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Symmetric and antisymmetric exchange anisotropies in quasi-one-dimensional CuSe2O5

as revealed by ESR
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We present an electron spin resonance (ESR) study of a single-crystalline spin chain system CuSe2O5 in the
frequency range between 9 and 430 GHz. In a wide temperature range above the Néel temperature TN = 17 K we
observe a strong and anisotropic frequency dependence of a resonance linewidth. Although a sizable interchain
interaction JIC ≈ 0.1J (J is the intrachain interaction) is present in this system, the ESR results agree well with
the Oshikawa-Affleck theory for a one-dimensional S = 1/2 Heisenberg antiferromagnet. This theory is used to
extract the anisotropies present in CuSe2O5. We find that the symmetric anisotropic exchange Jc = (0.04 ± 0.01)J
and the antisymmetric Dzyaloshinskii-Moriya (DM) interaction D = (0.05 ± 0.01)J are very similar in size in
this system. Staggered field susceptibility induced by the presence of the DM interaction is witnessed in the
macroscopic susceptibility anisotropy.
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I. INTRODUCTION

Magnetism of quasi-one-dimensional (1D) S = 1/2 sys-
tems is often well described by an isotropic Heisenberg
Hamiltonian. Low dimensionality enhances quantum fluctu-
ations, which in turn suppress long-range ordering. Small
interchain interactions present in real systems usually stabilize
long-range magnetic ordering at low, but finite, temperatures.
The ground state of such systems is, however, very sensitive
to the presence of small anisotropy of exchange interactions
between spins, frustration, and/or defects. Depending on a lo-
cal symmetry, both symmetric and antisymmetric anisotropic
exchange [i.e., the Dzyaloshinskii-Moriya (DM) interaction]1

can be present. In 1D systems where the staggered g tensor
and/or the staggered DM interaction is present, an applied
magnetic field induces a staggered field, which opens a gap
in the excitation spectrum.2,3 Determination of the leading
anisotropic terms of the spin Hamiltonian thus represents an
important milestone in understanding these materials.

Magnetic resonance techniques are a very powerful tool
for addressing the above points and the type of ground state
in such systems.4,5 One of the most appropriate and sensitive
methods for determining the presence of small anisotropies is
electron spin resonance (ESR),6,7 since anisotropic exchange
interactions broaden the otherwise exchange-narrowed ESR
line.8 Kubo-Tomita theory is a well-established method of
linewidth analysis; however, it is unfortunately limited to high
temperatures T � J .9 Analysis of the ESR linewidth has
evolved considerably over the last 15 years, especially regard-
ing the S = 1/2 1D Heisenberg antiferromagnet (HAF).10–12

In case of a staggered DM interaction, its contribution to
the ESR linewidth is of the same order of magnitude as
the symmetric-anisotropy contribution at high temperatures,12

despite the fact that the latter is expected to be smaller, being
a higher-order perturbation correction to exchange coupling.1

The perturbation theory calculations of the ESR line in S =

1/2 1D HAFs have been extended to the entire temperature
range only for the case of symmetric anisotropic exchange.13

Relatively recently, Oshikawa and Affleck employed field-
theory methods to derive a general low-temperature ESR
response for half-integer-spin 1D HAFs.10,11 Their predictions
for the ESR linewidths were experimentally verified in a
system with the dominant DM interaction.14 Separately, low-
temperature theories10,11,13 were recently successfully applied
to systems with symmetric anisotropic exchange.15 However,
quantitative analysis of the low-temperature ESR linewidths
for the realistic systems with both anisotropies present has so
far been limited.

Among the most studied 1D systems are copper oxides in
which magnetism originates from Cu2+ ions with spin S = 1/2
and superexchange is usually mediated through Cu-O-Cu path-
ways. Copper(II) diselenium(IV) pentoxide is a new 1D copper
oxide. It crystallizes in the monoclinic space group C2/c.16,17

The structure consist of S = 1/2 Cu2+ chains running along
the crystallographic c axis (Fig. 1). Each Se4+ ion carries
one lone pair of electrons which plays the role of “chemical
scissors”.17 The most relevant exchange interactions should be
those shown in Figs. 1(a) and 1(b). The dominant intrachain
interaction J is mediated through the double Cu-O-Se-O-
Cu super-superexchange paths. From a phenomenological
(structural) point of view, one may expect significantly smaller
interchain coupling JIC than J . The arrangement of the CuO4

plaquettes and the Cu-O-Se-O-Cu bridges is such that it pre-
vents sizable next-nearest-neighbor coupling along the chain.
There are two short interchain exchange paths, but one, with
the modest size of JIC ≈ 0.1J , is expected to be significantly
stronger than the other [dotted lines in Fig. 1(b)].18

