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Angle-resolved NMR: Quantitative theory of 75As T1 relaxation rate in BaFe2As2
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While NMR measurements of nuclear energy spectra are routinely used to characterize the static properties of
quantum magnets, the dynamical information locked in NMR 1/T1 relaxation rates remains notoriously difficult
to interpret. The difficulty arises from the fact that information about all possible low-energy spin excitations of
the electrons, and their coupling to the nuclear moments, is folded into a single number 1/T1. Here, we develop
a quantitative theory of the NMR 1/T1 relaxation rate in a collinear antiferromagnet, focusing on the specific
example of BaFe2As2. One of the most striking features of magnetism in BaFe2As2 is a strong dependence of
1/T1 on the orientation of the applied magnetic field. By careful analysis of the coupling between the nuclear
and electronic moments, we show how this anisotropy arises from the “filtering” of spin fluctuations by the form
factor for transferred hyperfine interactions. This allows us to make convincing, quantitative fits to experimental
1/T1 data for BaFe2As2 for different field orientations. We go on to show how a quantitative, angle-dependent
theory for the relaxation rate leads to new ways of measuring the dynamical parameters of magnetic systems, in
particular, the spin-wave velocities.
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I. INTRODUCTION

Nuclear magnetic resonance (NMR) has a long history
as an experimental probe, with numerous uses throughout
physics, chemistry, and medicine. More than 60 years after its
discovery,1,2 it remains one of the most powerful techniques for
investigating solid-state systems. NMR spectra measurements
of the nuclear energy level splitting are well understood, and
provide a wealth of quantitative information concerning the
static properties of magnetic materials.3 However, the dynamic
properties of these materials are more difficult to access. While
much of the relevant information is encoded in the NMR
relaxation rate 1/T1, it can prove difficult to extract.

The problem with interpreting measurements of 1/T1 is that
all possible fluctuations of the electron moments, as well as the
details of the coupling to the nuclear moment, are folded into
a single number. Despite many decades of study,4–11 and some
notable successes, theory has thus far not developed the level
of sophistication required to fully utilize the information stored
in these measurements. In this paper, we address this problem
by developing a quantitative theory of the 1/T1 relaxation rate
in the magnetically ordered phase of BaFe2As2.

The Fe-pnictide materials in general, and BaFe2As2 in
particular, have been a field of much activity in recent
years.12–20 In BaFe2As2, layers of FeAs alternate with planes of
Ba. While at room temperature the undoped materials support
a tetragonal I4/mmm paramagnetic phase, at approximately
135 K, there is a structural distortion to an orthorhombic
Fmmm phase, and subsequently a magnetic ordering to form a
striped, collinear antiferromagnet.12 Chemical doping, such as
the substitution of Co for Fe, suppresses the magnetism of the
parent compounds and leads to an intriguing superconducting
state.21

One of the many puzzling features of magnetism in
BaFe2As2 is a significant reduction in the 75As 1/T1 NMR
relaxation rate when the external magnetic field is applied
perpendicular, rather than parallel, to the FeAs planes (Kita-
gawa et al.12 reproduced in Fig. 1). This sensitivity of 1/T1 to
the orientation of magnetic field can not be explained by any
existing theory of NMR relaxation rates.

FIG. 1. (Color online) Experimental measurements of the 75As
1/T1 relaxation rate in BaFe2As2, as reported in Ref. 12. Relaxation
rates were measured with external magnetic field applied both
perpendicular (squares) and parallel (circles) to the FeAs planes.
Except at the lowest temperatures (inset), the relaxation rate measured
for fields parallel to [001] is significantly lower than that for
fields parallel to [110], and has a qualitatively different temperature
dependence.

In this paper, we develop a quantitative theory of the 75As
NMR 1/T1 relaxation rate in the magnetically ordered phase
of BaFe2As2, building on the earlier ideas of Moriya4–6 and
Mila and Rice.8,9 We find that the tensor nature of transferred
hyperfine interactions between electronic and nuclear spins
leads to a “filtering” of the spin fluctuations seen at the 75As
site, which in turn depends on the orientation of the magnetic
field used in NMR experiments. Consequently, the NMR
1/T1 relaxation rate has a qualitatively different temperature
dependence for fields applied parallel and perpendicular to the
FeAs planes. This theory is developed in absolute units, and
its predictions are found to be in quantitative agreement with
experiment for both orientations of the magnetic field.

In this context, it becomes meaningful to talk about “angle-
resolved” measurements of 1/T1, and we therefore generalize
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our theory of 75As NMR 1/T1 to treat arbitrary orientation and
magnitude of external magnetic field. We use this more general
theory to make specific, quantitative predictions for the shape
of the 1/T1 surface as a function of field orientation at fixed
temperature and the field dependence of the 1/T1 relaxation
rate as a function of field strength, at fixed field orientation.

The combination of angular resolution and absolute units
also permits quantitative information about dynamical prop-
erties of the system to be extracted directly from 1/T1

measurements. As an illustration, we show how angle-resolved
75As NMR 1/T1 measurements could be used to measure all
three components of the spin-wave velocity in BaFe2As2.

While this paper is concerned with the specific example
of 75As NMR in BaFe2As2, many of these results gener-
alize straightforwardly to other collinear antiferromagnets,
and corresponding results can be derived for more exotic
magnetic states. As such, angle-resolved measurement of
NMR relaxation rates promises to be a powerful probe of
both conventional and unconventional magnetism.

The paper is structured as follows: In Sec. II, we present
some of the basic facts about antiferromagnetism in BaFe2As2,
and briefly review existing theories of NMR 1/T1 rates in
antiferromagnets. In Sec. III, we introduce the idea of angular
resolution in 1/T1 measurement, and develop a theory for the
75As 1/T1 relaxation rate in the magnetically ordered phase of
BaFe2As2, for fields applied in both [110] and [001] directions.
In Sec. IV, we show how this theory can be extended to treat
arbitrary field orientation and strength. In Sec. V, we propose
a scheme for measuring spin-wave velocities directly from
NMR 1/T1 relaxation rates, based on the results of Sec. IV.
We conclude in Sec. VI with a discussion of some of the wider
implications of these results.

II. BACKGROUND TO NMR MEASUREMENTS ON
BaFe2As2

A. Low-temperature magnetism in BaFe2As2

Before delving into the details of the NMR relaxation rate,
we briefly review the nature of the low-temperature magnetic
state in BaFe2As2. Neutron-scattering measurements14–17

reveal a commensurate, collinear antiferromagnetic ground
state below 135 K with ordered moment m0 ≈ 0.87μB

and ordering vector Q = (π/a0,0,π/c0).14 [Here,
(a0,b0,c0) = (2.80 Å, 2.79 Å, 6.47 Å) are the lattice
constants of the orthorhombic lattice of Fe atoms within
BaFe2As2.] The ordered magnetic moment lies along the
crystallographic a axis, as shown in Fig. 2.

A single branch of low-energy spin-wave excitations with
dispersion

h̄ωq =
√

�2 +
∑

α=a,b,c

v2
α(qα − Qα)2 (1)

is found above an anisotropy gap � ≈ 9.8 meV.16 The spin-
wave velocities are anisotropic with va ≈ vb � vc.15,16 These
spin-wave excitations become diffuse at higher energies and
merge into a broad continuum of incoherent spin excitations.16

Constructing a theory of NMR relaxation rates is compli-
cated by the fact that BaFe2As2 is both an antiferromagnet
with a sizable ordered moment and a metal. The existence

FIG. 2. (Color online) Below 135 K, BaFe2As2 exhibits
collinear antiferromagnet order with characteristic wave vector
Q = (π/a0,0,π/c0). Within this ordered state, Fe moments (indicated
here by red, horizontal arrows) are orientated along the crystallo-
graphic a axis. The effective magnetic field induced at the As nucleus
by these Fe moments hint (blue, vertical arrows) is orientated along
the crystallographic c axis, and alternates in direction between the As
sites.

of a Fermi surface in BaFe2As2 implies that it must support
gapless particle-hole pairs as well as the coherent spin-
wave excitations seen in neutron scattering. These incoherent
particle-hole pairs will contribute to the 1/T1 relaxation rate
in their own right and, a priori, might be expected to couple
strongly to spin waves.

In Sec. III, we model the magnetic excitations of BaFe2As2

using a low-temperature field theory written in terms of the
hydrodynamic parameters va , vb, vc, �, and the transverse sus-
ceptibility χ⊥. This field theory respects all of the symmetries
of the magnetic ground state, correctly reproduces the low-
temperature dispersion [Eq. (1)], and provides self-consistent
predictions for all related magnetic properties. As such, it
offers a correct low-energy effective theory of spin-wave
excitations in BaFe2As2, regardless of the microscopic details
of the material.

The effect of incoherent particle-hole pairs, neglected in
this theory, is most evident in the linear-T behavior of 1/T1

at temperatures T < 50 K (cf. inset to Fig. 1). We have
previously argued that this contribution to 1/T1 remains linear
in T at higher temperatures, and can be safely fitted at low
temperatures and subtracted from the data.19 We return to this
argument below.

