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Angular dependence of ferromagnetic resonance linewidth in thin films
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We comment on a frequently applied analysis of an out-of-plane angular dependence of the ferromagnetic
resonance linewidth �H in thin films. Using an expanded Suhl’s formula for the field-swept linewidth, we show
that the angular dependence of �H in a number of thin magnetic films is well described as a sum of two terms only:
an intrinsic contribution and an extrinsic one due to Gilbert damping and two-magnon scattering, respectively. For
some special cases (e.g., films with perpendicular anisotropy), an additional term of inhomogeneous broadening
due to local variations in the out-of-plane anisotropy may be required.
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I. INTRODUCTION

The out-of-plane angular dependence of the ferromagnetic
resonance linewidth �H in field-swept (with the microwave
frequency ω kept constant and a varied applied field H )
ferromagnetic resonance (FMR) experiments has often been
analyzed in order to obtain some additional information on
the intrinsic contribution to the linewidth �H Gilb due to the
Gilbert damping and on the extrinsic contributions resulting
from structural inhomogeneity and defects present in thin
magnetic films.1 The analysis requires, however, an exact
transformation from the frequency-swept linewidth �(ω/γ ) to
the field-swept �H one. For an infinite isotropic ferromagnet,
such a transformation is straightforward,2

�

(
ω

γ

)
= �H = 2α

(
ω

γ

)
, (1)

where the frequency-swept linewidth �(ω/γ ) is expressed in
the units of the field and γ is the gyromagnetic ratio. However,
in thin films, the magnetization M and the field H are not
collinear in a broad range of the field angle �H and hence3

�

(
ω

γ

)
= d(ω/γ )

dH
�H (�H). (2)

The term �(ω/γ ) expresses the full linewidth at half maximum
(FWHM) characteristic of FMR absorption. Equation (2) leads
to Suhl’s formula4 for the peak-to-peak linewidth,

�Hpp(�H) = α√
3

P (�H) + Q(�H)
d(ω/γ )

dH

, (3)

where P (�H) = 1
M sin2(�)E�� and Q(�H) = 1

M
E�� are the

second partial derivatives of the anisotropic part of the
magnetic free-energy density E with respect to the spherical
coordinates � and � of the magnetization M in the Smit-
Beljers5 relation, which have to be determined numerically
together with the equilibrium condition for magnetization
M .6 Since Eq. (3) expresses the peak-to-peak linewidth from
absorption derivative,

√
3 is included.

The derivative in the denominator of Eq. (3) has been
more6–12 or less3,13–16 properly treated in a number of papers.

Additionally, calculations of the full derivative are cumber-
some in the case of additional anisotropic parts of the magnetic
free-energy density, which may lead to artificially increase17,18

some contributions to the linewidth in a frequently applied
approach14–16,18 referred to as a local resonance model.19,20

In this model, applied for the first time by Chappert et al.21

for the films with perpendicular anisotropy, it is assumed
that the field-swept linewidth is usually described by a
series of contributions �H = �H Gilb + (∂H/∂�H) ��H +
(∂H/∂Hi) �Hi , where ��H and �Hi represent variations
of �H and Hi due to orientation distribution of independent
grains (mosaicity) and internal field, respectively. While this
approach may be applicable for the films with a strong
perpendicular anisotropy,21–24 in thin films with a high mag-
netization and small inhomogeneities, it has no physical basis
since inhomogeneities are effectively smoothed by dipolar
and exchange interactions.19 In this case, the two-magnon
model20 is more pertinent than the local resonance model
and the frequency-swept linewidth is a sum of the intrinsic
(Gilbert) �(ω/γ )Gilb and extrinsic (two-magnon) �(ω/γ )2mag

contributions,
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)
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)2mag

. (4)

Our comment is concerned with such a transformation—a
procedure of separation of these contributions to �H (�H) as
well as of proper transformations �H Gilb(�H) → �(ω/γ )Gilb

and �H 2mag(�H) → �(ω/γ )2mag for the case of ultrathin
magnetic films with a negligible exchange-conductivity damp-
ing, which is independent of �H.1

II. FMR LINEWIDTH IN THIN FILMS

Equations (2) and (3) may be solved with full derivatives,
but it is more convenient to express �(ω/γ ) as

