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An interesting phenomenon in many-body physics is that quantum statistics may be an emergent property. This
was first noted in the Skyrme model of nuclear matter, where a theory of a bosonic order parameter field contains
fermionic excitations. These excitations are smooth field textures and are believed to describe neutrons and
protons. We argue that a similar phenomenon occurs in topological insulators when superconductivity gaps out
their surface states. Here, a smooth texture is naturally described by a three-component vector. Two components
describe superconductivity, while the third captures the band topology. Such a vector field can assume a “knotted”
configuration in three-dimensional space—the Hopf texture—that cannot smoothly be unwound. Here we show
that the Hopf texture is a fermion. To describe the resulting state, the regular Landau-Ginzburg theory of
superconductivity must be augmented by a topological Berry phase term. When the Hopf texture is the cheapest
fermionic excitation, unusual consequences for tunneling experiments on mesoscopic samples are predicted. This
framework directly generalizes the phenomenon of period doubling of Josephson effect to three-dimensional
topological insulators with surface superconductivity.
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There has been much recent activity relating to topological
insulators (TIs)—a new phase of matter with protected surface
states.1,2 Particularly rich phenomena are predicted to arise
when this phase is combined with conventional orders such as
magnetism,3,4 crystalline order,5 and superconductivity. The
latter is particularly interesting. Superconductivity induced on
the surface of a TI was predicted to have vortices harboring
Majorana zero modes.6 These are of interest to quantum infor-
mation processing, since they are intrinsically robust against
errors. Recently, superconductivity was discovered in a doped
TI,7 which could be used to induce surface superconductivity.
Below we discuss a new theoretical approach to studying this
remarkable superconducting phase, which provides different
insights and directions for experiments.

We focus on smooth configurations where the energy gap
never vanishes. In this case, the low-energy description of
the system is entirely in terms of bosonic coordinates (order
parameter), much as the Landau Ginzburg order parameter
theory describes superconductors at energies below the gap.
Can fermions ever emerge in such a theory? While it is easy
to imagine obtaining bosons from a fermionic theory, the
reverse is harder to imagine. However, it has been shown
in principle that bosonic theories that contain additional
Berry phase (or Wess-Zumino-Witten) terms, can accomplish
this transmutation of statistics. We show that this indeed
occurs in the superconductor-TI (Sc-TI) system; the order
parameter theory contains a Berry phase term which implies
that a particular configuration of fields—the Hopf soliton (or
Hopfion)—carries fermionic statistics. While such statistics
transmutation is common in one dimension,8 it is a rare
phenomenon in higher dimensions. In the condensed matter
context, a physically realizable example exists in two dimen-
sions: solitons of quantum Hall ferromagnets (skyrmions) are
fermionic and charged and have been observed.9–11 However,
the superconductor-TI system is, to our knowledge, the first
explicit condensed matter realization of this phenomenon in
three dimensions.

The organization of this paper is as follows: First, we
introduce our simplified model of a topological insulator with
surface superconductivity and review properties of the Hopf
texture. We then discuss evidence from numerical calculations
on a lattice model that demonstrate that Hopfions are fermions.
We also discuss the connection between fermionic Hopfions
and three-dimensional (3D) non-Abelian statistics of Ref. 12.
A simplified two-dimensional example, where skyrmions are
fermionic, is also discussed. Next, we provide a field theoreti-
cal derivation of the same result in the continuum and introduce
the necessary theoretical tools to compute a topological term
that leads to the fermionic statistics. Finally, we mention the
physical consequences for tunneling experiments as well as
for Josephson junctions.

I. MODEL AND HOPF TEXTURE

The essential properties of a topological insulator are
captured by a simplified low-energy theory with a three-
dimensional Dirac dispersion (a microscopic realization is
described later):

HD = ψ†[vF α · p + mβ0]ψ, (1)

where (α1,α2,α3,β0) are 4 × 4 anticommuting matrices which
square to the identity and involve both spin and sublat-
tice degrees of freedom. The dispersion then is ε(p) =
±

√
v2

F p2 + m2. An insulator is obtained for m �= 0. Changing
the sign of m results in going from a trivial to a topological
insulator. Which sign of m is topological is set by the
band structure away from the node—we assume m < 0 is
topological. Consider now adding (onsite) superconducting
pairing, which may be proximity induced by an s-wave
superconductor. Then

Hpair = �ψ†β5ψ
† + H.c., (2)

where β5 = α1α2α3β0. The matrices αi can be taken to be
symmetric, while β0, β5 are antisymmetric. We can write the
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total Hamiltonian Hf = HD + Hpair then as

Hf = [ ψ† ψ ]Hf

[
ψ

ψ†

]
,

(3)

Hf =
[−ivF α · ∂ + mβ0 �β5

�∗β5 −ivF α · ∂ + mβ0

]
.

The spectrum now is ε(p) = ±
√

v2
F p2 + M2 where M2 =

m2 + |�|2. The single particle Hamiltonian can be written as
Hf = [−ivF α · ∂ + mβ0]1 + β5(�ν+ + �∗ν−) where the νa

are Pauli matrices acting on the particle-hole space. It is readily
verified that this Hamiltonian enjoys particle-hole symmetry:
CH∗

f C = −Hf , where C = νx and we have used that fact that
the αi are symmetric and β0,5 are antisymmetric.