The 1D magnetic character of the system is reflected in the
bulk magnetic susceptibility displaying a broad maximum at
Tmax ≈ 100 K.18,19 Above Tmax it can be well modelled already
in the simplest 1D Heisenberg limit, yielding the dominant
intrachain exchange J = 157 K.18 This value is in line with the
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FIG. 1. (Color online) Linear-chain crystal structure in CuSe2O5.
(a) Orange plaquettes represent CuO4 rectangles and gray spheres
represent Se atoms. (b) Intrachain super-superexchange path with
exchange coupling J (solid lines) and dominant interchain path
with exchange coupling JIC (dotted lines). (c) Local coordinates of
the staggered g tensor, the staggered DM vector D = (Da∗, 0, Dc),
and the axis of the symmetric anisotropic exchange Jc. Dotted line
represents the chain.

Curie-Weiss temperature �CW = 165 K and was also success-
fully theoretically accounted for by density-functional-theory
(DFT) calculations, predicting J = 165 K and JIC = 20 K.18

Taking into account the interchain couplings from the DFT cal-
culations, quantum Monte Carlo calculations could further im-
prove the agreement between experimental susceptibility and
theoretical predictions, although the disagreement below Tmax

remains noticeable, especially for the field applied along the
chain direction.18 Despite being predominantly 1D, the system
orders magnetically at TN = 17 K18 due to sizable interchain
interactions, as evidenced by JIC ≈ TN . The susceptibility
anisotropy below TN is consistent with an antiferromagnetic
type of spin arrangement, with spins oriented perpendicular
to spin chains.18 Raman scattering measurements showed that
spin-spin correlations emerge below ≈110 K, coinciding with
Tmax, and that the system is dominated by enhanced classical

spin dynamics as a consequence of a rather strong interchain
interaction.20 So far CuSe2O5 was treated as an isotropic
Heisenberg spin system.18,20 In this work we concentrate on
neglected magnetic anisotropies and obtain the anisotropic
spin Hamiltonian of the system by simultaneously modeling
the angular, the temperature, and the frequency dependence
of the ESR linewidth with the Oshikawa-Affleck theory. With
the obtained anisotropy terms we significantly improve the
agreement between measured and modelled susceptibility
anisotropy below T = J . The results presented here show
that both the symmetric and the antisymmetric anisotropic
exchange need to be taken into account in case of CuSe2O5.
In 1D cases when both types of anisotropies are present
and comparable, temperature- and frequency-dependent
ESR measurements are invaluable for their quantitative
assessment.

II. SPIN HAMILTONIAN OF CuSe2O5

The spin Hamiltonian, which describes the spin-spin
interactions in a quasi-1D spin system in the applied magnetic
field H, is

H = Hiso + Hae + HDM + HZ, (1)

where

Hiso = J
∑

i

Si · Si+1 + JIC

∑
〈i,j〉

Si · Sj , (1a)

Hae = Jn

∑
i

Sn
i Sn

i+1, (1b)

HDM =
∑

i

Di · (Si × Si+1), (1c)

HZ = −μB

∑
i

Si · ĝi · H. (1d)

Hiso is the isotropic Heisenberg interaction with intrachain
exchange J and interchain exchange JIC and μB is Bohr
magneton. The first sum inHiso runs over spins along the chain
and the second over all pairs of nearest-neighboring spins Sj

from two neighboring chains.Hae is the symmetric anisotropic
exchange with symmetry axis n and relative magnitude δ =
Jn/J , HDM is the antisymmetric DM anisotropic exchange
term1 with the site-dependent DM vector Di [see Fig. 1(c)].
HZ is the Zeeman term where ĝi is the g tensor for site i.

The orientation of the anisotropic-exchange symmetry
axis n may be nontrivial to determine when two or more
inequivalent sites are present.21 In CuSe2O5, the situation
is further complicated by the fact that inequivalent sites A
and B [Fig. 1(c)] are bridged by the nontrivial Cu-O-Se-O-Cu
super-superexchange path. Nevertheless, below we show that
the anisotropic exchange symmetry axis coincides with the
chain direction [i.e., n ≡ c in Eq. (1b); see Fig. 1(c)].