�

(
ω

γ

)
=

(
∂ (ω/γ )

∂H

)
�H +

(
∂ (ω/γ )

∂�

)
��, (5)
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where the first term characterizes in the field-swept FMR an
effect of dragging magnetization M behind the applied field
and the second term describes the fact that, in the field-swept
experiment, magnetization undergoes an additional rotation
�� as the magnetic field is swept through resonance for a
fixed �H.25

It can easily be shown that, for the thin films in the vicinity
of a resonance,

�� ∼= −�H sin(� − �H)

Q(�H)
. (6)

On substituting Eq. (6) into Eq. (5), the transformation
�H (�H) → �(ω/γ ) can be obtained in explicit form,

�H (�H) = �(ω/γ )(
∂(ω/γ )

∂H

) − ( ∂(ω/γ )
∂�

) sin(�−�H)
Q(�H)

. (7)

Hence, in accordance with Eq. (3), �H Gilb
pp (�H) can be written

in an expanded form of Suhl’s formula,

�H Gilb
pp (�H) = α√

3

P (�H) + Q(�H)(
∂(ω/γ )

∂H

) − ( ∂(ω/γ )
∂�

) sin(�−�H)
Q(�H)

, (8)

and, in accordance with Eqs. (1) and (4), the angular depen-
dence �Hpp(�H) for a film with both intrinsic and extrinsic
contributions is expressed as

�Hpp(�H) =
[
α + �(ω/γ )2mag

2(ω/γ )

]
√

3

P (�H) + Q(�H)
(

∂(ω/γ )
∂H

) −
(

∂(ω/γ )
∂�

)
sin(�−�H)

Q(�H)

.

(9)

In order to extract the extrinsic contribution from the exper-
imental dependence �H

expt
pp (�H), the inverse transformation

can be performed:

�(ω/γ )2mag(�H) = 2(ω/γ )

√
3
[
�H

expt
pp (�H) − �H Gilb

pp (�H)
][

∂(ω/γ )
∂H

− ( ∂(ω/γ )
∂�

) sin(�−�H)
Q(�H)

]
P (�H) + Q(�H)

, (10)

where �H
expt
pp (�H) represents linear interpolation of the

experimental data.26 In accordance with Eq. (1), the fraction
in Eq. (10) has the meaning of the dimensionless two-magnon
damping constant with an angular dependence implicit in each
term of the fraction.

III. EXAMPLES

The equality between the out-of-plane �H⊥ and in-
plane �H‖ linewidths presents a clear evidence that the
FMR linewidth is determined exclusively by the intrinsic
contribution due to the Gilbert damping. However, it may
happen that �H⊥ > �H‖ or �H⊥ < �H‖. In the former
case, angular dependence �H (�H) can be complicated with
a remarkably high �H⊥.21–24 Such a major deviation from the
Gilbert phenomenological model is related to a specific gran-
ular microstructure characteristic of perpendicular media,22,23

polycrystalline ultrathin films with perpendicular surface
anisotropy,21,24 or to polycrystalline multilayers with (possi-
bly) discontinuous permalloy layers.7,8 The only exception to
this rule is a copper-doped permalloy polycrystalline thin film
with not specified microstructure.12 The local resonance model
with inhomogeneous broadening due to spatial variations
in the perpendicular anisotropy21 or a combined model22,24

well account for angular dependence of the linewidth in the
former case. The latter case (e.g., �H⊥ < �H‖) is usually
encountered in ultrathin films with a good structural order
(e.g., epitaxial).10,15,16 In such a case, intrinsic (Gilbert) and
extrinsic (two-magnon) contributions are usually more than
sufficient to describe experimental data �H (�H).

Microscopic sources of the two-magnon scattering in
ultrathin films have been described earlier and detailed
information can be found in Refs. 3, 10, and 16. In this
paper, we aim to show in a few examples a procedure of
extracting the extrinsic contribution to the linewidth from

the experimental data using our approach and to compare
its angular dependence with theoretical approaches within
the framework of the two-magnon model without going into
microscopic sources. Therefore, (i) we assume that �H⊥ is
determined, but by the intrinsic Gilbert contribution; (ii) we
evaluate �H extr

pp (�H) = �H
expt
pp (�H) − �H Gilb

pp (�H); (iii) we
transform �H extr

pp into �(ω/γ )extr vs �H and �(ω/γ )extr vs
�H (or vs �); and (iv) we check if �(ω/γ )extr vs �H (or vs
�) is in agreement with the two-magnon model.