It is convenient to define a three-vector �n = (Re�,Im�,m),
such that |�n| = M . A singular configuration is one where all
three components of this vector go to zero. Since the vacuum
can be taken to be a trivial insulator, m changes sign at the
topological insulator surface. The components of the pairing
� vanish in the vortex core. This can also be viewed as a
hedgehog12 configuration in �n. It has been pointed out that
a TI-surface vortex with odd winding number will give rise
to an unpaired Majorana zero mode.6 Note that, at the core
of these singular configurations, the gap closes, allowing for
the possibility of localized bound states at zero energy. In
this work we will only consider smooth textures of the �n
field, where the single-particle gap is nonzero everywhere. An
effective theory of slow fluctuations of the “order parameter”
field �n(r,t), occurring over spatial (time) scales much larger
than ξ = h̄vF /M (τ = ξ/vF ), can be obtained by integrating
out the gapped fermions. An analogous procedure is well know
in the context of the BCS theory of superconductivity, where
it leads to the Landau-Ginzburg action. Here, we will find that
an extra topological term arises that transmutes statistics and
leads to fermionic solitons.

Consider a smooth configuration of �n(r), which can be
normalized to give a unit vector n̂(r) at each point. This defines
a mapping from each point of three-dimensional space, to
a unit three-vector, which describes the surface of a sphere
S2. We require that the mapping approaches a constant at
infinity: n̂(|r| → ∞) = const. (e.g., the vacuum). Can all such
mappings be smoothly distorted into one another? A surprising
result due to Hopf13 in 1931 is that there are topologically
distinct mappings, which can be labeled by distinct integers
h (the Hopf index). No smooth deformation can connect
configurations with different Hopf indices. Mathematically,
Hopf showed that the homotopy group �3[S2] = Z. A
straightforward way to establish the index is to consider the
set of points in space that map to a particular orientation of n̂.
In general this is a curve. If we consider two such orientations
(n̂1,n̂2), we get a pair of curves. The linking number of the
curves is the Hopf index. A configuration with unit Hopf
index can be constructed by picking a reference vector n̂ = ẑ,
say, and rotating it: n̂(�r) · �σ = U (�r)σzU

†(�r) by the spatially
varying rotation U (�r) = exp[i θ(r)

2 r̂ · �σ ]. Here the angle of
rotation varies as we move in the radial direction, from θ = 0 at
the origin to θ = 2π at radial infinity, and the axis of rotation is
the radial direction r̂ . By studying which spatial points map to
(e.g., n̂ = ±ẑ), as in Fig. 1, one can conclude that this texture
has unit Hopf index. What is the physical interpretation of

FIG. 1. (Color online) Hopf map: fH : �r → n̂ is shown by
displaying contours of equal n̂. Points at infinity are all mapped
to the same point on the sphere fH (∞) = ẑ. In red is f −1

H [n̂ = ẑ], in
green f −1

H [−ẑ], in blue f −1
H [x̂], and in yellow f −1

H [ŷ]. Note the unit
linking of any pair of curves, which can be used to define the Hopf
texture.

this Hopf texture in the context of TIs? A torus of TI (Fig. 2)
has superconductivity induced on its surface. There is vacuum
far away and through the hole of the torus, which counts as
a trivial insulator, n̂ = ẑ. The center of the strong topological
insulator corresponds to n̂ = −ẑ. On the topological insulator
surface nz = 0, and the superconducting phase varies such that

FIG. 2. (Color online) Torus of strong topological insulator
(green) in vacuum, whose surface is superconducting. There is unit
superconductor phase winding about each cycle of the torus. We plot
the equal phase contours on the surface whose pairing phase is 0
(blue) and π (yellow). The unit linking of these curves indicates that
this is the Hopf mapping.
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there is a unit-vortex trapped in each cycle of the torus. We
now argue that such a texture is a fermion.

II. HOPF SOLITONS ARE FERMIONS

The mean-field Hamiltonian (3) for a general texture has
no physical symmetry (charge conservation is broken by the
superconducting pairing and time reversal is broken by the
nontrivial phases associated with the texture). However, a
fermion Hamiltonian always has the symmetry of changing
the sign of the fermion field (since a term with odd number
of fermions does not appear in a local Hamiltonian). The
conserved quantity associated with this symmetry is fermion
parity. So the only quantum number that can be assigned to
the ground state is the parity of the total number of fermions
(−1)F . Superconducting pairing only changes the number of
fermions by an even number, hence one can assign this fermion
parity quantum number to any eigenstate. We now argue that
the fermion parity of a smooth texture is simply the parity of
its Hopf index h:

(−1)F = (−1)h. (4)

First, we argue that the ground state with a topologi-
cally trivial texture has an even number of fermions. As a
representative configuration, consider a configuration where
the superconductor pairing amplitude is real. This is a time-
reversal-invariant Hamiltonian. If the ground state had an odd
number of fermions, it must be at least doubly degenerate
by the Kramers theorem. However, the ground state of any
smooth texture is fully gapped and hence unique. Thus, this
configuration must have an even fermion parity. Now, any
other texture in the same topological class can be reached
by a continuous deformation, during which the gap stays
open. The fermion parity stays fixed during this process.
Note, this argument cannot be applied to configurations with
nonzero Hopf index, since these necessarily break time-
reversal symmetry. For example, the configuration shown in
Fig. 1 contains phase windings.

To find the fermion parity of the nontrivial Hopf config-
urations, we consider evolving the Hamiltonian between the
trivial and h = 1 configuration. In this process we must have
�n = 0 at some point, which will allow the gap to close and
a transfer of fermion parity to potentially occur. Indeed, as
shown below in separate calculations, a change in fermion
parity is induced when the Hopf index changes by one.