B. Introduction to NMR relaxation rates in antiferromagnets

NMR measurements of the average internal magnetic field
are well understood, and angular resolution is routinely used
to determine the static properties of magnetic materials.3 The
technique relies on the Zeeman splitting of the nuclear energy
levels by the effective magnetic field at the nuclear site hnuc as
described by

H′ = γNh̄I · 〈hnuc〉
= γNh̄

[
I z
〈
hz

nuc

〉 + 1
2 (I+〈h−

nuc〉 + I−〈h+
nuc〉)

]
. (2)

Here, I is the nuclear moment, I+(−) is a nuclear spin-raising
(-lowering) operator, and γN is the gyromagnetic ratio of the
nucleus in question.
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The effective magnetic field experienced by the nuclear
moment hnuc = hext + hint is the vector sum of the external
magnetic field applied to the sample hext and an effective
internal magnetic field hint. This internal field encapsulates
the effect of interactions between the nuclear moment and the
surrounding electrons. However, while the external field hext

can be considered to be static, hint fluctuates on a time scale set
by the electrons, and so contributes to relaxation of the nuclear
spins.

In general, three different types of interaction can contribute
to the effective internal field hint. First, for the nuclei of
magnetic atoms, there is an onsite hyperfine interaction.
Second, for the nuclei of nonmagnetic atoms, there is a
transferred hyperfine coupling between the nuclear moment
and the spin of neighboring electrons. Finally, we can also
consider the dipolar interaction between nuclear and electronic
spins. This is weak for small values of electronic and/or nuclear
spin, but long ranged. In the case of NMR in BaFe2As2,
we focus in particular on the transferred hyperfine coupling
between an 75As nucleus and the electrons of the four Fe
atoms that surround it.

In NMR 1/T1 measurements, the population of the Zeeman-
split nuclear energy levels is driven out of equilibrium by
a radio-frequency pulse. These nuclear spins then return to
equilibrium over a characteristic time scale T1, which is set by
their interaction with electrons, specifically by the transverse
fields h+ and h− in Eq. (2). We characterize this process by the
standard 1/T1 = 2W relaxation rate, as defined in Refs. 22–24.

The quest for a theory of NMR 1/T1 relaxation rates in
antiferromagnetic materials now spans almost six decades.
Moriya, writing in 1956, was the first to realize how the Raman
scattering of antiferromagnetic spin waves from nuclear
moments can lead to a finite nuclear spin relaxation rate.4–6

Beeman and Pincus later extended Moriya’s semiclassical
theory to include quantum fluctuation effects.7 The next
major breakthrough was due to Mila and Rice, who realized
that the indirect coupling between electronic spins and the
nuclei of nonmagnetic atoms can act as a “filter” on spin
fluctuations.8,9 This made it possible to understand why
the 1/T1 relaxation rates of different nuclei in the same
compound can have qualitatively different leading temperature
dependences.

The theory of NMR relaxation rate presented in this
paper extends the idea of Mila and Rice of “filtering” of
spin fluctuations by showing how the action of the “filter”
is strongly dependent on the orientation of the externally
applied magnetic field. We develop this theory in absolute
units, which allows us to make quantitative predictions for
comparison with experiment. Using this theory, we are able
explain the temperature dependence of 75As relaxation rates
in BaFe2As2 for fields applied in both the [110] and [001]
directions.12 This task is simplified by the very large anisotropy
gap � ≈ 100 K in the spin-wave spectrum of BaFe2As2,
which forbids additional relaxation processes arising from the
absorption or emission of spin waves.4,7

We note that a theory of NMR 1/T1 relaxation rates in
magnetic Fe pnictides has also been advanced by Ong et al.25

However, the theory we present goes much further, and allows
quantitative comparison with experiment.12

We also remark that BaFe2As2 is not the first material
in which the NMR 1/T1 relaxation rate has been found to
depend on the direction in which the magnetic field was
applied, although it is, to the best of our knowledge, the first
antiferromagnet. Angle dependence of 1/T1 relaxation rates
has previously been observed in 63Cu NMR of the cuprates
YBa2Cu3O7 and YBa2Cu4O8 within their low-temperature
superconducting state.26,27 Thelen, Pines, and Lu10 have sug-
gested that the anisotropy in 1/T1 follows from an anisotropy in
the onsite coupling between the electron and nuclear moments
of 63Cu. In this paper, we focus on a nonmagnetic ion 75As,
for which there is no onsite coupling, and explain the angle
dependence in terms of transferred hyperfine interactions.

III. QUANTITATIVE THEORY OF 75AS 1/T1 FOR FIELDS
PARALLEL TO [110] AND [001]

We now develop a theory of 1/T1 relaxation rates in
BaFe2As2, with the specific goal of obtaining quantitative fits
to high-quality 75As NMR data for magnetic fields parallel to
both the [110] and [001] directions.12 We focus on results for
the relaxation rate at low temperatures and in the magnetically
ordered phase, and follow a relatively direct path to the results
needed to compare with experiment. The development of a
more general theory for arbitrary field orientation is postponed
to Sec. IV.

If the nuclear field hnuc is orientated in the z direction, then
time-dependent perturbation theory leads to6

1

T1(hext)
= γ 2

N

2

∫
dt eiω0t

[〈{
hx

int(t),h
x
int(0)

}〉
+ 〈{

h
y
int(t),h

y
int(0)

}〉]
, (3)

where h̄ω0 is the splitting of the nuclear energy levels and hint

is the effective field at the nuclear site due to interaction with
the surrounding electron moments. (In Ref. 19, we used the
symbol B to denote the nuclear-electron coupling tensor. In
this paper, we instead use A since this appears to be a more
widely accepted nomenclature.) Only the x and y components
enter the expression since they are the ones that couple to the
nuclear spin-raising and -lowering operators I± in Eq. (2).

The internal field hint can be reexpressed in terms of the
electronic degrees of freedom as

hint(t) =
∑

i

A
i
· mi(t), (4)

where i sums over the electron moments (mi) that couple to the
nuclear spin, and A

i
[T/μB] is a rank-two tensor describing

the coupling between the nuclear and electron moments. We
refer to A

i
as the nuclear-electron coupling tensor, and note

that its components

A
i
=

⎛
⎜⎝
A11

i A12
i A13

i

A21
i A22

i A23
i

A31
i A32

i A33
i

⎞
⎟⎠ (5)

can be measured by Knight-shift experiments.12
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The full interaction Hamiltonian for a nuclear moment I is
given by

H = γNh̄

(
I · hext +

∑
i

I · A
i
· mi(t)

)
. (6)

Starting from Eq. (3), we now show how to derive a
working expression for the relaxation rate by making use of
the fluctuation dissipation theorem. Equations (4) and (3) can
be combined to give

1

T1(hext)
= γ 2

N

2

∫
dt eiω0t

1

N

∑
q

∑
i,j

eiq·(ri−rj )

× [〈{[A
i
· mq(t)]x,(A

i
· m−q)x}〉

+ 〈{[A
i
· mq(t)]y,(A

i
· m−q)y}〉], (7)

where the electron magnetic moments have been Fourier
transformed using

mi(t) = 1√
N

∑
q

eiq·ri mq(t). (8)

Fluctuations of the electronic moments can be characterized
by introducing a dynamical structure factor

Sξψ (q,ω0) =
∫

dt eiω0t
〈{

mξ
q(t),mψ

−q

}〉
. (9)

It follows that the relaxation rate is given by

1

T1(hext)
= γ 2

N

2N

∑
q,ξ,ψ

[
Axξ

q Axψ
−q + Ayξ

q Ayψ
−q

]
Sξψ (q,ω0), (10)

where ξ,ψ = {x,y,z}, and we have defined

Aξψ
q =

∑
i

eiq·riAξψ

i . (11)

The fluctuation-dissipation theorem relates the structure
factor of Eq. (10) to the dynamic susceptibility, defined by

χξψ (q,ω0) = i

∫
dt eiω0t

〈[
δmξ

q(t),δmψ
−q

]〉
. (12)

This allows the relaxation rate to be rewritten as

1

T1(hext)
= lim

ω0→0

γ 2
N

2N
kBT

∑
q,ξ,ψ

[
Axξ

q Axψ
−q + Ayξ

q Ayψ
−q

]

×
m{χξψ (q,ω0)}
h̄ω0

, (13)

where, in taking the limit ω0 → 0, we have assumed that the
energy of the nuclear transitions is negligible compared to the
typical spin-wave energies.

Since both the susceptibility [Eq. (12)] and the interaction
between the nuclear and electron moments [Eq. (5)] are
tensors, it is important to keep track of the coordinate basis in
which they are represented. In the above expressions, both are
represented in the (x,y,z) coordinate system, which is defined
by aligning the z axis with hnuc, the nuclear magnetic field.
However, they are most simply measured and calculated in the
(a,b,c) coordinate system, which is aligned with the crystal
axes. Figure 3 shows the orientation of these two coordinate
systems when hext is parallel to the a axis. In Sec. IV, we
consider an arbitrary direction of hext and introduce rotation

FIG. 3. (Color online) The local environment of the As atom in
BaFe2As2. The As atom (purple) experiences an average local field
〈hnuc〉 (blue arrow) that arises from a combination of an externally
applied field hext, shown here in the a direction, and an internal field
〈hint〉. The internal field points on average in the c direction, and is
due to the interaction with the electron magnetic moments (average
position shown by red arrows). After being excited by a radiation
pulse, the As nuclear moment I (green arrow) relaxes back toward
alignment with the magnetic field.

matrices in order to map between the (x,y,z) and (a,b,c) bases.
Here, we specialize to the two cases measured by Kitagawa
et al.: hext orientated in the [110] direction and hext parallel to
the c axis.