Figure 1(a) shows angular dependence of the FMR
linewidth (open circles) of a sample 200 Pd/30 Fe/GaAs
(001). The data are taken from Ref. 10. The numbers denote
thickness in the units of atomic monolayers. The dotted
line represents �H Gilb

pp (�H) calculated from Eq. (8) with
the following parameters: f = 24 GHz, g = 2.02, 4πMeff =
20.6 kG, 2K1/M = 0.35 kOe, and α = 0.0049 that are nearly
the same as in Ref. 10. The angular dependence of the extrinsic
linewidth �H extr

pp is shown by the dashed line. Using the inverse
transformation [Eq. (10)], we can plot the frequency-swept
linewidth �(ω/γ )Gilb and �(ω/γ )extr versus the field angle
�H or the magnetization angle � as it is shown by open circles
in Figs. 1(a) and 1(b), respectively. It is worth noticing that, in
accordance with Fig. 1(a), �(ω/γ )Gilb(�H) = 76 and 120 Oe
and �(ω/γ )extr(�H) = 0 and 243 Oe, for �H = 0◦ and 90◦,
respectively, since they represent FWHM values. Comparison
of �(ω/γ )Gilb and �(ω/γ )extr at �H = 90◦ clearly demon-
strates the importance of the extrinsic contribution to the total
linewidth.

While the angular dependence of �(ω/γ )Gilb is standard,6

the angular dependence of �(ω/γ )extr is worth commenting
on. The plots of �(ω/γ )extr(�H) or �(ω/γ )extr(�) [open
circles in Figs. 1(b) and 1(c)] exhibit behavior predicted by
the two-magnon model20 with a characteristic decrease in the
vicinity of �H � 11◦ and � � π/4. Two-magnon scattering
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FIG. 1. (a) Measured (open circles) FMR linewidth �Hpp as a
function of �H for a sample 200Pd/30 Fe/GaAs (001). The data are
taken from Ref. 10. Dotted line shows �H Gilb

pp (�H) that was calculated
on the basis of Eq. (8). Dashed line shows the linear interpolation
of �H extr

pp (�H) = �H
exp
pp (�H) − �H Gilb

pp (�H). Solid line shows a fit
to the experimental data with a sum of Gilbert and two-magnon
contributions. (b) The frequency-swept (FWHM) linewidth as a
function of �H. Open circles and dots represent �(ω/γ )extr(�H) and
�(ω/γ )Gilb(�H), respectively. Thick dashed line shows the results
of numerical calculations. (c) The frequency-swept linewidth (open
circles) as a function of magnetization angle �. Dash-dotted line
shows the critical angle �crit as a function of �H. Description of the
other lines is the same as in (b).

theory describes the rate at which energy is transferred from
the uniform precession to degenerate spin waves due to the
presence of magnetic inhomogeneities and yields the two-
magnon linewidth as a sum,

�ω2mag = 2π |A0|2
∑

δ(ω0 − ωk), (11)

where A0 represents scattering amplitude and
∑

δ(ω0 − ωk)
is the density of degenerate spin waves with wave vector k.27

In ultrathin films, the two-magnon linewidth �(ω/γ )2mag as
a function of �H or � can be determined numerically from
Eq. (11)20,23,24 or approximated analytically16,19,28 in a small

defect limit. In the last case, a simple expression has been
proposed,19

�(ω/γ )2mag ≈ 〈δ[ωloc(r)2/γ 2]〉
δ(ωex/γ )

�crit(�H), (12)

where the leading term �crit(�H) = arcsin[(−P (�H)cos2�/

(P (�H) + 4πM)sin2�)]1/2 (the expression is written in our
coordinate system) is a critical angle—a stepwise function that
switches off two-magnon scattering for � < π/4. 〈δωloc(r)2〉
is the square of local shift in resonance frequency due to
inhomogeneity and δωex = Dγ (k)2 is the difference between
the frequency of uniform precession and the frequency of
a spin wave with the wave number k. D is the spin-wave
stiffness constant. The fraction on the right side describes the
fact that variations of the local inhomogeneous field due to
defects δ(ωloc(r)/γ ) are narrowed by exchange interactions
represented by δ(ωex/γ ). If we take the spin-wave stiffness
D = 2.5 × 10−9 G cm2 for Fe and k ≈ 1/ξ with ξ = 5 nm,10

the value of inhomogeneity field δ(ωloc/γ ) ≈ 1.6 kOe. This
value seems to be reasonable for an inhomogeneous field
created by misfit dislocations in an epitaxial Fe film of
30 ML.10