A. Numerical calculation

We study numerically the microscopic topological insulator
model defined in Ref. 14 with a pair of orbitals (τz = ±1) on
each site of a cubic lattice. The tight-binding Hamiltonian

H =
∑

k

[ψ†
kHkψk + Hpair(k)] (5)

is written in momentum space using a four-component fermion
operator ψk with two orbital and two spin components. Then,

Hk = −2t

3∑
a=1

αa sin ka − mβ0

[
λ +

3∑
a=1

(cos ka − 1)

]
, (6)

where (�α,β0) = (τxσx,τxσy, − τy,τz). For t,m > 0 a strong
topological insulator is obtained when λ ∈ (0,2). In addition
we introduce onsite singlet pairing:

Hpair(k) = �[ψ†
k ]Tσyψ

†
−k + H.c. (7)

Note that, when λ ≈ 0, �k ≈ (0,0,0), Eq. (3) is recovered as
the low-energy theory.

The energy spectrum is studied as we interpolate between
a topologically trivial texture (h = 0) and the Hopf texture
(h = 1). We choose to define a torus-shaped strong topological
insulator with trivial insulator (vacuum) on the outside, as in
Fig. 2. The surface is gapped by superconducting pairing �,
which in the trivial texture is taken to be real �0. (Note that
the energy gap in the bulk arises from the insulating gap, while
on the surface the gap arises from pairing. There is a smooth
evolution between these limits over a scale associated with
the surface states.) In the Hopf texture, the superconducting
pairing �1 has a phase that winds around the surface, with
a unit winding about both cycles of the torus. This can be
interpreted as “vortices” inside the holes of the torus. Note,
the vortex cores are deep inside the insulators, so there is a
finite gap in the Hopf texture. We interpolate between these
two fully gapped phases by defining �(λ) = λ�1 + (1 − λ)�0

and changing λ = 0 → 1. On the way, the gap must close since
the two textures differ in topology. We study the evolution of
eigenvalues, as shown in Fig. 3. We find that exactly one
pair of ±E eigenvalues are pumped through zero energy. As
argued below, this signals a change in the fermion parity of the
ground state on the two sides. Since the trivial texture has even
fermion parity from time-reversal symmetry, the Hopf texture
must carry odd fermion number.

To see why the crossing of a ±E conjugate pair of
levels corresponds to a change in fermion number, consider a
single-site model H = E0(c†c − cc†). This has a pair of single
particle levels at ±E0, which will cross if we tune E0 from, say,
positive to negative values. However, writing this Hamiltonian
in terms of the number operators H = E0(2n̂ − 1) shows that
the ground-state fermion number changes from n = 0 to n = 1
in this process. Thus the ground-state fermion parity is changed
whenever a pair of conjugate levels cross zero energy. We
mention that it is possible to confirm the numerical results
analytically by solving for the low-energy modes in the vicinity
of the vortex core, where the insulating mass term is set to be
near zero. The linking of vortices in the Hopf texture plays a
crucial role in deriving this result.

1. The Pfaffian

Previously, the ground-state fermion parity was found
by interpolating between two topological sectors. Can one
directly calculate the fermion parity for a given Hamiltonian’s
ground state? We show that this is achieved by calculating
the Pfaffian of the Hamiltonian in the Majorana basis. The
Pfaffian of an antisymmetric matrix is the square root of the
determinant—but with a fixed sign. It is convenient to recast
the Hamiltonian in terms of Majorana or real fermions defined
via ψa = (χ1a + iχ2a)/2. Since a pair of Majorana fermions
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FIG. 3. Spectral flow of the lowest 20 eigenvalues when the
pairing on the surface of the topological insulator in Fig. 2 is linearly
interpolated between two limits: �(x,λ) = (1 − λ)�0(x) + λ�1(x).
�0(x) is constant over the whole surface. Top panel shows that �1(x)
has a unit phase winding (vortex) in both the R1 and R2 cycles of
the torus (i.e., the Hopf texture). Bottom panel shows that �1(x) has
a unit phase winding in only the R1 cycle. It is clear that there is a
single level crossing in the top-panel case, meaning the ground-state
fermion parity is changed in the process. The initial state has even
fermion parity, so the final state (i.e., the Hopf texture) must have odd
fermion parity. The calculation is on the cubic lattice model defined
in the text, with R1 = 13 and R2 = 5 lattice units, and only points
within the torus are retained. Parameters used are t = M = λ = 1
and pairing |�| = 1.

anticommute {χi,χj } = δij , the Hamiltonian written in these
variables will take the form

H = −i
∑
ij

hij χiχj , (8)

where hij is an even-dimensional antisymmetric matrix, with
real entries and the Majorana fields appear as a vector χ =
(. . . ,χ1a,χ2a, . . .), where a refers to site, orbital, and spin
indices. The ±E symmetry of the spectrum is an obvious
consequence of h being an antisymmetric matrix. The ground-
state fermion parity in this basis is determined via

(−1)F = sgn [Pfaffian(h)] . (9)

We numerically calculated the Pfaffian of a Hamiltonian
with a single Hopf texture for small systems and confirmed
it has a negative sign. In contrast, the trivial Hopf texture
Hamiltonian has positive Pfaffian in the same basis.

(a) (b) (c) (d)

FIG. 4. (Color online) Creating a Hopf soliton by a hedgehog-
antihedgehog pair. The blue (red) dot is the hedgehog (antihedgehog).
The solid and dotted lines are pre-images of two different points
on the 2-sphere. (a) Creating a pair of hedgehog and antihedgehog.
(b) Rotating the hedgehog by 2π while leaving the antihedgehog
invariant. (c), (d) Annihilating the hedgehog-antihedgehog pair. The
final state in (d) clearly shows linking number 1 of the two pre-image
loops, which indicates the nontrivial Hopf index.