In what follows, we make the assumption |hext| � |hint|.
This means that hnuc ≈ hext and the z axis is aligned with
the external magnetic field. The discussion of an arbitrary
magnitude of external field is postponed to Sec. IV. If hext

is applied in the c direction, then the (x,y,z) and (a,b,c)
coordinate systems are equivalent. In consequence, the tensors
appearing in Eq. (13) can be transformed into the (a,b,c) co-
ordinate system by the substitution (x → a, y → b, z → c).
If instead hext is applied along the [110] direction, a set of
rotation matrices is required to relate the tensors expressed in
the two coordinate systems.

Again, we postpone the details of this to Sec. IV,
but, at a schematic level, we make the substitution
[x → (b − a)/

√
2, y → c, z → (a + b)/

√
2].

We have already argued that, due to the sizable gap
in the spin-wave spectrum, the relaxation is dominated by
the scattering of spin-wave excitations. This corresponds to
picking out the longitudinal component of the susceptibility
tensor in the crystallographic (a,b,c) coordinate system.
For collinear magnetic order in the a direction, this is the
component χaa(q,ω0) = χ‖(q,ω0). Thus, the relaxation rate
can be expressed as

1

T1(hext)
= lim

ω0→0

γ 2
N

2N
kBT

∑
q∈PMBZ

F(q,hext)

m{χ‖(q,ω0)}

h̄ω0
,

(14)
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where F(q,hext) is a form factor for the nuclear-electron
interaction, which acts as the “filter” of spin fluctuations. The
sum is over all q vectors in the Fe-paramagnetic Brillouin zone
(PMBZ). For external fields in the [110] direction,

F
(
q,h110

ext

) = 1
2

(
Aaa

q − Aba
q

)(
Aaa

−q − Aba
−q

) + Aca
q Aca

−q, (15)

while for external fields in the c direction,

F
(
q,hc

ext

) = Aaa
q Aaa

−q + Aba
q Aba

−q. (16)

Equation (14) gives the relaxation rate in terms of an integral
over the product of the imaginary part of the electronic,
dynamic susceptibility, and a form factor that encapsulates
the interaction between the electronic and nuclear moments.
These two quantities can be developed independently and then
recombined to find the 1/T1 relaxation rate.

A. Form factor

In this section, we determine the form factors necessary to
explain the experimental data shown in Fig. 1.12 This requires
an appreciation of the symmetry of the nuclear environment,
and below we outline an analysis of the nuclear-electron
coupling tensor similar to that carried out in Ref. 12.

For the case of the As atom in BaFe2As2, the dominant
interaction12 with the electron system is via a transferred
hyperfine coupling with the four nearest-neighbor Fe electron
moments, shown in Fig. 3.

The environment of the As nuclear moment is thus invariant
under the symmetry operations of the point group C2v .
Referring to the labeling of the Fe moments shown in Fig. 3,
the nuclear-electron coupling tensor for the first Fe site can be
written as

A
1

=

⎛
⎜⎝
Aaa Aab Aac

Aba Abb Abc

Aca Acb Acc

⎞
⎟⎠ . (17)

Reflection symmetry in the bc plane allows the tensor for the
second Fe site to be determined as

A
2

=

⎛
⎜⎝

Aaa −Aab −Aac

−Aba Abb Abc

−Aca Acb Acc

⎞
⎟⎠ . (18)

By reflection in the ac plane,

A
3

=

⎛
⎜⎝

Aaa −Aab Aac

−Aba Abb −Abc

Aca −Acb Acc

⎞
⎟⎠ , (19)

and by π rotation around the c axis,

A
4

=

⎛
⎜⎝

Aaa Aab −Aac

Aba Abb −Abc

−Aca −Acb Acc

⎞
⎟⎠ . (20)

These four tensors can be combined using Eq. (11) to find

A
q

= 4

⎛
⎜⎝

Aaacacb −Aabsasb iAacsacb

−Abasasb Abbcacb iAbccasb

iAcasacb iAcbcasb Acccacb

⎞
⎟⎠ , (21)

FIG. 4. (Color online) q dependence of the form factorF(q,h110
ext ),

given in Eq. (24), for an external field applied in the [110] direction.
The form factor acts as a “filter” of the electronic fluctuations. It
is finite at the ordering vector q = (π/a0,0,π/c0) and therefore
allows the dominant fluctuations of the longitudinal susceptibility
to “pass the filter.” We use the parameters Aaa = 0.66 T/μB

and Aca = 0.43 T/μB from Ref. 12 and make the approximation
Aaa ≈ Aba .

where

ca = cos
qaa0

2
, cb = cos

qbb0

2
,

(22)

sa = sin
qaa0

2
, sb = sin

qbb0

2
.

The internal field follows from substituting the above
expressions for the nuclear-electron coupling tensors into
Eq. (4). We find, in agreement with Ref. 12, an average internal
field along the c direction given by

〈hint〉 = ±4Aca〈ma〉
⎛
⎝ 0

0
1

⎞
⎠ , (23)

where 〈ma〉 is the component of the average, electronic
magnetic moment aligned with the a axis. The sign of the
field depends on which As nucleus is under investigation.

Equations (15) and (21) can be used to calculate the form
factor for field applied in the [110] direction as

F
(
q,h110

ext

) = 8
(
Aaacacb + Abasasb

)2 + 16(Acasacb)2, (24)

where, following Eq. (22), ca , cb, sa , and sb are q dependent.
For this field orientation, the form factor is finite at the
ordering vector q = Q = (π/a0,0,π/c0), as shown in Fig. 4.
Exactly at this point, F(Q,h110

ext ) = 16(Aca)2, and this is the
approximation used in Ref. 19.

For fields applied in the c direction, Eqs. (16) and (21) can
be combined to find

F
(
q,hc

ext

) = 16(Aaacacb)2 + 16(Abasasb)2. (25)

This has a peak at q = (0,0,0) and is zero at
q = (π/a0,0,π/c0). Thus, fluctuations of the electron system
at the ordering vector Q will be “filtered out” by the form
factor (see Fig. 5).
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FIG. 5. (Color online) q dependence of the form factor F(q,hc
ext),

given in Eq. (25), for an external field applied in the c direction. The
form factor is zero at q = (π/a0,0,qc) and therefore it “filters out”
the dominant electronic fluctuations at q = (π/a0,0,π/c0). It has a
maximum at q = (0,0,0), which matches the secondary peak in the
imaginary part of the longitudinal susceptibility. We use the parameter
Aaa = 0.66 T/μB from Ref. 12 and make the approximation
Aaa ≈ Aba .

In principle, one could also include a dipolar coupling to the
surrounding electron moments. The relevant nuclear-electron
coupling tensor is given by

Adip
i

= − μ0

4πr3
i

⎛
⎜⎝

1 − 3a2
i

/
r2
i −3aibi/r2

i −3aici/r2
i

−3biai/r2
i 1 − 3b2

i /r2
i −3bici/r2

i

−3ciai/r2
i −3cibi/r2

i 1 − 3c2
i

/
r2
i

⎞
⎟⎠ ,

(26)

where ri = (ai,bi,ci) is a vector connecting the ith electron
moment to the nuclear site. This is longer range than the
hyperfine coupling, but the symmetry of the nuclear environ-
ment remains C2v . In consequence, the position of the peaks
and troughs in the form factor are unchanged and, thus, the
qualitative structure of the relaxation rate will be the same.
Since this form of coupling has been shown to be negligible
in BaFe2As2,12 we concentrate exclusively on the hyperfine
interaction.

B. Dynamical, longitudinal susceptibility

We now turn to the dynamical susceptibility of the electron
moments, concentrating on the longitudinal fluctuations rele-
vant to BaFe2As2. The low-energy field theory that reproduces
the dispersion relation and has all the correct symmetries of
the ordered state is19,25,28–30

S[n] = 1

2h̄Vcell

∫
d3r dτ

[
h̄2χ⊥(∂τ n)2

+
∑

α=a,b,c

ρα(∂αn)2 − χ⊥�2n2
a

]
, (27)

where χ⊥ is the static perpendicular susceptibility and ρα

is the spin stiffness along the αth crystallographic direction.
The relation between spin stiffness and spin-wave velocity is
vα = √

ρα/χ⊥. The action is based on the nonlinear sigma
model, the nonlinearity of which arises from the requirement
that n2 = 1 in the partition function

Z =
∫

Dn δ(n2 − 1) e−S[n]. (28)

The constraint n2 = 1 remains valid in the anisotropic model,
Eq. (27), and the anisotropic term χ⊥�2n2

a arises from the
fact that the a axis is energetically favored as the ordering
direction in BaFe2As2. While the correct microscopic model
for electronic magnetism in the pnictide materials remains
controversial,31–37 we stress that this field theory provides a
correct description of their low-energy spin-wave excitations,
regardless of the details of the high-energy physics.