The general form of the DM vector D = (Da∗ ,0,Dc) is
imposed by a twofold rotational axis along b passing through
the middle of each intrachain Cu-Cu bond.1 In addition, the
symmetry of CuSe2O5 is such that the DM interaction is
staggered [i.e., ±D; see Fig. 1(c)].

The crystal symmetry also dictates the g tensor to be
staggered for A and B sites [Fig. 1(c)]. For these two sites
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we thus split ĝi in Eq. (1d) into uniform, ĝu, and staggered, ĝs ,
components and from now on use

ĝA,B
s = ĝu ± ĝs . (2)

III. EXPERIMENTAL

Single-crystalline CuSe2O5 samples were synthesized by
the standard chemical vapor transport method, as described
previously, and characterized by x-ray diffraction.17

The ESR experiments were performed at the X-band
(9.4 GHz) and at high frequencies (HF) between 50 and
430 GHz on single-crystalline samples. The temperature
dependence between 4 and 550 K was measured with a tem-
perature stability better than ±0.05 K. X-band measurements
were performed on a home-made spectrometer equipped with
a Varian TEM104 dual cavity and an Oxford Instruments
ESR900 cryostat. High-frequency ESR was performed using
custom-made transmission-type spectrometers at the National
High Magnetic Field Laboratory (NHMFL) at Tallahassee,
Florida.22 In all cases the ESR spectra were fit to a single
Lorentzian line.

Magnetic susceptibility anisotropy was determined from
torque magnetometry measurements performed on a home-
built torque apparatus. The resolution of the magnetometer is
better than 10−4 dyn cm. Measurements were performed in
magnetic field of 8 kOe in the temperature range 2–330 K.

IV. RESULTS

A. X-band ESR

The room-temperature angular dependence of the X-band
ESR spectra (inset of Fig. 3) is shown in Fig. 2. It reveals
g-factor values for the three crystallographically relevant
directions, ga∗ = 2.064, gb = 2.140, and gc = 2.226. Taking

FIG. 2. (Color online) (upper panel) Angular dependence of
g factor at room temperature in X-band. (lower panel) Angular
dependence of linewidth at room temperature in X-band. Solid lines
are fits to g = (g2

a∗ sin2 θ + g2
c,b cos2 θ )1/2.

into account the Cu-site symmetry we determine the principal
eigenvalues of the g tensor: gx = 2.064, gy = 2.089, and gz =
2.277, which are considerably higher than those previously
used in theoretical calculations.18 The principal axes of the
g tensor with respect to the CuO4 plaquettes are shown
in Fig. 1(c). As expected from the crystal structure, local
crystal-field symmetry at the copper site is close to being
uniaxial with the local anisotropy axis pointing in the direction
perpendicular to the CuO4 plaquette (i.e., it is tilted by α = 32◦
from the c axis around the a∗ axis). We take into account
that the total measured g tensor is in the strongly-exchanged
narrowing limit given by ĝ = (ĝA + ĝB)/2. The uniform ĝu

and the staggered component ĝs defined in Eq. (2) thus have
the following form in the a∗bc frame:

ĝu =
⎛
⎝ 2.064 0 0

0 2.140 0
0 0 2.226

⎞
⎠ ,

ĝs =
⎛
⎝ 0 0 0

0 0 0.084
0 0.084 0

⎞
⎠ .

The measured g factors are temperature independent in the
paramagnetic state and only slightly increase in the vicinity
of TN .

At room temperature, the ESR linewidth anisotropy is
pronounced in the a∗c plane and marginal in the plane
perpendicular to the chains (a∗b plane). At lower and higher
temperatures, however, the anisotropy of �H in the a∗b plane
slightly increases, as can be seen in Fig. 3. The temperature
dependence of the ESR linewidth along the crystallographic
directions a∗, b, and c was measured from TN = 17 to 550
K (Fig. 3). Above ≈200 K the linewidth increases linearly
with temperature for all orientations. From the value of J it
is not expected that spin-spin correlations would persist up to
550 K, so we attribute this linear dependence to the phonon-
assisted spin-lattice broadening.23 We fit our high-T data to
the phenomenological expression �H (T ) = A + BT where
�H ph = BT is the phonon-induced line broadening. Param-
eter A is the temperature-independent exchange-narrowed

FIG. 3. (Color online) Temperature dependence of X-band ESR
linewidth measured along three crystallographic directions. Solid
lines represent linear fits to high-temperature data (see text). Inset
shows room temperature spectra for a∗ and c direction.
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TABLE I. Results of linear fit �H = A + BT of high-
temperature linewidth in 400 to 550 K range.