B. Connections to 3D non-Abelian statistics

It is well known that vortices piercing a superconductor on
the topological insulator surface carry Majorana zero modes
in their cores.6,12 In the �n vector representation of Eq. (3), this
corresponds to a hedgehog defect,12 a singular configuration
where the vector points radially outwards from the center.
Although in this paper we only work with smooth textures, we
discuss below an indirect connection with those works. Note
that we can go from a trivial texture to the Hopf texture by
creating a hedgehog-antihedgehog pair, rotating one of them
by an angle of 2π and annihilating them to recover a smooth
texture. This is just the Hopf texture, as can be seen in Fig. 4.
However, as pointed out in Ref. 12, in the process of rotation,
the Majorana mode changes sign. This signals a change in
fermion parity, consistent with our results.

III. A TWO-DIMENSIONAL ANALOG

We briefly mention a two-dimensional analog of the physics
described earlier, since it provides a simpler setting to discuss
the relevant ideas. Readers interested in the 3D results alone
can skip this section.

Note that Eq. (3) with the third component of momentum
absent (i.e., pz = 0) describes a quantum spin Hall (QSH)
insulator (trivial insulator) when m > 0 (m < 0) in the
presence of singlet pairing �. Again, as before a three-vector
characterizes a fully gapped state, and the nontrivial textures
are called skyrmions [�2(S2) = Z]. A unit skyrmion can be
realized with a disk of quantum spin Hall insulator with
superconductivity on the edge, whose phase winds by 2π

on circling the disk. Again, one can show that the skyrmion
charge Q determines the fermion parity (−1)Q = (−1)F . An
important distinction from the three-dimensional case is that
the low-energy theory here has a conserved charge. If, instead
of superconductivity, one gapped out the edge states with
a time-reversal-symmetry-breaking perturbation which had a
winding, then this charge is the electrical charge. It is readily
shown that the charge is locked to the skyrmion charge Q.
Hence odd strength skyrmions are fermions. The effective field
theory for the �n vector in this case includes a Hopf term,15,16

which ensures fermionic skyrmions. This is closely analogous
to the quantum Hall ferromagnet, where charged skyrmions
also occur.9,10 Returning to the case with pairing, since that
occurs on a one-dimensional edge, it is difficult to draw a
clear-cut separation between fermions and collective bosonic
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coordinates, in contrast to the higher-dimensional version.
Hence we focused on the 3D TIs.

A. Topological term for D = 2 + 1 quantum spin Hall case

As a warmup, consider the simpler case of D = 2 + 1,
briefly discussed above. Here, we start with the Hamiltonian
in Eq. (3), but drop the term pzαz since we are in D = 2 + 1.
This describes a quantum spin Hall insulator with singlet
superconductivity induced near the edge. The order parameter
is still a three-vector, whose smooth textures in this case are
skyrmions [�2(S2) = Z], and the skyrmion density is given by

1
4π

n̂ · ∂xn̂ × ∂yn̂. On integrating out the fermions one obtains
a topological term. Assuming n̂(∞) = const., the topological
term depends on �3(S2) = Z, which is nothing but H , the
Hopf index of the spacetime configuration of n̂. We will show
below that Stop = iπH [n̂(x,y,t)]. Although there is no simple
way to express the Hopf invariant directly in terms of the
vector field, its physical effect is well known15—it modifies
the statistics of the skyrmions so that they are now fermionic.

B. Calculating Stopo in D = 2 + 1

Although charge is not conserved in this mean-field Hamil-
tonian, the minimal Dirac model has a U(1) conservation—
which can be seen from the fact that the operator iψ†αzβ0ψ

commutes with Eq. (3). This introduces a simplicity not
present on going to D = 3 + 1. In particular, the D = 2 + 1
problem can be mapped onto the one studied in Ref. 16. It
is convenient to introduce the CP1 representation of the unit
vector n̂. Introduce a pair of complex fields zT = (z1z2) that
satisfy z†z = 1. Then n̂ · �σ = (2zz† − 1), where σ are the Pauli
matrices. In order to calculate the topological term, we would
like to expand the order parameter space so as to smoothly
go between the different topological configurations. In this
way we can calculate the topological term perturbatively. A
suitable expansion of the order parameter space from CP1 to
CPM , M > 1, was suggested in Ref. 16. Here, the complex
fields z = (z1 z2 . . . zM+1). Since �3(CPM ) = 0 for M > 1,
different topological sectors can be connected. Following this
procedure the topological term can be expressed in terms of
the vector potential aμ = i

2z†∂μz:

Stop = iπH [n̂(x,y,t)] , (10)

H = 1

4π2

∫
d2xdtεμνσ aμ∂νaσ , (11)

as also noted in Ref. 15.

IV. EFFECTIVE THEORY AND TOPOLOGICAL TERM

We now present a field theoretical calculation of the results
of the previous section. The gap to the ψ fermions never
vanishes since |�n| > 0, so one can integrate them out to
obtain a low-energy theory written solely in terms of the
bosonic order parameter �n. How can this field theory describe a
fermionic texture? As described below, this is accomplished by
a topological Berry phase term which appears in the effective
action for the n̂ field.

In computing the topological term, it is sufficient to consider
a gap whose magnitude is constant �n(r,t) = Mn̂(r,t). Integrat-

ing out the fermion fields with action Sf = ∫
d4x[ψ†∂tψ −

Hf ], where the integral is over space and (Euclidean) time,
one obtains the effective action for the bosonic fields:

exp[−SB(n̂(r,t))] =
∫

DψDψ† exp(−Sf [n̂,ψ,ψ†]).