The longitudinal, dynamic susceptibility follows from the
action given in Eq. (27). In Appendix A, we derive an expres-
sion for the susceptibility, using a Gaussian approximation
to describe fluctuations of the order-parameter field n around
the ordered state. This has two main contributions, one from
q ≈ Q and the other from q ≈ 0, and can be expressed as


m{χ‖(q,ω0)} ≈ 
m{χ‖,st (q ≈ Q,ω0)}
+
m{χ‖,un(q ≈ 0,ω0)}. (29)

Taking the limit ω0 → 0 in Eqs. (A15) and (A19) gives


m{χ‖,st (q ≈ Q,ω0)} ≈
(

glμBS

2

)2

πh̄Vcell
h̄ω0

kBT

1

χ2
⊥

(∫
k≈0

d3k

(2π )3

nB(ω1,k)[nB(ω1,k) + 1]

(h̄ω1,k)2
δ(h̄ω1,k − h̄ω2,k+q)

+
∫

k≈Q

d3k

(2π )3

nB(ω2,k)[nB(ω2,k) + 1]

(h̄ω2,k)2
δ(h̄ω2,k − h̄ω1,k+q)

)
(30)

and


m{χ‖,un(q ≈ 0,ω0)} ≈ (glμB)2πh̄Vcell
h̄ω0

kBT

(∫
k≈0

d3k

(2π )3
nB(ω1,k)[nB(ω1,k) + 1]δ(h̄ω1,k − h̄ω1,k+q)

+
∫

k≈Q

d3k

(2π )3
nB(ω2,k)[nB(ω2,k) + 1]δ(h̄ω2,k+q − h̄ω2,k)

)
, (31)

where S is the average electron spin per Fe site, gl is the Landé g factor, nB is the standard Bose factor, and

h̄ω1,q =
√

�2 +
∑

α

v2
αq2

α, h̄ω2,q =
√

�2 +
∑

α

v2
α(qα − Qα)2. (32)
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(a)

(b)

FIG. 6. (Color online) The q dependence of the imaginary
part of the longitudinal, dynamic susceptibility at (a) qc = π/c0

and (b) qc = 0, as predicted by Eqs. (30) and (31). The peak at
q = (π/a0,0,qc) is approximately 1000 times larger than that at
q = 0. We use the parameters va = vb = 280 meV Å, vc = 57 meV
Å, and � = 9.8 meV from Ref. 16 and χ⊥ = 1.2 × 10−3 from Ref. 18.
The temperature is kBT = 1 meV.

The imaginary part of the susceptibility has a large peak
at the ordering vector q = Q = (π/a0,0,π/c0) and a smaller
peak at q = 0, as shown in Fig. 6. The width of these peaks
is controlled by the temperature T , and for all other wave
vectors, the susceptibility is exponentially suppressed. For a
realistic set of parameters, the peak at q = Q is three of orders
of magnitude larger than that at q = 0, as illustrated in Fig. 6.

C. Relaxation rate with field in the [110] direction

We are now in a position to determine the relaxation rate for
an external field applied in the [110] direction. The form factor
is nonzero at q = Q = (π/a0,0,π/c0), which is the peak in the
imaginary part of the susceptibility. Thus, the neighborhood
of this point in momentum space will dominate the integral for
the relaxation rate.

Expanding the form factor in Eq. (24) around q = Q leads
to

F
(
q ≈ Q,h110

ext

) ≈ 16(Aca)2. (33)

Substituting this into Eq. (14), along with Eq. (30), and making
the coordinate transformation

k1α = vαkα,
(34)

k2α = vα(kα + qα − Qα)

gives

1

T1
(
h110

ext

) ≈ 4πh̄m2
0(Aca)2γ 2

N (a0b0c0)2

χ2
⊥v̄6

s

∫
cone

d3k1

(2π )3

×
∫

cone

d3k2

(2π )3

1

(h̄ωk1 )2
nB

(
ωk1

)[
nB

(
ωk1

) + 1
]

×δ
(
h̄ωk1 − h̄ωk2

)
, (35)

where m0 = glμBS, ωk = ω1,k,

v̄s = (vavbvc)
1
3 (36)

is the geometric mean of the spin-wave velocities, and the
integrals are over a cone of spin-wave excitations.

The density of states, which is given in Appendix B, can be
used to transform the integral over momentum into one over
energy, resulting in

1

T1
(
h110

ext

) ≈ h̄m2
0γ

2
N (a0b0c0)2

π3v̄6
s χ

2
⊥

(Aca)2

×
∫ ∞

�

dε(ε2 − �2)
eε/kBT

(eε/kBT − 1)2
. (37)

The required energy integrals are evaluated in Appendix C,
and it follows that the relaxation rate is

1

T1
(
h110

ext

) ≈ (Aca)2 Cst,1 �st,1

(
kBT

�

)
, (38)

where

Cst,1 = 2h̄m2
0γ

2
N (a0b0c0)2�3

π3v̄6
s χ

2
⊥

(39)

and

�st,1(x) = x2Li1(e−1/x) + x3Li2(e−1/x), (40)

with Lim(z) = ∑∞
l=0 zl/ lm the mth polylogarithm of z.

D. Relaxation rate with field in the c direction

We now turn to the relaxation rate with the external field
applied in the c direction. The form factor is qualitatively
different from that with the field applied in the [110] direction
since it is no longer peaked at the ordering vector, but is in fact
zero at this point. Expanding the form factor to lowest order
around the wave vectors q = Q and q = 0 gives

F
(
q ≈ Q,hc

ext

) ≈ 4(Aaa)2a2
0(qa − Qa)2

+ 4(Aba)2b2
0(qb − Qb)2, (41)

F
(
q ≈ 0,hc

ext) ≈ 16(Aaa
)2

.

There are thus two main contributions to the relaxation rate.
The first, from the region around q = 0, we denote as 1/T un

1
and use Eq. (31) to write it as

1

T un
1

(
hc

ext

) ≈ (Aaa)2 16πh̄(glμB)2γ 2
N (a0b0c0)2

v̄6
s

∫
cone

d3k1

(2π )3

×
∫

cone

d3k2

(2π )3

1(
h̄ωk1

)2 nB

(
ωk1

)[
nB

(
ωk1

) + 1
]

×δ
(
h̄ωk1 − h̄ωk2

)
, (42)
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where the coordinate transformation

k1α = vαkα, k2α = vα(kα + qα) (43)

has been applied. Making use of the results in Appendices B
and C leads to

1

T un
1

(
hc

ext

) ≈ (Aaa)2Cun,1 �un,1

(
kBT

�

)
, (44)

where

Cun,1 = 8(gμB)2h̄γ 2
N (a0b0c0)2�5

π3v̄6
s

(45)

and

�un,1(x) = x2Li1(e−1/x) + 5x3Li2(e−1/x)

+12x4Li3(e−1/x) + 12x5Li4(e−1/x). (46)

The second contribution to the relaxation rate is from the
region surrounding q = Q. This is suppressed relative to the
[110] field direction by the vanishing of the form factor at this
point. We denote this contribution as 1/T st

1 and find

1

T st
1

(
hc

ext

) ≈ πh̄m2
0γ

2
N (a0b0c0)2

v̄6
s χ

2
⊥

∫
cone

d3k1

(2π )3

∫
cone

d3k2

(2π )3

×1

2

[
(Aaa)2

(
a0

va

)2 (
k2

2a + k2
1a

)

+ (Aba)2

(
b0

vb

)2 (
k2

2b + k2
1b

) ]

×nB

(
ωk1

)[
nB

(
ωk1

) + 1
]

(
h̄ωk1

)2 δ
(
h̄ωk1 − h̄ωk2

)
,

(47)

where the coordinate transformation defined in Eq. (34) has
been applied. Making use of the spectral functions derived in
Appendix B and the integrals evaluated in Appendix C leads
to a relaxation rate

1

T st
1 (hc

ext)
≈ Cst,k2

[
a2

0(Aaa)2

v2
a

+ b2
0(Aba)2

v2
b

]
�3d

st,k2

(
kBT

�

)
,

(48)

where

Cst,k2 = 4h̄m2
0γ

2
N (a0b0c0)2�5

3π3χ2
⊥v̄6

s

(49)

and

�st,k2 (x) = x3Li2(e−1/x) + 3x4Li3(e−1/x) + 3x5Li4(e−1/x).

(50)

The total relaxation rate for external field in the c direction
is given by the sum of the two contributions

1

T1
(
hc

ext

) ≈ 1

T un
1

(
hc

ext

) + 1

T st
1

(
hc

ext

) . (51)

E. Comparison with experiment

Having derived theoretical predictions for the relaxation
rate, we compare to experimental data and show that the two

FIG. 7. (Color online) Fits to the NMR relaxation rate data shown
in the inset of Fig. 2. For external field in the [110] direction (red
circles), we fit Eq. (38), while for external field parallel to the c

axis (blue squares), we fit Eq. (51). The same, linear T , isotropic
term has been fitted and subtracted from both data sets. In fitting the
anisotropic contribution to 1/T1, we allow a single free parameter for
each external field orientation: for the [110] direction, (Aca)2Cst,1; and
for the c direction, (Aaa)2Cun,1. This provides convincing fits to the
data, and we show in the text that estimating these fit parameters from
independent experiments leads to quantitative agreement. We use
� = 9.8 meV, taken from neutron-scattering experiments (Ref. 16).

are consistent at a quantitative level. The experimental data for
BaFe2As2 are separable into an isotropic term, which is linear
in temperature, and an activated anisotropic term, which has
a more complicated temperature dependence. The isotropic
contribution to the relaxation rate is likely due to a fluid of
conduction electrons associated with ungapped portions of the
Fermi surface. The linear temperature dependence would then
be attributable to a Korringa-type relaxation rate.3,6

We have previously argued that, at low temperatures, the
interaction between these two electron fluids is negligible.19

However, the origin of this isotropic relaxation rate is not
pertinent to this paper. We consider that the anisotropic term
comes from the scattering of thermally excited spin waves
and model the relaxation rate using the results of Secs. III C
and III D.