The dash-dotted line in Fig. 1(c) shows dependence (scaled)
of �crit on �. It is seen that �(ω/γ )extr(�) (open circles) is
rather not well approximated by the analytical expression (12).
Generally, the analytical expressions10,28,29 for �(ω/γ )2mag

predict an abrupt disappearance of two-magnon scattering for
� < π/4. Numerical calculations19 explain such discrepancy
as resulting from a finite Gilbert damping that leads to spin
waves excited off resonance (see Fig. 5 in Ref. 19) and
usually linewidth is finite at low �. We performed numerical
calculations of the two-magnon contribution to the FMR
linewidth as a sum over degenerate magnon states for various
�H in a similar way as described in Refs. 19 and 22. For
this purpose, spin-wave manifold [see Eq. (11) in Ref. 19]
for an Fe film with thickness d = 30 ML (∼5 nm) and
with exchange stiffness value D = 2.5 × 10−9 G cm2 was
determined versus wave number 0 < k < 3 × 105 cm−1 (i.e.,
kmaxd < 0.2) for field angle 0 < �H < 90 and for microwave
frequency ω/2π = 24 GHz at k = 0. For each �H, the
density of degenerate states

∫ kmax

0 δ(ω0 − ωk)dk was calculated
assuming a finite intrinsic linewidth 2α(ω/γ ) with α = 0.005
and k-independent Gilbert damping. The results of numerical
calculations are shown in Figs. 1(b) and 1(c) by the dashed
lines. It is clearly seen that numerical calculation yields a
finite two-magnon linewidth for small �H in good agreement
with the experimental data.30

Two other examples concern L21 ordered Ni2MnSn epitax-
ial films deposited by magnetron sputtering on MgO (100)
substrates. Details on preparation, structural ordering, and
magnetic properties can be found in Ref. 31. The most
important feature of the Ni2MnSn films in connection to
FMR linewidth is that the spin-wave stiffness is of only
(8–9) × 10−10 G cm2, e.g., one of the lowest known for
Heusler alloys.26 As shown in Fig. 2(c), the low spin-wave
stiffness of Ni2MnSn results in a flattened spin-wave manifold
in comparison to that of Fe, which have about three times
higher spin-wave stiffness. This should result in a higher
density of degenerate states than for Fe films. Since the
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FIG. 2. (a) Measured (open circles) ferromagnetic resonance
linewidth �H for a 30-nm Ni2MnSn/MgO (001) epitaxial film as
a function of �H. The dotted and dashed lines represent the intrinsic
�H Gilb(�H) and extrinsic �H extr(�H) contribution, respectively.
The solid line shows a fit to the experimental data with a sum
of Gilbert and two-magnon contributions. (b) The frequency-swept
linewidth �(ω/γ ) as a function of �H. Open circles and dotted
line in the inset represent the frequency-swept extrinsic and the
Gilbert linewidth, respectively. The dashed line shows two-magnon
contribution calculated numerically from spin-wave manifold.
(c) Comparison of spin-wave manifold for ultrathin films of Ni2MnSn
and Fe of the same thickness of 6 nm. Magnetic field is applied in
plane.