(12)

This computation may be performed using a gradient expan-
sion (i.e., assuming slow variation of the n̂ field over a scale
set by the gap). Two terms are obtained Sb = S0 + Stop. The
first17 is a regular term that penalizes spatial variation: S0 =
1

2g

∫
(∂μn̂)2. The second is a topological term which assigns a

different amplitude to topologically distinct spacetime config-
urations of n̂. We first discuss the structure of this topological
term and its physical consequences, before describing a
calculation to compute it in D = 3 + 1 dimensions.

A. Topological term in D = 3 + 1 dimensions

Assuming n̂(∞) = const., it is known that the spacetime
configurations of the unit vector n̂ are characterized by a Z2

distinction since �4(S2) = Z2.18 That is, there are two classes
of maps: the trivial map, which essentially corresponds to the
uniform configuration, and a nontrivial class of maps, which
can all be smoothly related to a single representative con-
figuration n̂1(r,t). If the function �[{n̂(r,t)}] = 0, 1 measures
the topological class of a spacetime configuration, then the
general form of the topological term is Stop = iθ�[{n̂(r,t)}].
The topological angle θ can be argued to take on only two
possible values 0 and π since composing a pair of nontrivial
maps leads to the trivial map. Via an explicit calculation
outlined below, we find θ = π .

Let us first examine the consequences of such a term.
The nontrivial texture n̂1(r,t) can be described as a Hopfion-
antiHopfion pair being created at time t1, the Hopfion being
rotated slowly by 2π and then being combined back with the
antiHopfion at a later time t2.15 The topological term assigns a
phase of eiπ to this configuration. This is equivalent to saying
the Hopfion is a fermion since it changes sign on a 2π rotation.
An intuitive way to understand this is that exchange can be
accomplished by a π rotation about the midpoint connecting
a pair of identical particles, which is equivalent to a 2π

rotation of a single particle, or by invoking the spin-statistics
connection. A more pictorial proof for the D = 2 + 1 analog,
which can be readily generalized to D = 3 + 1, is in Ref. 15.

Calculating the topological term requires connecting the
pair of topologically distinct configurations. To do this in a
smooth way keeping the gap open at all times requires enlarg-
ing the order parameter space for this purpose. If m(r,t,λ) is
an element of this enlarged state that smoothly interpolates
between the trivial configuration m(r,t,0) = const. and the
nontrivial one m(r,t,1) = n̂1(r,t) as we vary λ, then one
can analytically calculate the change in the topological term
∂Stop/∂λ and integrate it to get the required result.16,19–21

The key technical point is finding a suitable enlargement
of our order parameter space S2. Remembering that this
can be considered as S2 = SU(2)/SO(2), we can make a
natural generalization M3 = SU(3)/SO(3). The latter has all
the desirable properties of an expanded space (e.g,. there are
no nontrivial spacetime configurations), so everything can be
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smoothly connected [�4(M3) = 0]. This extension allows us
to calculate the topological term (as explained in detail in the
section below), which yields θ = π .

V. CALCULATION OF TOPOLOGICAL TERM

In this section we discuss how the topological term is
calculated. This is the most technical part of the present
paper—and the results have already been stated. Therefore,
readers interested mainly in physical consequences can skip
to the next section.

The calculation of the topological term in D = 2 + 1 is
relatively straightforward, and we can utilize existing results
in the literature.16 However, the same procedure unfortunately
does not work in D = 3 + 1, which is technically harder and
requires some innovation. We previously discussed the D =
2 + 1 dimensional case and utilize some of the general lessons
learned there to attack the D = 3 + 1 problem. More details
can be found in the Appendix.

Note that, although there is no simple way to express the
Hopf invariant H directly in terms of the vector field, it may
be expressed in terms of the vector potential a as above.
Thus, in D = 2 + 1, the Hopf index is directly connected
to the topological term. However, in D = 3 + 1, the Hopf
index characterizes the soliton, and we will need to look
at a higher-dimensional homotopy group to pin down the
topological term. In that case the topological term does not
have a simple expression even in terms of the vector potentials
a. Also, due to the different form of the Dirac theory, we will
not be able to utilize the extension to CPM to calculate the
topological term, and a new construction will be needed.

A. Calculating Stopo in D = 3 + 1

We begin by rewriting Eq. (3) in terms of an eight-
component Majorana fermion field �:

Hf = �†vF (−i∂iαi)� + M�†(n1β0 + n2β5ηx + n3β5ηz)�,

(13)

where the αs are symmetric and the βs are antisymmetric
matrices, and �† = �T . For example, we can build them out
of three Pauli matrices as below [and as shown in Eq. (3)]:

α1=σz, α2=τxσx, α3= − τzσx, β0 = τyσx, β5 = σy.

(14)

Note that, if we think of σa as referring to spin indices, then
indeed αi are odd under time reversal (making the Dirac kinetic
energy even under time reversal). The β0 mass term is also
time-reversal even, as required for a topological insulator.
Finally, the pairing term �†β5�

† is clearly a spin singlet with
the choice above.