Describing the low-temperature region of the experimental
data with a function 1/T1 ≈ CincT results in good fits to both
data sets with Cinc = 0.032 s−1K−1. In Fig. 7, this isotropic
term is subtracted from the data and we concentrate on fitting
the anisotropic contribution to the relaxation rate using the
theory described above.

For external fields in the [110] direction, we treat
(Aca)2Cst,1 as a free parameter. This results in a convincing fit
to the data for

(Aca)2Cst,1 ≈ 7.5 s−1. (52)

Equation (39) gives Cst,1 in terms of parameters that have
been measured in independent experiments. Substituting in
the values in Table I implies

0.13 < (Aca)2Cst,1 < 31 s−1, (53)

where the error is predominantly due to the uncertainty in
the spin-wave velocities. Therefore, we find that the fits to
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TABLE I. Parameters used to fit the 1/T1 relaxation rate in
BaFe2As2.

Quantity Value Method Ref.

� 9.8(4) meV Neutrons 16
χ⊥ 10−4 emu/mol = 1.2 × 10−3 meV−1 Knight shift 18
(a0,b0,c0) (2.80,2.79,6.47) Å Neutrons 14
m0 0.87μB Neutrons 14
Aca 0.43 T /μB NMR 12
Aaa 0.66 T /μB Knight shift 12
γ As

N 4.6×107 T−1 s−1 Tabulated
va 280(150) meV Å Neutrons 16
vb 280(150) meV Å Neutrons 16
vc 57(7) meV Å Neutrons 16
|hext| 1.5 T NMR 12

the NMR data are in quantitative agreement with independent
experiments, within the limits set by experimental error on
measurements of the input parameters of the theory.

We have previously shown that Eq. (38) also provides
convincing fits to NMR 1/T1 relaxation rate data for SrFe2As2,
with magnetic field parallel to [110].19 Similarly, Klanjsek
et al. have found good agreement with 1/T1 data for NaFeAs.20

For external fields in the c direction, we fix the ratio

Cst,k2 = m2
0a

2
0

12χ2
⊥v2

a

Cun,1, (54)

and in the absence of other information, assume Aaa ≈ Aba .
As shown in Fig. 7, fitting Eq. (51) to the data with the single
free parameter (Aaa)2Cun,1 gives a convincing fit to the data
for

0.12 < (Aaa)2Cun,1 < 0.5 s−1, (55)

where the uncertainty comes from the spin-wave velocities va

and vb. Estimating Cun,1 using the values in Table I gives

0.002 < (Aaa)2Cun,1 < 0.25 s−1. (56)

Again, within the bounds of experimental error, we find
quantitative agreement between theory and experiment.

In summary, the theory for 1/T1 developed throughout this
section is in quantitative agreement with the experimental data
of Kitagawa et al.12 This demonstrates the importance of taking
angular resolution into account when calculating relaxation
rates. We will now go on to generalize these results for an
arbitrary strength and direction of the external magnetic field.

IV. EXTENSION OF THEORY TO ARBITRARY
ORIENTATION AND MAGNITUDE OF APPLIED FIELD

In this section, we develop a theory of the relaxation rate for
arbitrary orientation and magnitude of the external magnetic

field. This follows from determining the general expression
for the form factor in BaFe2As2, and then combining this with
the above calculation of the longitudinal susceptibility.

In order to find the form factor for an arbitrary magnitude
and orientation of magnetic field, it is necessary to study
the rotation matrices that transform between the (x,y,z)
coordinates (those in which z is aligned with hnuc) and the
(a,b,c) coordinates (those aligned with the crystal axes).
Consider a rotation matrix R

hext
that rotates a vector from the

(a,b,c) coordinate system into the (x,y,z) coordinate system.
The action of this matrix on the objects of interest is

mξ
q =

∑
α

R
ξα

hext
mα

q,

Aξψ

i =
∑
α,β

R
ξα

hext
Aαβ

i

(
R−1

hext

)βψ =
∑
α,β

R
ξα

hext
R

ψβ

hext
Aαβ

i ,

χξψ (q,ω0) =
∑
α,β

R
ξα

hext
R

ψβ

hext
χαβ(q,ω0), (57)

where α,β = {a,b,c} and ξ,ψ = {x,y,z}.
These rotation matrices can be used to transform Eq. (13)

for the relaxation rate into

1

T1(hext)
= lim

ω0→0

γ 2
N

2N
kBT

∑
q,α,β,γ,δ

[
R

xγ

hext
Rxδ

hext
+ R

yγ

hext
R

yδ

hext

]

×Aγα
q Aδβ

−q

m{χαβ(q,ω0)}

h̄ω0
, (58)

where γ,δ = {a,b,c}.

FIG. 8. (Color online) The relationship between the coordinate
system of the crystal axes of BaFe2As2 (a,b,c) and the coordinate
system of the effective magnetic field hnuc at the 75As nucleus (x,y,z).
In the magnetically ordered phase, the electron moments m are
orientated along the crystallographic a axis. The interaction between
the 75As nucleus and these magnetically ordered electrons gives rise
to an effective internal magnetic field hint directed along the c axis.
The total field hnuc = hext + hint is the sum of hint and the external
magnetic field hext applied during NMR experiments. The orientation
of the external field hext relative to the crystal axes [shown here with
polar angles (θ,φ)] can be varied at will by rotating the sample in a
goniometer. This in turn changes the orientation of the total effective
field hnuc [shown here with polar angles (ψ,λ)].
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Since only the longitudinal susceptibility χaa(q,ω0) = χ‖(q,ω0) is relevant to the relaxation process in BaFe2As2, it follows that

1

T1(hext)
= lim

ω0→0

γ 2
N

2N
kBT

∑
q∈PMBZ

F(q,hext)

m{χ‖(q,ω0)}

h̄ω0
, (59)

where the form factor that couples to the longitudinal spin fluctuations is

F(q,hext) =
∑
γ,δ

[
R

xγ

hext
Rxδ

hext
+ R

yγ

hext
R

yδ

hext

]
Aγ a

q Aδa
−q. (60)

For an external field of arbitrary magnitude, the assumption hnuc ≈ hext is no longer valid. As such, it is natural to define two
sets of angles, as shown in Fig. 8. The first set of angles (ψ,λ) describes the orientation of hnuc in the (a,b,c) crystallographic
coordinate system. ψ is the angle between the z axis and the c axis and λ is the angle between the projection of the z axis onto
the ab plane and the a axis. The rotation matrix is thus

R =

⎛
⎜⎝

sin2 λ + cos ψ cos2 λ − sin 2λ sin2 ψ

2 cos λ sin ψ

− sin 2λ sin2 ψ

2 cos2 λ + cos ψ sin2 λ sin λ sin ψ

− cos λ sin ψ − sin λ sin ψ cos ψ

⎞
⎟⎠ . (61)

The second set of angles (θ,φ) describes the orientation of hext in the (a,b,c) crystallographic coordinate system. These are the
experimentally accessible set of angles, where θ is the angle between the c axis and hext, and φ is the angle between the a axis
and the projection of hext onto the ab plane.

For the As nucleus in BaFe2As2, Eq. (23) gives 〈hint〉 = (0,0,±|〈hint〉|), and it follows that

λ = φ, tan ψ = |hext| sin θ

|hext| cos θ ± |〈hint〉| . (62)

Thus, the (ψ,λ) angles that enter the theory can be expressed in terms of the known angles (θ,φ). In the high external field
regime, |hext| � |〈hint〉|, and therefore ψ = θ and λ = φ.

The form factor that follows from substituting Eq. (61) into Eq. (60) is

F(q,hext) = (cos2 ψ + sin2 λ sin2 ψ)Aaa
q Aaa

−q + (cos2 ψ + cos2 λ sin2 ψ)Aba
q Aba

−q + sin2 ψ Aca
q Aca

−q

− 1
2 sin 2λ sin2 ψ

(
Aaa

q Aba
−q + Aba

q Aaa
−q

) + 1
2 cos λ sin 2ψ

(
Aaa

q Aca
−q + Aca

q Aaa
−q

)
+ 1

2 sin λ sin 2ψ
(
Aba

q Aca
−q + Aca

q Aba
−q

)
. (63)

Equation (21) can be used to reexpress this as

F(q,hext) = 16(cos2 ψ + sin2 λ sin2 ψ)(Aaacacb)2 + 16(cos2 ψ + cos2 λ sin2 ψ)(Abasasb)2 + 16 sin2 ψ(Acasacb)2

+ 16 sin 2λ sin2 ψ AaaAbacacbsasb, (64)

where ca , cb, sa , and sb are given in Eq. (22). Approximating the form factor close to q = Q gives

F(q ≈ Q,hext) ≈ 16(Aca)2 sin2 ψ + 4(Aaa)2(cos2 ψ + sin2 λ sin2 ψ)a2
0(qa − Qa)2

+ 4(Aba)2(cos2 ψ + cos2 λ sin2 ψ)b2
0(qb − Qb)2 + 4AaaAba sin 2λ sin2 ψ a0b0(qa − Qa)(qb − Qb), (65)

while close to q = 0, the leading contribution is

F(q ≈ 0,hext) ≈ 16(Aaa)2(cos2 ψ + sin2 λ sin2 ψ). (66)