Direction a∗ b c

A (Oe) 220 ± 20 223 ± 7 313 ± 15
B (Oe/K) 0.70 ± 0.05 0.61 ± 0.01 1.10 ± 0.06

linewidth, as predicted by Kubo-Tomita theory in the T � J

regime.9 The parameters obtained from the fits are summarized
in Table I. The values of the parameters A and B depend
slightly on the temperature range of the fit, which has been
accounted for in the parameter errors listed in Table I.

Subtracting the phonon contribution �H ph from the raw
data, �H results in the corrected linewidth �Hc = �H −
�H ph, which is determined by the spin-spin interactions only.
At high temperatures, �Hc is given by the temperature-
independent coefficients A (Table I) and starts to gradually
decrease with decreasing temperature below room tempera-
ture. At ≈100 K there is a crossover to an even steeper decrease
with decreasing T , which is a consequence of the evolution of
spin-spin correlations below Tmax.18 At T ≈ 25 K the linewidth
exhibits a minimum and then starts to sharply increase
with decreasing temperature. Below TN , the ESR spectrum
disappears from the X-band. In principle, the increase of the
linewidth in the vicinity of the Néel point is expected due
to critical slowing down of spin fluctuations.24 In this case
the theory predicts that the linewidth becomes sensitive to
the resonance frequency,25 which was experimentally seen
as a decrease of the linewidth with increasing frequency.26

This is in contradiction with measurements in CuSe2O5, as
can be seen in Fig. 4. Here, the observed linewidth increases
with frequency even at temperatures well above TN , thus
suggesting some other origin of the field-dependent linewidth.
Oshikawa-Affleck showed that, in 1D S = 1/2 HAFs, the
linewidth increases with decreasing temperature for T 	 J

if staggered fields are present.10,11 Since in CuSe2O5 both
the staggered g tensor and the staggered DM interaction are
potential sources of staggered fields, we now turn to the
high-frequency ESR results. Nevertheless, we note that a large
increase in the X-band linewidths below ≈22 K reflects the
critical fluctuations in the vicinity of TN .

B. High-frequency ESR

Temperature dependencies of the ESR linewidth measured
at 240 GHz for crystal directions a∗, b, and c are shown and
compared to the X-band data in insets of Fig. 4. For comparison
we also show linewidth measured at 112 GHz for direction b.
In contrast to the X-band data, at higher frequencies the ESR
signal is observable even below TN = 17 K, showing a clear
anomaly in the linewidth at the transition temperature.

It is immediately clear that the magnetic field strongly
affects the ESR linewidths along all crystallographic direc-
tions. By far the largest effect is seen for the magnetic field
along the c direction. To quantitatively analyze the temperature
and frequency (field) dependence of the linewidth we first
subtracted the high-temperature phonon contribution �H ph

determined at X-band frequencies. In doing so, we exploit the
fact that this contribution is field-independent. The resulting

FIG. 4. (Color online) Temperature dependence of the corrected
ESR linewidth �Hc measured at 9.4, 112, and 240 GHz for magnetic
field orientations along all three crystallographic directions. Solid
lines are fits to Eq. (5). Insets show temperature dependence of the
raw-data linewidth measured at different frequencies.

linewidths �Hc, which will be discussed below, are shown in
the main panels of Fig. 4.

The temperature region where the Oshikawa-Affleck the-
ory is strictly applicable is TN 	 T 	 J , although experi-
ments have also been successfully analyzed for T < J .14 In
CuSe2O5, J ≈ 160 K and the system orders antiferromagneti-
cally at TN = 17 K, so we limit our analysis to the temperature
range 22 K < T < 100 K. Increasing the lower limit by a few
Kelvins does not influence the extracted parameters. For the
Hamiltonian given by Eq. (1), the theory for the ESR linewidth
in case of symmetric anisotropic exchange predicts11,13