We further assume the order parameters ni are restricted
to unit 2-sphere:

∑
i n

2
i = 1 so that n̂ = (n1,n2,n3) is a unit

vector living on S2.
We need to show that, starting from this fermionic model

Eq. (13) and integrating out the fermions, the obtained
S2 nonlinear sigma model (NLSM) has an imaginary term
(topological Berry phase) iθHπ4(S2)(n̂(x,y,z,t)) with θ = π in
the action (from now on we use Hπn(M) to denote the homotopy

index of a mapping). Because this term is nonperturbative,
in order to compute it we need to embed the manifold S2

into a larger manifold M with π4(M) = 0, which allows us
to smoothly deform a Hπ4(S2)(n̂(x,y,z,t)) = 1 mapping to a
constant mapping. This means that an Hπ4(S2)(n̂(x,y,z,t)) = 1
mapping can be smoothly extended over the 5-dimensional
disk: V (x,y,z,t,ρ) : D5 → M (ρ ∈ [0,1]) such that, on the
boundary, V (x,y,z,t,ρ = 1) = n̂(x,y,z,t) and V (x,y,z,t,ρ =
0) = V0 is constant. With an extension V , we can perturba-
tively keep track of the total change of Berry’s phase when
going from a constant mapping to a nontrivial mapping.

How can we find a suitable M? We note the global
symmetry of the model Eq. (13) in the massless limit is
U(1)chiral × SU(2)isospin, whose generators are

U(1)chiral : γ5= − iβ0β5, SU(2)isospin : ηy,γ5{ηx,ηz}. (15)

In our convention, β0,β5,γ5 are all antisymmetric matri-
ces. Starting from a given mass (for instance, �†β0�),
one can generate the full order parameter manifold by
action of SU(2)isospin: �†Wβ0W

†�—where W ∈ SU(2)isospin.
SU(2)isospin is broken down to U(1), which is the invariant
group generated by ηy . Thus, the order parameter space is
SU(2)/U(1) = SU(2)/SO(2) = S2.

Now we generalize the 8-component fermion � to the 12-
component �̃. The two-dimensional ηx,y,z space is enlarged
to a three-dimensional space, and we let the eight λi matrices
(i = 1,2, . . . ,8) of the standard SU(3) generators (see, e.g.,
page 61 in Ref. 22) act within this three-dimensional space,
among which λ2,λ5,λ7 are antisymmetric while others are
symmetric. And λ1,2,3 are just the old ηx,y,z matrices. The
symmetry of the generalized massless theory of �̃: H =
�̃

†
(−i∂iαi)�̃ is U(1)chiral × SU(3)isospin, where the generators

of the SU(3)isospin are λ2,λ5,λ7,γ5{λ1,λ3,λ4,λ6,λ8}.
Starting from a given mass �̃

†
β0�̃, we use SU(3)isospin

to generate the order parameter manifold: �̃
†
Uβ0U

†�̃ ≡
�̃

†
V �̃, U ∈ SU(3)isospin. It is clear that the SO(3) subgroup

generated by λ2,λ5,λ7 is the invariant group and the order
parameter manifold is M3 ≡ SU(3)/SO(3). We thus embed
the original order parameter manifold S2 into M3, and it is
known that π4(M3) = 0.23

The idea is to smoothly extend an Hπ4(S2) = 1 mapping
over D5 [denoted by V (x,y,z,t,ρ)] by embedding S2 into
M3. In fact, if we can extend an H

π4(SU (2)) = 1 mapping over

D5 [denoted by U (x,y,z,t,ρ)] by embedding SU(2)isospin into
SU(3)isospin, it will generate the extension V by V = Uβ0U

†.
This is because an Hπ4(S2) = 1 mapping can be thought
of as a combination of an H

π4(SU (2)) = 1 mapping and an

Hopf Hπ3(S2) = 1 mapping. Such an extension U : D5 →
SU(3)isospin has already been explicitly given by Witten (see
Eqs. (9)–(13) in Ref. 24), which we will term Witten’s map.
Witten’s map was introduced to compute an iθH

π4(SU (2))
topological Berry phase. Basically, on the boundary ∂D5 = S4

(ρ = 1), Witten’s map is an H
π4(SU (2)) = 1 mapping defined

as rotating an H
π3(SU(2)) = 1 soliton (by 2π ) along the time

direction. This H
π4(SU (2)) = 1 mapping at ρ = 1 is smoothly

deformed into a trivial mapping at ρ = 0 by embedding SU(2)
into SU(3).
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We use Witten’s map to generate V , with which we compute
the Berry’s phase perturbatively by a large-mass expansion14,21

of the Lagrangian

L = �̃
†
[∂τ + i∂iαi]�̃ + M�̃

†
V �̃ ≡ �̃

†
[D]�̃, (16)

where D = [∂τ + i∂iαi + MV ] and the partition function
is Z = ∫

D�̃
†D�̃DV e− ∫

d4xL. After integrating out the
fermions, we obtain an NLSM of V : L̃ = − 1

2 Tr ln[∂τ +
i∂iαi + MV ]. Here the factor 1/2 is because we are integrating
out Majorana fields. If there is a variation δV , the variation of
the imaginary part � ≡ Im(L̃) is

δ� = −K

2

∫
dx4εαβγμTr{γ5V ∂αV ∂βV ∂γ V ∂μV δV }, (17)

where K = ∫
d4p

(2π)4
M6

(p2+M2)5 = 1
192π2 . Denoting ∂ρ = ∂4 and

after some algebra, the Berry phase can be written in the fully
antisymmetric way

� = −K

10

∫
dx5εαβγμνTr{γ5V ∂αV ∂βV ∂γ V ∂μV ∂νV }. (18)

In fact � is not fully well defined because the ambiguity of the
extension of n̂(x,y,z,t) to the 5-disk: two different extensions
V (x,y,z,t,ρ) can differ by a mapping S5 → M3. We will soon
show that this ambiguity means that � is well defined up to
mod 2π .