The general form of the relaxation rate is now accessible. The techniques outlined in Sec. III can be used to find

1

T1(hext)
≈ (Aca)2 sin2 ψ Cst,1 �st,1

(
kBT

�

)
+ (Aaa)2(cos2 ψ + sin2 λ sin2 ψ)Cun,1 �un,1

(
kBT

�

)

+Cst,k2

[
(cos2 ψ + sin2 λ sin2 ψ)

a2
0(Aaa)2

v2
a

+ (cos2 ψ + cos2 λ sin2 ψ)
b2

0(Aba)2

v2
b

]
�st,k2

(
kBT

�

)
. (67)

This equation for 1/T1 leads to a “doughnut”-shaped angular
dependence, as illustrated in Fig. 9. The rate is largest when
hext is orientated in the ab plane, and smallest for hext in the
c direction. There is a small difference between external field

aligned in the a direction and in the b direction, with the b

direction being faster.
As shown in Fig. 10, the relaxation rate depends not only on

the orientation of the external magnetic field, but also on the
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FIG. 9. (Color online) “Doughnut”-shaped prediction for the
variation of the 75As NMR 1/T1 relaxation rate of BaFe2As2 with the
orientation of the external magnetic field hext at fixed temperature.
The value of 1/T1 is represented by the radial distance of the surface
from the origin, and calculated from Eq. (67) using the parameters
given in Table I, for T = 0.6�, |hext| = 6 T. The relaxation rate is a
minimum when the external field is applied along the c axis, parallel
to the internal field 〈hint〉.

magnitude. This arises from the fact that it is the orientation
of hnuc that determines the relaxation rate. When hext = 0, it
follows that hnuc = hint, and the nuclear field is parallel to the
c axis. If the external field is then applied along the c axis, the
orientation of hnuc remains unchanged. If hext is slowly turned
on in the ab plane then, as the magnitude is increased, hnuc will
rotate by π/2 radians. Thus, different strengths of the internal
field will correspond to different angles (ψ,λ) of hnuc, even
when the (θ,φ) angles of the external field are kept constant.

For an external field applied in the b direction, the relaxation
rate is given by

1

T1
(
hb

ext

) ≈ (Aca)2 Cst,1 �st,1

(
kBT

�

) |hext|2
|〈hint〉|2 + |hext|2

+ b2
0(Aba)2

v2
b

Cst,k2 �st,k2

(
kBT

�

) |hint|2
|〈hint〉|2 + |hext|2

+ (Aaa)2Cun,1 �un,1

(
kBT

�

)

+ a2
0(Aaa)2

v2
a

Cst,k2 �st,k2

(
kBT

�

)
, (68)

where we emphasize the dependence on the magnitude of hext,
and the constants Cst,1, Cun,1, and Cst,k2 are defined in Eqs.
(39), (45), and (49). If the external field is applied in the a

direction, then

1

T1
(
ha

ext

) ≈ (Aca)2 Cst,1 �st,1

(
kBT

�

) |hext|2
|〈hint〉|2 + |hext|2

+ (Aaa)2Cun,1 �un,1

(
kBT

�

) |hint|2
|〈hint〉|2 + |hext|2

+ a2
0(Aaa)2

v2
a

Cst,k2 �st,k2

(
kBT

�

) |hint|2
|〈hint〉|2 + |hext|2

+ b2
0(Aba)2

v2
b

Cst,k2 �st,k2

(
kBT

�

)
. (69)

In both cases, the first term is the dominant contribution.

FIG. 10. (Color online) Theoretical predictions for the
anisotropic contribution to the relaxation rate as the magnitude of
the external field hext is varied. For an external field applied in the c

direction, there is no dependence on magnitude. For an external field
applied in the b direction, the relaxation rate is strongly dependent
on magnitude, as described by Eq. (68). We set T = 0.6� and
use the parameters obtained from fits to BaFe2As2 data [Eqs. (52)
and (55)].

An experimental measurement that either mapped out an
octant of the “doughnut” shown in Fig. 9, or one that showed
the dependence on external field magnitude illustrated in
Fig. 10, would provide strong support for the angle-resolved
theory developed in this paper.

V. QUANTITATIVE DETERMINATION OF SPIN-WAVE
VELOCITIES FROM NMR

Having established that it is possible to quantitatively match
the theory of the NMR relaxation rate to experiment, we show
how this can be exploited to make quantitative measurements
of the dynamical properties of collinear anitferromagnets,
with BaFe2As2 as an example. This technique could prove
especially useful when crystal sizes are too small for inelastic
neutron-scattering measurements, as is often the case for newly
synthesized materials.

NMR measurements of the internal field provide an excel-
lent way of determining static properties of antiferromagnets,
such as the ordering vector, the direction of the easy axis,
and the energy scale of the resultant gap in the spin-wave
spectrum. We have shown previously19 how the gap � can be
measured in this way. Also, Knight-shift measurements allow
the components of the nuclear-electron coupling tensor to be
determined.12

We now argue that NMR relaxation rate measurements
can be used to determine the hydrodynamic properties of
collinear magnets and, in particular, their low-energy spin-
wave velocities. We note that it has previously been suggested
that it might be possible to place bounds on spin-wave
velocities in magnetic Fe pnictides from NMR experiments.25

However, the theory we present goes much further, and allows
quantitative comparison with experiment.

The first step is to determine the geometric combination
v̄3

s = vavbvc by fitting data for the relaxation rate with external
field in the ab plane using Eq. (38). Next, we consider
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measuring the relaxation rate along the three principal crystal
axes, and combining these in the linear combinations

1

T ±
1

= 1

2

[
1

T1
(
hc

ext

) ± 1

1 − sin2 θ

(
1

T1
(
ha

ext

) − 1

T1
(
hb

ext

)
)]

.

(70)

The form factors associated with these combinations are
constructed from Eq. (64) and given by

F+(q) = 16(Abasasb)2 (71)

in the case of 1/T +
1 , and

F−(q) = 16(Aaacacb)2 (72)

for 1/T −
1 , where ca , cb, sa , and sb are given in Eq. (22). It

follows that

1

T +
1

≈ Cst,k2

[
b0Aba

vb

]2

�st,k2

(
kBT

�

)
(73)

and

1

T −
1

≈ (Aaa)2Cun,1 �un,1

(
kBT

�

)

+Cst,k2

[
a0Aaa

va

]2

�st,k2

(
kBT

�

)
, (74)

where |hext| � |〈hint〉| is assumed and the constants Cst,1,
Cun,1, and Cst,k2 are defined in Eqs. (39), (45), and (49). The
only remaining unknowns are the spin-wave velocities va and
vb and, therefore, these can be extracted from experimental
data via

vb =
√

Cst,k2 [b0Aba]2�st,k2

1/T +
1

(75)

and

va =
√

Cst,k2 [a0Aaa]2 �st,k2

1/T −
1 − (Aaa)2Cun,1�un,1

. (76)

The velocity vc then follows from the value of v̄s .
In order to perform a check on the values of the spin-

wave velocities, one could also measure the dependence of
1/T1(ha

ext) and 1/T1(hb
ext) on |hext| at constant temperature, as

illustrated in Fig. 10. Equations (68) and (69) can be combined
to give

1

T1
(
ha

ext

) − 1

T1
(
hb

ext

) ≈
[

(Aaa)2Cun,1 �un,1

(
kBT

�

)

+ a2
0(Aaa)2

v2
a

Cst,k2�st,k2

(
kBT

�

)

− b2
0(Aba)2

v2
b

Cst,k2�st,k2

(
kBT

�

)] |hint|2
|〈hint〉|2 + |hext|2 ,

(77)

where va and vb are the only free parameters.
These techniques for measuring individual spin-wave

velocities involve combining relaxation rate measurements
such that the dominant processes are canceled out and
the subleading terms are revealed. Thus, a high degree of

experimental accuracy is required. However, if a nuclear site
can be found at which the internal field vanishes, then the
fluctuations of the electron moments at the ordering vector are
“filtered out” by the form factor for all orientations of internal
field. In this case, the above techniques are likely to become
more powerful since the cancellations required will be smaller.
For example, this appears to be the case for the Y nucleus in
YBa2Cu3O6.38

VI. CONCLUSION

In this paper, we presented a theory of NMR 1/T1 relaxation
rates in a collinear antiferromagnet that provides quantitative
fits to published data for 75As NMR in BaFe2As2. All
predictions are given in absolute units, and the spin fluctuations
of electrons are parametrized in terms of a small number of
hydrodynamic parameters: the ordered moment m0, transverse
susceptibility χ⊥, anisotropy gap �, and spin-wave velocities
(va,vb,vc). The remaining parameters of the theory are the
small number of matrix elements of the transferred hyperfine
interaction between Fe electrons and the 75As nuclear spin.
Since these can be determined from measurements of NMR
spectra, the resulting theory has no adjustable parameters.