�Hae(T ) = 2εkBδ2

gμBπ3
T , (3)

where ε = 2 applies when the magnetic field is along the
anisotropy n axis and ε = 1 otherwise, kB is the Boltzmann
constant. Low-temperature logarithmic corrections can be
neglected in the investigated temperature range.11 Equation (3)
predicts a linear increase of the ESR linewidth with T , which
is exactly what we observe for �Hc for all three directions
and T � 25 K (Fig. 4). Thus we conclude that the symmetric
anisotropic exchange is present in CuSe2O5.
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Clear deviations from the linear temperature dependence of
�Hc in the low-temperature region imply that the staggered
field is also present. Its contribution to the linewidth is given
by10,11

�Hsf (H,T ) = 0.69gμB

kBJ

(kBT )2
h2

s

√
ln

(
J

T

)
, (4)

where the staggered field hs = csH is proportional to the ap-
plied field H and the anisotropic staggered field coefficient cs .

Since there are no cross terms between the symmetric
and the antisymmetric anisotropic exchange, the total ESR
linewidth for 1D systems described by Hamiltonian (1) is given
by

�H (H,T ) = �H0 + �Hae(T ) + �Hsf (H,T ). (5)

�H0 is the temperature-independent linewidth in the high-T
limit, which—according to Refs. 10 and 11 —contains both
the field-independent and the field-dependent contributions.

Simultaneous fitting of both the temperature (Fig. 4) and
the frequency dependence (Fig. 5) of �Hc to the model given
by Eq. (5) allows us to obtain parameters �H0, δ and staggered
field coefficients cs,i for all three magnetic field orientations.
The details of the more involved analysis of the frequency
dependence are given in Appendix A. Both linewidth de-
pendencies can be fit (Figs. 4 and 5) with the single set
of parameters: cs,a∗ = 0.009 ± 0.004, cs,b = 0.021 ± 0.004,
cs,c = 0.062 ± 0.006, δ = 0.04 ± 0.01. Simulations also yield
that the c axis is the symmetric-anisotropy axis; namely
n = c in the Hamiltonian (1b). Worse agreement is found
for X-band data below ≈25 K, which we attribute to the
vicinity of the phase transition overshadowing the effect of
the induced staggered field. To affirm the correctness of the
above fitting parameters, we now turn to the low-temperature
angular dependence of the linewidth at high frequencies.

FIG. 5. (Color online) Frequency dependence of the corrected
ESR linewidth �Hc at T = 25 K. Solid lines are fits to Eq. (A1).

V. STAGGERED FIELD ANALYSIS AND DM VECTOR

In CuSe2O5, the crystal structure implies that both the
staggered g tensor and the staggered DM vector are present,
giving the staggered field

hs = ĝ−1
u

(
ĝs + 1

2J
D × ĝu

)
· H. (6)

The staggered field contribution to the ESR linewidth is
determined by the magnitude of hs , which is proportional
to the staggered field coefficients cs . For the cases when
magnetic field is aligned along the three crystallographic axes,
in CuSe2O5 the staggered field coefficients have the following
form:

cs,a∗ = |Dc|ga∗

2gb

,

cs,b =
√(

Dcgb

2ga∗

)2

+
(

Da∗gb + 2gbc

2gc

)2

, (7)

cs,c =
∣∣∣∣2gbc − Da∗gc

2gb

∣∣∣∣ .
The general expression for cs for arbitrary direction of
magnetic field can be found in Appendix B.

Using the experimentally determined g tensor [Eq. (3)]
and values of cs,i , we can now also obtain the DM vector
from Eqs. (7). Solving equations for cs,a∗ and cs,b for D gives
four possible solutions: D±

1 = (−0.114 ± 0.015, 0, ±0.024 ±
0.014)J and D±

2 = (−0.043 ± 0.015, 0, ±0.024 ± 0.014)J .
Alternatively, solving equations for cs,c and cs,b gives two real
values: D±

3 = (−0.045 ± 0.011, 0, ±0.027 ± 0.014)J . Since
DM vectors D±

2 and D±
3 nearly coincide, we take this solution

as the correct DM vector.
Finally, we note that the average of D±

2 and D±
3 [i.e., the DM

vector D = (−0.044 ± 0.010, 0, ±0.0255 ± 0.010)J ] also
accounts for the angular dependence of the linewidth measured
at 240 GHz and 25 K (Fig. 6). Unfortunately, the present data
do not allow us to also determine the sign of the c component
of D because the calculated linewidth for both cases describes
the data equally well.