Because V is generated by U , plugging V = Uβ0U
†, U ∈

SU(3)isospin in Eq. (18), one can further simplify it by tracing
out the β0,5 space. First note that ∂μV = U [U †∂μU,β0]U † and,
because U †∂μU is an element of the SU(3)isospin Lie algebra
spanned by λ2,λ5,λ7,γ5{λ1,λ3,λ4,λ6,λ8}, [U †∂μU,β0] simply
picks out the latter five generators. After some algebra,21 one
finds

� = 1

15π2

∫
dx5εαβγμνTr{(g−1∂αg)⊥(g−1∂βg)⊥

× (g−1∂γ g)⊥(g−1∂μg)⊥(g−1∂νg)⊥}, (19)

where g is defined as the corresponding 3 × 3 SU(3) matrix of
U : if U is the exponential of a1λ2 + a2λ5 + a3λ7 + a4γ5λ1 +
a5γ5λ3 + a6γ5λ4 + a7γ5λ6 + a8γ5λ8, then g is the exponential
of a1λ2 + a2λ5 + a3λ7 + a4λ1 + a5λ3 + a6λ4 + a7λ6 + a8λ8.
g is nothing but the Witten map, and (g−1∂μg)⊥ denotes the
symmetric part: (g−1∂μg)⊥ = [(g−1∂μg) + (g−1∂μg)T ]/2.

We simply need to compute � by integration. Because it
is clear that � can only be 0 or π (mod 2π ), a numerical
integration is enough to determine it unambiguously. We
performed the integration of Eq. (19) with Witten’s map g

by a standard Monte Carlo approach and found

� = (1.000 ± 0.005)π. (20)

This proves that the Hopf-skyrmion is a fermion. In addition
it confirms that � is well defined only up to mod 2π : different
extensions of g can differ by a doubled Witten map, which
is known to have H

π5(SU(3)) = 1, and the above calculation
indicates that this ambiguity only adds an integer times 2π

in �.

VI. PHYSICAL CONSEQUENCES

We now discuss two kinds of physical consequences arising
from fermionic Hopfions. The first relies on the dynamical
nature of the superconducting order parameter, while the
second utilizes the Josephson effect to isolate an anomalous
response. The first class conceptually parallels experiments
used to identify skyrmions in quantum Hall ferromagnets.
There, when skyrmions are the cheapest charge excitations,
they are detected upon adding electrons to the system.11

Consider surface superconductivity on a mesoscopic torus-
shaped topological insulator as in Fig. 2. The Hopf texture
corresponds to unit phase winding in each cycle of the
torus. The energy cost, EH = (ρs/2)

∫
(∇φ)2d2x, is simply

proportional to the superfluid density EH = Aρs , where A is
in general an O(1) constant. If we have EH < �, which is the
superconducting gap, then the Hopfion is the lowest-energy
fermionic excitation. Tunneling a single electron onto the sur-
face should then spontaneously generate these phase windings
in equilibrium. Measuring the corresponding currents (ρs = 1
K corresponds to a few nano-Ampères of current) can be used
to establish the presence of the Hopf texture. A daunting aspect
of this scheme is to obtain a fully gapped superconductor with
ρs < �.

A different approach which does not depend on the above
inequality but relies on the Josephson effect is illustrated in
Fig. 5. A hollow cylinder of topological insulators is partially
coated with a superconductor on the top and bottom surfaces,
forming a pair of Josephson junctions. The superconducting
proximity effect induced through the surface states will
ultimately gap out the entire surface. A unit vortex along the
C1 cycle can be induced by enforcing a phase difference of π

between the top and bottom surfaces, using the flux �1 = ϕ0/2
(where ϕ0 = h/2e is the superconductor flux quantum). This
phase difference makes the order parameter wind by π on
going from the bottom to the top surface. The lowest-energy

FIG. 5. (Color online) Anomalous Josephson response connected
to fermionic Hopfions. An annular cylinder of TI with pairing induced
on the top and bottom surfaces via proximity to a superconductor
(present in the red regions) is shown. Tuning the flux to �1 ≈ ϕ0/2
induces a vortex in the C1 cycle. Now, the Josephson effect on tuning
�2 will be anomalous, with a part that is not periodic in the flux
ϕ0. This is directly related to the change in the ground-state fermion
parity at �2 = 2π (ϕ0/2π ), where the Hopf texture is realized. Adding
a fermion inverts this current, indicating that the ground state in
this sector is at �2 = 2π (ϕ0/2π ). If, however, �1 ≈ 0, there is no
vorticity in the C1 cycle, and the Josephson effect is the usual one,
which is periodic in the flux quantum ϕ0 = h/2e.
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phase configuration that accomplishes this is just the unit
winding on going around the circumference, so that the phase
is π at the half-way stage.

Now, the vorticity enclosed by the annulus determines the
Hopf number and hence the ground state fermion parity. This
vorticity can be traded for magnetic flux �2 [parametrized via
f2 = 2π (�2/ϕ0)] threading the cylinder, since only ∇φ − eA

is gauge invariant. Consider beginning in the ground state
with f2 = 0 and then tuning to f2 = 2π . One is now in an
excited state since the ground state at this point has odd fermion
parity. This must be reflected in the Josephson current I . We
argue this implies doubling the flux period of the Josephson
current. Since I = ∂E(�2)/∂�2, the area under the (I,�2)
curve,

∫ ϕ0

0 d�2I [�2] = E[ϕ0] − E[0] > 0, is the excitation
energy which does not vanish. Hence, the Josephson current
is not periodic in flux ϕ0, as in usual Josephson junctions. If
we started with an odd fermion number to begin with, then
the state of affairs would be reversed—the ground state would
be achieved at multiples of f2 = 2π . The ground state with
a particular fermion parity can be located by studying the
slope of the current vs phase curve. Since the energy of the
ground state increases on making a phase twist ∂I/∂�2 =
∂2E/∂�2

2 > 0, it is associated with a positive I vs �2 slope.
This positive slope will be at even (odd) multiples of f2 =
2π for even (odd) fermion parity. If, on the other hand, unit
vorticity was not induced in the cycle C1 (e.g., if �1 ∼ 0),
there is no Hopf texture, and the Josephson relation would be
the usual one (i.e., one that is periodic in f2 = 2π ). This is
summarized in Fig. 5.