A key feature of this theory, and of 75As NMR on BaFe2As2,
is a strong dependence of the 1/T1 relaxation rate on the
orientation of the magnetic field. This angle dependence can
be traced back to the “filtering” of spin fluctuations by the
form factor for transferred hyperfine interactions, which in
turn depends on the orientation of the magnetic field. Taking
this into account, the theory correctly captures the qualitatively
different temperature dependences of 1/T1 for 75As NMR
in BaFe2As2 with field applied along the [110] and [001]
directions.12

Moreover, since the theory is expressed only in terms
of hydrodynamic parameters of the magnetic electrons, this
fitting procedure can be inverted and angle-resolved 1/T1

measurements used to determine spin-wave velocities directly
from NMR experiments. We have proposed a specific scheme
for doing this from 75As NMR in BaFe2As2.

While we have developed this theory with the particular
goal of explaining 75As NMR experiments in BaFe2As2, the
results have a much wider applicability. First, a similar analysis
can be applied to other collinear magnets simply by modifying
the form factor to take into account the symmetry environment
of the nucleus in question. It appears that the “doughnut”-
shaped angle dependence of 1/T1, shown in Fig. 9, remains
valid for all nuclei that experience a nonzero internal magnetic
field hint. The “hole” of the “doughnut” is aligned with hint.
For nuclei at high-symmetry sites where this internal field
vanishes, the leading term in the relaxation rate is “filtered out”
for all directions of external field, and the angular resolution
acquires a more isotropic “peanut”-like shape.38

Although the theory developed in this paper is specific to
an ordered antiferromagnet, the idea of angular resolution
in 1/T1 measurements can easily be extended to the study
of critical fluctuations. Relaxation rate data for BaFe2As2

with field applied in the [110] direction show a significant
upturn in 1/T1 as the (first-order) magnetic phase transition at
TN = 135 K is approached from the paramagnet (cf. Fig. 1).
This upturn occurs because, for field parallel to [110], 1/T1
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probes spin fluctuations near to the magnetic ordering vector
q = Q, and these are enhanced approaching the phase tran-
sition. In contrast, when the field is applied in the [001]
direction, there is no upturn in 1/T1. For this field orientation,
the form factor “filters out” critical fluctuations at q ≈ Q,
and 1/T1 is determined instead by spin fluctuations with
q ≈ 0. Angle-resolved NMR experiments can therefore be
used to isolate critical fluctuations near to a phase transition in
BaFe2As2 and other antiferromagnets.38

It can be seen in Fig. 1 that the relaxation rate retains a
significant angular dependence in the paramagnetic phase.
For an appreciable range of temperatures above TN , the
susceptibility will be dominated by fluctuations close to the
ordering vector. Thus, the idea of angle-dependent “filtering”
of spin fluctuations by the form factor will remain important.
This is a theme that we will develop in a separate publication.38

If the temperature is further increased such that T � TN,�,
then the susceptibility will become isotropic in spin space and
only weakly q dependent. In this regime, the angular resolution
of the relaxation rate will be primarily due to the anisotropy
of the nuclear-electron coupling tensor.38

This ability to tune between different spin fluctuations
should also make angle-resolved NMR a powerful probe
of unconventional magnetism and, in particular, of exotic
quantum phases in frustrated magnets. The absence of an
ordered magnetic moment, lack of a large single crystal, or the
requirement of large magnetic fields, often make these systems
inaccessible to other probes, such as neutron scattering. One in-
triguing possibility is that angle-resolved 1/T1 measurements
could provide a positive means of identifying the long-sought
quantum spin-nematic state, a magnetic analog of a liquid
crystal, which does not break time-reversal symmetry, and so
does not give rise to magnetic Bragg peaks or static splitting in
NMR spectra.39–44 This theme will be developed elsewhere.45
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APPENDIX A: CALCULATION OF THE LONGITUDINAL
SUSCEPTIBILITY

In this Appendix, we calculate, at Gaussian order, the
imaginary part of the dynamic susceptibility due to lon-
gitudinal fluctuations of the ordered moments. While the
calculation is not original,29 we are not aware of any published
derivation in absolute units, and therefore include it here for
completeness. To make the “filtering” effect of the form factor
more transparent, we choose to work in the Brillouin zone
associated with the orthorhombic lattice of magnetic sites in
the paramagnet (PMBZ), rather than the magnetic Brillouin
zone of the low-temperature antiferromagnet.

The dynamical susceptibility of the nonlinear sigma model
[Eq. (27)] can most easily be calculated by considering the
effect of an external field, which varies in space and time,

h(r,τ ) (meV). The real-space susceptibility [μ2
B] in the (a,b,c)

coordinate system of the crystal lattice is then given by

χαβ(r,τ ) = − (glμBh̄Vcell)
2 δ2F

δhα(r,τ )δhβ(0)

∣∣∣∣
h=0

, (A1)

where F = − lnZ , and Z is the partition function, which, for
the nonlinear sigma model, is given by

Z =
∫

Dn δ(n2 − 1) e−S[n,h]. (A2)

The longitudinal susceptibility can be accessed by consid-
ering both staggered and uniform fields applied parallel to
the ordering axis. We first consider the effect of a staggered
field hst . This couples directly to the antiferromagnetic order
parameter n according to

S[n,hst ] = S[n] − S

h̄Vcell

∫
d3r dτ n · hst , (A3)

where S is the total spin per site. The order-parameter field
can be parametrized as n = (

√
1 − φ2

1 − φ2
2 ,φ1,φ2) and, for

temperatures at which the fluctuations around the ordered state
are small, φ1,φ2 � 1. To Gaussian order in φ1,φ2, Eq. (27)
becomes

S[φ] = 1

2h̄Vcell

∫
d3r dτ

[
h̄2χ⊥(∂τφ)2

+
∑

α

ρα(∂αφ)2 + χ⊥�2φ2

]
, (A4)

where φ = (φ1,φ2). Likewise, Eq. (A3) for the staggered field
gives

S[φ,hst ] = S[φ] − Shst

h̄Vcell

∫
d3r dτ

(
1 − φ2

2

)
. (A5)

Starting from the partition function

Zst =
∫

Dφ e−S[φ,hst ], (A6)

and calculating the longitudinal, staggered susceptibility from
Eq. (A1) gives

χ‖,st (r,τ ) = η(r)

(
glμBS

2

)2

[〈φ2(r,τ )φ2(0)〉

− 〈φ2(r,τ )〉〈φ2(0)〉], (A7)

where η(r) accounts for the staggered nature of the field and

〈O〉 = 1

Z

∫
Dφ O e−S[φ]. (A8)

The susceptibility in Eq. (13) is the Fourier transform of
that entering Eq. (A7). We choose to work in the full PMBZ in
reciprocal space rather than the reduced magnetic Brillouin
zone (MBZ) since this makes the physical picture of the
interaction with the form factor clearer. For two-sublattice
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antiferromagnetic order, there are two identical cones of
spin-wave excitations in the PMBZ, one at q = 0 and the
other at the ordering vector q = Q. After Fourier transform,
the fields φ1 and φ2 describe two independent cones of bosonic
excitation. The field Fourier transforms are defined by

φ1(r,τ ) = 1

βh̄

∑
iωn

Vcell

(2π )3

∫
d3q ei(q·r+ωnτ )φ1(q,iωn),

(A9)

φ2(r,τ ) = 1

βh̄

∑
iωn

Vcell

(2π )3

∫
d3q ei[(q−Q)·r+ωnτ ]φ2(q,iωn),

where φ1(q,iωn) describes the excitation cone at q = 0 and
φ2(q,iωn) describes the excitation cone at q = Q. It follows
from substituting the field Fourier transforms into the action
that the two field averages are

〈φ1(q,iωn)φ1(q′,iω′
n)〉

= δ(q + q′)δ(iωn + iω′
n)Gφ1

0 (q,iωn),
(A10)

〈φ2(q,iωn)φ2(q′,iω′
n)〉

= δ(q + q′ − 2Q)δ(iωn + iω′
n)Gφ2

0 (q,iωn),

〈φ1(q,iωn)φ2(q′,iω′
n)〉 = 0,

with

G
φ1
0 (q,iωn) = 1

h̄χ⊥

1

ω2
1,q − (iωn)2

,

(A11)

G
φ2
0 (q,iωn) = 1

h̄χ⊥

1

ω2
2,q − (iωn)2

.

The energies

h̄ω1,q =
√

�2 +
∑

α

v2
αq2

α,

h̄ω2,q =
√

�2 +
∑

α

v2
α(qα − Qα)2 (A12)

describe the dispersion of the two spin-wave cones and

vα =
√

ρα

χ⊥
(A13)

gives the spin-wave velocities (meV Å), where α = {a,b,c}.
Expanding four-field averages using Wick’s theorem, using

Eq. (A10) to substitute for the two-field averages, Fourier
transforming the fields using Eq. (A9), and rewriting the
staggering parameter as η(r) = e±iQ·r gives

χ‖,st (q,iωn) ≈
(

glμBS

2

)2

Vcell

∫
d3k

(2π )3

1

βh̄

∑
iνn

2

(χ⊥h̄)2

×
(

1

ω2
1,k − (iνn)2

1

ω2
1,k+q−Q − (iνn + iωn)2

+ 1

ω2
2,k − (iνn)2

1

ω2
2,k+q+Q − (iνn + iωn)2

)
, (A14)

where gl is the Landé g factor. By performing the Matsubara sums over iνn and analytically continuing to real frequencies, we
find


m{χ‖,st (q,ω0)}

≈
(

glμBS

2

)2
π

2
h̄Vcell

1

χ2
⊥

(∫
k≈0

d3k

(2π )3

nB(ω1,k) − nB(ω2,k+q)

h̄ω1,k h̄ω2,k+q
[δ(h̄ω1,k − h̄ω2,k+q + ω0) − δ(h̄ω2,k+q − h̄ω1,k + ω0)]

+
∫

k≈Q

d3k

(2π )3

nB(ω2,k) − nB(ω1,k+q)

h̄ω2,k h̄ω1,k+q
[δ(h̄ω2,k − h̄ω1,k+q + ω0) − δ(h̄ω1,k+q − h̄ω2,k + ω0)]

)
, (A15)

where ω1,q = ω2,q+Q has been used and

nB(ωq) = 1

eh̄ωq/kBT − 1
(A16)

is the standard Bose factor. The staggered susceptibility describes scattering of spin waves between two cones of excitations
separated by wave vector q = Q. It is peaked at q = Q, and the sharpness of the peak increases with decreasing temperature.
This is because, at low temperatures, less of the excitation cone is accessible to the spin-wave fluctuations.

