown.
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FIG. 15. (Color online) Kinetic energy per atom of liquid 4He
versus density. The blue dots (T = 0.05 K) and red squares (T =
2.3 K) are the present measurements. The open triangles are ground
state (T = 0 K) calculations of Whitlock and Panoff (Ref. 47) and
Moroni et al. (Ref. 48). The open square is from Ceperley and Pollock
(Ref. 46). The vertical lines with error bars and the crosses are values
observed by Herwig et al. (Ref. 49) and calculated by Ceperley
(Ref. 49), at T = 4.25 K, respectively.

of width set by the second cumulant. If the OBDM and
its Fourier transform n∗(k) are Gaussian, all higher-order
cumulants beyond the Gaussain vanish [i.e., α4 = α6 = 0
in Eq. (10)]. We find that the chief effect of pressure is to
increase the width of the Gaussian component of n∗(k) [i.e.,
α2 increases with increasing pressure as shown in Fig. (7)].
The increase of width with pressure is reproduced by Monte
Carlo calculation.43 We also note that the width increases with
temperature. Specifically, the width, α2, of n∗(k) is larger in
the normal phase than at low temperature. This means that
the observed decrease in 〈K〉 with decreasing temperature
below Tc arises from both BEC and a reduction in width of the
intrinsic n∗(k). As a result determinations of the condensate
fraction from the T dependence of 〈K〉 with the assumption
that n∗(k) is independent of T will overestimate n0.

In previous measurements34,49 of n∗(k) in liquid 4He, non-
Gaussian atomic momentum distributions have been observed.
In the present and earlier treatments,34 the deviation from a
Gaussian is characterized by the magnitude of the higher-
order cumulants [i.e., of α4 and α6 in Eq. (10)]. The leading
deviation from a Gaussian is given by the kurtosis, δ = α4/α2

2.
In the present measurements, we find δ = 0.4 independent of
pressure within present error, the same as found34 previously
at SVP. In liquid neon a smaller value of δ was observed.36

Calculations46 of the shape of n(k) in liquid 4He at SVP agreed
well34 with the observed n(k).

If the higher-order cumulants are not large, the exponential
in Eq. (10) can be expanded as

J ∗
IA(s) = n∗(s) = exp

(
−α2s

2

2!

) [
1 + α4s

4

4!
− α6s

6

6!

]
.

(16)

Keeping only the fourth-order term in this OBDM, the corre-
sponding 3D momentum distribution, the Fourier transform of
the OBDM n∗(r), is

n(k) = 1

(2πα2)3/2
exp

(
− k2

2α2

)
×

[
1 + δ

8

(
5 − 10k2

3α2
+ k4

3α2
2

)]
. (17)

This expression, the current values of α2 in Table I, and
δ = 0.4 provide a reasonably accurate representation of n(k)
in liquid 4He as a function of pressure. Measurements at
higher-momentum transfer at SVP are consistent37 with this
expression for n(k).

C. Final-state function

The FS function R(Q,y) is the Fourier transform of
the intermediate FS function R(Q,s). The intermediate FS
function, R(Q,s), that we have used in the intermediate DSF,
J (Q,s)= JIA(s)R(Q,s), is given by Eq. (13). The functional
form of R(Q,s) is obtained by expanding J (Q,s) in powers
of s as discussed above Eq. (12) and retaining terms up to s6.
Thus, R(Q,s) is valid at short s (at high Q) up to powers of
s6. Since the leading term in R(Q,s) is s3, R(Q,s) has four
terms in s. We found the term in s4 small, so this term was
neglected. The R(Q,s) in Eq. (13) that was fitted to data has
three terms and depends on three parameters. The parameters
in R(Q,s) can be determined from fits to data over a range
of Q values because R(Q,s) depends on Q while JIA(s) does
not. The function R(Q,s) in Eq. (13) with the parameters

FIG. 16. (Color online) Kinetic energy per atom in solid and
liquid 4He. The solid symbols are experimental values in the solid
from Hilleke et al. (Ref. 50) (solid triangles), Celli et al. (Ref. 51)
(solid circle), Blasdell et al. (Ref. 52) (solid squares), and Diallo et al.
(Ref. 53) (solid star). The open circles and squares are calculations
in the solid from Whitlock and Panoff (Ref. 47) and from Ceperley
Refs. 52 and 54. The open triangles and diamonds are the present
measurements in the liquid.
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in Table II provide a FS function that can be used over a
range wave vectors 15 Å−1 � Q � 40 Å−1 and temperatures
0 � T � 3 K. Within precision, we found that R(Q,y) was
independent of T up to 3 K. The R(Q,s) in Eq. (13) probably
provides a reasonable estimate up to 100 Å−1.

The chief limitation of the present R(Q,s) is that it has
only three terms. The R(Q,s) has limited flexibility in fits to
data. For example, the R(Q,y) shown in Fig. (3) appears to
be too broad in the peak region at y � 0. The width of the
J (Q,y) at y � 0 is largely limited by the width of the FS
function and FS function is not sufficiently flexible to assume
a narrow peak and also fit well over a wide range of y values.
In Ref. 34 a comparison of the present R(Q,y) with calculated
R(Q,y) showed that the present R(Q,y) was broader in the
peak region than all calculated R(Q,y). At the same time
the n0 extracted from the data using the calculated R(Q,y)

was always less than that obtained using Eq. (13). At this
time we believe that the determination of the FS function is
the weakest part of the data analysis. The FS function could
be improved by introducing a model function that captures
the physics of the recoil more precisely than an expansion in
powers of s.
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