Note that a similar anomalous 4π Josephson periodicity was
pointed out in the context of the 2D QSH case with proximate
superconductivity in Ref. 25. We interpret this result in terms
of the fermionic nature of the solitons there, which lends a
unified perspective. In the 3D case, the Hopf texture allows
one to tune between the normal and anomalous Josephson
effect by tuning the C1 vorticity via �1.

VII. CONCLUSIONS

The low-energy field theory of the superconductor-TI
system was derived and shown to possess a topological Berry
phase term, which leads to fermionic Hopf solitons. We
note that topological terms are particularly important in the
presence of strong quantum fluctuations. In one dimension
where fluctuations dominate, the Berry phase term of the spin
1/2 Heisenberg chain26 leads to an algebraic phase. It would be
very interesting to study the destruction of superconductivity
on a TI surface driven by quantum fluctuations. The Berry

phase or, relatedly, the fact that a conventional insulator must
break time reversal on the TI surface will provide an interesting
twist to the well-known superconductor-insulator transition
studied on conventional substrates.27
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APPENDIX: LONG EXACT SEQUENCE IN HOMOTOPY
THEORY

A very powerful theorem in algebraic topology is the long
exact sequence: given a manifolds E and its submanifold F ⊂
E, the following sequence is exact:

· · ·πn+1(E,F )→πn(F )
f→πn(E)

g→πn(E,F )
h→πn−1(F )· · · .

(A1)

By “exact” it means that the kernel of one mapping is the
same as the image of the previous mapping in the sequence.
For example, ker(g) = image(f ). πn(F ) and πn(E) are the
n-dimensional homotopy groups of F and E, respectively.
πn(E,F ) is called the relative homotopy group, which is
defined to be all different classes of mappings from an
n-dimensional disk Dn to E which map the boundary of
∂Dn = Sn−1 into F . In particular, when the quotient manifold
E/F can be defined, the relative homotopy group πn(E,F ) is
isomorphic to the homotopy group of the quotient manifold
πn(E/F ). In this case, the order of the manifolds showing up
in each dimension is always the smaller manifold, the larger
manifold, their quotient manifold.

Now we specify the definition of the mappings in the long
exact sequence. Mapping f is the natural mapping between
two homotopy groups induced by inclusion x ∈ F → x ∈ E.
Mapping g is also natural. For any mapping from Sn to E, one
can choose an arbitrary point P ∈ Sn and smoothly enlarge that
point into a small n-disk U . Then Sn − U is also an n-disk, and
the mapping from Sn − U is an element of πn(E,F ). When
the quotient manifold E/F can be defined, it is easy to see that
a mapping in πn(E,F ), after modding out the F , will induce
a mapping from Sn to E/F . This natural mapping between
πn(E,F ) and πn(E/F ) turns out to be an isomorphism. Finally,
the mapping h is induced by restricting an element in πn(E,F )
to its boundary Sn−1.

As a demonstration, we now use the long exact sequence to
study Witten’s extension:24

π5(SU(2)) π5(SU(3)) π5
SU(3)
SU(2)

= S5 π4(SU(2)) π4(SU(3))

Z2 Z Z Z2 0

2k + 1 1

k 2k 0 0 (A2)
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This means that if we extend an S4 → SU(2) mapping over the 5-disk by embedding SU(2) into SU(3), then the extended
mapping D5 → SU(3)(∂D5 → SU(2)) has odd index. In fact this index can be computed by the standard winding number of
π5(S5). Thus, if we glue different mappings D5 → SU(3)(∂D5 → SU(2)) together this index simply adds up. If we glue two
identical extensions to form a mapping S5 → SU(3), it must have a odd π5(SU(3)) index H

π5(SU(3)) = 2(2k + 1)/2 = 2k + 1.
Witten’s explicit form of extension (see Eqs. (9)–(13) in Ref. 24) is the element 1 in π5(SU(3)/SU(2)), and the doubled Witten
extension is element 1 ∈ π5(SU(3)).

Finally, we apply the long exact sequence to study the property of π5(SU(3)/SO(3)), relevant to the calculation of Hopfion
statistics. It is known that π5(SU(3)/SO(3)) = Z ⊕ Z2.

π5(SO(3)) π5(SU(3)) π5
SU(3)
SO(3)

π4(SO(3)) π4(SU(3))

Z2 Z Z ⊕ Z2 Z2 0

(k, 1) 1

k (k, 0) 0 0 (A3)

This means that the Z part of π5(SU(3)/SO(3)) is completely given by the Z index of π5(SU(3)). For example, if we take
a fundamental element of π5(SU(3)) (H

π5(SU(3)) = 1), for example, a doubled Witten extension, after modding out the SO(3)
subgroup, it will be a fundamental element of the Z part of π5(SU(3)/SO(3)) [H

π5(SU(3)/SO(3)) = (1,0)]. Because Berry’s �

for a single Witten extension is found to be π by numerical integration of Eq. (19), we prove that the integration for a
doubled Witten extension is 2π . Thus, we prove that Eq. (19), when integrated over S5, is exactly 2π times the Z index of
π5(SU(3)/SO(3)) = Z ⊕ Z2.
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