There is also a contribution to the susceptibility associated with the application of a uniform field hun. The coupling between
the order-parameter field and hun can be included in the action as29,30

S[n,hun] = S[n] − 1

Vcell

∫
d3r dτ

[
iχ⊥hun · (n × ∂τ n) + χ⊥

2h̄

[
h2

un − (n · hun)2
] − S

4h̄

∑
α

α∂α(n · hun)

]
. (A17)

Performing an expansion in the fields φ, as before, leads to

S[φ,hun] = S[φ] − 1

Vcell

∫
d3r dτ

[
iχ⊥hun (φ1∂τφ2 − φ2∂τφ1) − χ⊥h2

un

2h̄

(
φ2

1 + φ2
2

)]
. (A18)
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TABLE II. Relationship between the hydrodynamic parameters
that characterize the nonlinear sigma model and the exchange
integrals that enter the Heisenberg Hamiltonian. Both models are
treated at the same level of approximation: linear spin-wave theory
for the Heisenberg model and a Gaussian mean-field approximation
for the nonlinear sigma model.

Nonlinear Heisenberg
sigma model model

� 4S[K(J1a + 2J2 + J1c) + K2]
1
2

va 2S
[
4J 2

2 − 4J1aJ2 + J 2
1a + 2J2J1c − J1aJ1c

] 1
2

vb 2S
[
4J 2

2 − 2J1aJ2 + 2J1bJ2 + 2J2J1c

+J1aJ1b + J1bJ1c − 2J 2
1b + 2KJ1b

] 1
2

vc 2S
[
2J2J1c − J1J1c + J 2

1c

] 1
2

χ⊥ 1/(4J1a + 8J2 + 4J⊥ + 4K)

After repeating a similar set of manipulations to above, the
contribution to the imaginary part of the susceptibility is found
to be


m{χ‖,un(q,ω0)}

≈ (glμB)2 π

2
h̄Vcell

(∫
k≈0

d3k

(2π )3
[(nB(ω1,k) − nB(ω1,k+q)]

×[δ(h̄ω1,k − h̄ω1,k+q + ω0) − δ(h̄ω1,k+q − h̄ω1,k + ω0)]

+
∫

k≈Q

d3k

(2π )3
[(nB(ω2,k) − nB(ω2,k+q)][δ(h̄ω2,k

− h̄ω2,k+q + ω0) − δ(h̄ω2,k+q − h̄ω2,k + ω0)]

)
. (A19)

This describes scattering of spin waves within an excitation
cone, and is peaked at scattering vector q = 0. As with
the staggered susceptibility, the peak becomes sharper at
lower temperatures, where less of the spin-wave cone can be
accessed.

The imaginary part of the susceptibility is given by the sum
of the two terms


m{χ‖(q,ω0)} = 
m{χ‖,st (q ≈ Q,ω0)}
+
m{χ‖,un(q ≈ 0,ω0)}. (A20)

These results are used in Sec. III B of the paper.

1. Spin-wave theory from Heisenberg model

Since experiments on magnetic Fe pnictides are often
discussed in terms of a Heisenberg model,31,32 we sketch below
an equivalent calculation of the longitudinal susceptibility
within conventional spin-wave theory. We stress that the
nonlinear sigma model correctly reproduces the low-energy
behavior of the Heisenberg antiferromagnet, as it does for any
microscopic model with the correct symmetries. We provide
in Table II a dictionary to translate between these two models
at the Gaussian level of approximation.

The Heisenberg Hamiltonian with the correct symmetries
for the magnetically ordered phase of BaFe2As2 is15

H = J1a

∑
〈ij〉1a

Si · Sj + J1b

∑
〈ij〉1b

Si · Sj + J1c

∑
〈ij〉1c

Si · Sj

+ J2

∑
〈ij〉2

Si · Sj − Kab

∑
i

[(
Sa

i

)2 − (
Sb

i

)2]
+Kc

∑
i

(
Sc

i

)2
, (A21)

where 〈ij 〉1α counts first-neighbor bonds in the α direction,
〈ij 〉2 second-neighbor bonds in the a-b plane, and Kab and Kc

are single-ion anisotropies.
We consider the case Kab = Kc = K , and use linear

spin-wave theory to calculate the spin-wave dispersion and
longitudinal susceptibility. Due to the large (� ≈ 100 K) gap
in the spin-wave spectrum, 1/S corrections are small and can
be safely neglected. By rewriting the spin degrees of freedom
in terms of Holstein-Primakoff bosons,46 one can transform
the Hamiltonian to

Hlsw = 1

2

∑
k∈PMBZ

(
a
†
k,a−k

)(
Ak Bk
Bk Ak

)(
ak

a
†
−k

)
− Ak,

(A22)

where

Ak = 2S[2J2 + J1a − J1b(1 − cos kb) + J1c] + 4SK,
(A23)

Bk = 2S(2J2 cos ka cos kb + J1a cos kc + J1c cos kc).

Performing a Bogoliubov transformation with the coherence
factors

uk = 1√
2

√
Ak

ωk
+ 1, vk = 1√

2

√
Ak

ωk
− 1 (A24)

results in

ωk ≈
√

A2
k − B2

k. (A25)

It follows that the imaginary part of the longitudinal suscepti-
bility is


m
{
χ‖(q,ω0)

}
≈ π

2

(gμB)2h̄

N

∑
k∈PMBZ

(ukuk+q−Q + vkvk+q−Q)2

× [nB(ωk) − nB(ωk+q−Q)][δ(h̄ωk − h̄ωk+q−Q + ω0)

− δ(h̄ωk+q−Q − h̄ωk + ω0)]. (A26)

The combination of coherence factors appearing in the
expression for the susceptibility can be rewritten in terms of
the parameters of the nonlinear sigma model according to

(ukuk+q−Q + vkvk+q−Q)2

≈
{

1
ωkωk+q−Q

(
S

2χ⊥

)2
, q ≈ Q

1, q ≈ 0
(A27)
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with

ωk ≈
√

�2 +
∑

α

v2
αk2

α. (A28)

The relationships between these hydrodynamic parameters
and the exchange integrals of the Heisenberg Hamiltonian are
shown in Table II.

APPENDIX B: SPECTRAL REPRESENTATIONS
OF FORM FACTORS

The simplest way to perform the momentum integrals that
occur in Secs. III C and III D is to make a transformation from
momentum to energy space. This is done via the density of
states

g(ε) =
∫

cone

d3k

(2π )3
δ(ε − εk) (B1)

with

εk =
√

�2 + k2. (B2)

The integration region is spherically symmetric and so it is
natural to use polar coordinates. Using

δ(ε −
√

�2 + k2) = εδ(k − √
ε2 − �2)√

ε2 − �2
, (B3)

leads to a density of states

g(ε) = 4π

∫
cone

dk

(2π )3
k2 εδ(k − √

ε2 − �2)√
ε2 − �2

= 1

2π2
ε
√

ε2 − �2. (B4)

The expression for the relaxation rate with field parallel to
[001] [Eq. (47)] contains additional factors of k2

a and k2
b in the

integrand. These are most easily handled using the spectral
representation

Aka
(ε) =

∫
cone

d3k

(2π )3
k2
aδ(ε − εk). (B5)

This is calculated as

Aka
(ε) =

∫
d�

(2π )3
sin2 θ cos2 φ

∫
dk k4 εδ(k − √

ε2 − �2)√
ε2 − �2

= 1

6π2
ε(ε2 − �2)

3
2 . (B6)

By a completely analogous method,

Akb
(ε) =

∫
cone

d3k

(2π )3
k2
bδ(ε − εk) = 1

6π2
ε(ε2 − �2)

3
2 . (B7)

APPENDIX C: INTEGRATING PRODUCTS
OF BOSE FUNCTIONS

The calculation of the relaxation rate requires integration
of products of polynomials and Bose functions. We show here
the results that we make use of in Secs. III C and III D. For
integer n,∫

dx
xnex

(ex − 1)2
= −

n∑
m=0

n!

(n − m)!
xn−mLim[e−x], (C1)

where

Lim(z) =
∞∑
l=0

zl/ lm. (C2)

The integrals required are∫ ∞

�
T

dx
ex

(ex − 1)2
= Li0[e− �

T ] = 1

e
�
T − 1
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