epitaxial films of Ni2MnSn deposited at elevated temperature
(in order to achieve good structural ordering) suffer from a
relatively high roughness of 1–3 nm,31 two-magnon scattering
is expected to be high in these films. Figure 2(a) shows
angular dependence of the FMR linewidth (open circles) of
a 30-nm-thick epitaxial film of Ni2MnSn. Parameters used in
our calculations are the following: f = 9.38 GHz, g = 2.05,
4πMeff = 4.3 kG, 2K1/M = −0.05 kOe, and α = 0.0075.
The most characteristic feature of the FMR linewidth is
that the intrinsic Gilbert contribution (dotted line) is seven
times smaller than the extrinsic contribution (dashed line)
extracted according to our approach. Therefore, the angular
dependencies �H (�H) and (�ω/γ )(�H) (open circles) show
that magnetization dynamics in Ni2MnSn governed mostly
by the extrinsic damping is probably due to the high surface
roughness. Similar to the results shown in Fig. 1(b), Fig. 2(b)
shows that the extrinsic damping is well described in terms
of the two-magnon model. Numerical calculations of the
two-magnon contribution based on spin-wave manifold of
30-nm-thick Ni2MnSn film [Fig. 1(b), dashed line] trace quite
well the extrinsic contribution.
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FIG. 3. Measured (open circles) ferromagnetic resonance
linewidth �H for a 100-nm Ni2MnSn/MgO (001) epitaxial film as
a function of �H. The dotted and dashed lines represent the intrinsic
�H Gilb(�H) and extrinsic �H extr(�H) contribution, respectively. The
solid line shows a fit to the experimental data with a sum of Gilbert
and two-magnon contributions. The inset shows the frequency-swept
linewidth �(ω/γ ) as a function of �H. Open circles and dotted line
in the inset represent the frequency-swept extrinsic and intrinsic
linewidth, respectively. The dashed line in the inset shows the
two-magnon linewidth vs �H calculated numerically (see text).

The described procedure for separating the extrinsic con-
tribution from the experimental data not always leads to
reasonable results that can be described exclusively by the two-
magnon model for ultrathin films. Such a behavior is observed
in some thicker Ni2MnSn epitaxial films prepared by ultrahigh
vacuum sputtering on MgO (100) substrates. The experimental
data of FMR linewidth of a 100-nm-thick Ni2MnSn is shown
in Fig. 3 by open circles. The dotted curve shows angular
dependence of the intrinsic contribution with �H Gilb(90◦) =
26 Oe that is comparable to the extrinsic one [�H extr(90◦) =
50 Oe] evaluated using our approach. The value of
�H Gilb(90◦) = 26 Oe is rather small in accordance with that
observed in other Heusler alloy films.18,32,33 Opposite to the
results shown in Fig. 2, the extrinsic linewidth (inset in Fig. 3,
open circles), which is comparable to the intrinsic contribution,
shows no characteristic cutoff feature at �H = 18◦ (� =
π/4) predicted by the two-magnon model for ultrathin films.
Using all needed parameters characterizing Ni2MnSn film
(f = 9.08 GHz, g = 2.05, 4πMeff = 4.65 kG, 2K1/M =
−0.08 kOe, and α = 0.0075), we calculated numerically the
two-magnon contribution as a function of �H performing
integration over wave number range 0 < k < 3 × 105 cm−1.
The dashed curve in the inset of Fig. 3 shows the results of
calculations and it is clear that, at low angles �H, the departure
between experimental data and numerical calculations is
substantial. In other words, in this case, the ultrathin film
approach for two-magnon scattering cannot account for the
observed angle dependence. Even though the microstructure
of the 100-nm-thick Ni2MnSn film is not known, the observed
dependence of the FMR linewidth as a function of field angle
may have as well a relationship with two-magnon scattering.
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Qualitatively, following Hurben and Patton (see Fig. 15 in
Ref. 3), such a course of the frequency-swept linewidth
may arise from a mixed two-magnon scattering on isotropic
(surface) defects and on spherical voids, which bring about a
peak in �H extr for low �H.

IV. CONCLUSIONS

The out-of-plane angular dependence of FMR linewidth in
thin films experiences a strong broadening if the magnetization
is tilted from the normal to the film plane. We show that our
expression for the field-swept linewidth, that may be regarded
as the expanded Suhl’s formula, explains this additional broad-
ening without assuming distributions of local internal fields

and mosaicity in ultrathin magnetic films. A straightforward
procedure of extraction of both the intrinsic and extrinsic
contributions from the experimental data is presented with
the extrinsic contribution well described in terms of the
two-magnon scattering relaxation for ultrathin films. Angular
dependence of the extrinsic contribution for the thicker film
reveals departure from such a behavior. It can be qualitatively
explained as resulting from two-magnon scattering on voids
or other defects inside bulk of the thicker films.
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