FIG. 6. (Color online) Angular dependence of ESR linewidth
measured at 240 GHz and 25 K in the a∗c plane. Solid and dotted lines
are calculated linewidths using Eq. (5) and D+ = (−0.044, 0, +
0.0255)J and D− = (−0.044, 0, − 0.0255)J , respectively. In both
cases δ = 0.04. See text for details.

184436-5



M. HERAK et al. PHYSICAL REVIEW B 84, 184436 (2011)

VI. DISCUSSION AND CONCLUSIONS

The main experimental finding of this work is the de-
termination of anisotropies in the 1D HAF CuSe2O5. Both
anisotropies, the symmetric anisotropic exchange, and the
antisymmetric DM interaction are sizable and comparable. The
former anisotropy is expected to open a gap in the excitation
spectrum already in zero magnetic field. This gap is expected
to decrease with increasing field.27 However, in contrast, at
high magnetic fields the staggered field contribution will
dominate and define the energy gap. In this limit, the excitation
gap is expected to scale with magnetic field, similarly as
in other prototypical 1D HAF systems like Cu-benzoate2,28

or Cu-pyrimidine dinitrate.29,30 The crossover between the
two regimes has to be addressed in the future from both the
theoretical as well as the experimental point of view, since
it may lead to unconventional static and dynamic magnetic
properties.

The presence of both anisotropies should explain the
unresolved issue of poor fitting of magnetic susceptibility
below Tmax.18 Staggered magnetic anisotropy is responsible for
the additional anisotropy in the magnetic susceptibility for T <

J . For this reason we measured the temperature dependence
of the magnetic susceptibility anisotropy �χba∗ = χb − χa∗

and �χca∗ = χc − χa∗ by means of torque magnetometry
(Fig. 7). The measured magnetic susceptibility anisotropies
clearly cannot be explained with the simple 1D HAF Bonner-
Fisher susceptibility31,32 (Fig. 7). In the calculations we used
J = 161 K, while interchain interactions with JIC = 0.1J and
the number of nearest-neighbor chains z = 2 have been taken

FIG. 7. (Color online) Susceptibility anisotropy measured in the
a∗b plane (upper panel) and a∗c plane (lower panel). Lines represent
comparison between susceptibility anisotropy obtained from 1D
HAF with interchain interactions (dotted lines) and when staggered
susceptibility is included (solid lines). See text for details. The error
bar is shown on the right of the data. The vertical line represents the
ordering temperature TN .

into account in the mean-field approximation.32 The quality
of the fit significantly improves when staggered susceptibility
χs,i(T ) is taken into account. χs,i(T ) is expressed as2,3

χs,i(T ) = 0.278c2
s,i

(
NAg2μ2

B

4kB

) √
ln(J/T )

T
(8)

where i represents the direction of the applied magnetic field.
Using above given staggered susceptibility we expand a quan-
titative agreement with susceptibility anisotropy data down
to 50 K with somewhat increased staggered field parameters,
cs,a∗ = 0.024, cs,b = 0.047 and cs,c = 0.13, the discrepancy
between the staggered field parameters obtained from ESR
and from susceptibility being similar to what was observed for
Cu benzoate.3 Thus determined magnetic anisotropies even
manage to describe the plateau in �χca∗ below Tmax as well as
mimic the sudden upturn in �χba∗ below 50 K.

In conclusion, we studied a quasi-one-dimensional
HAF CuSe2O5 with temperature-, frequency-, and angular-
dependent ESR. ESR linewidth analysis within the OA
theory for S = 1/2 1D HAFs allowed us to obtain the
values of symmetric anisotropic exchange interaction Jc =
(0.04 ± 0.01)J and antisymmetric DM interaction |D| =
(0.05 ± 0.01)J . CuSe2O5 thus appears to be an extremely
interesting system where both anisotropies are of similar
strength, which has some profound effects on the ground-state
and magnetic susceptibility anisotropies. Present results thus
challenge detailed investigations of the low-energy excitation
spectrum and the staggered spin susceptibilities by inelastic
neutron diffraction or local probe nuclear magnetic resonance
techniques. Finally, we stress that this work also demon-
strates how to systematically approach ESR data when both
anisotropies are present in the 1D system.
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APPENDIX A: FREQUENCY DEPENDENCE OF
LINEWIDTH AT T = 25 K

Frequency dependence of the linewidth measured at 25 K
for all three crystallographic directions is shown in Fig. 5. To
fit the data to the Eq. (5), we need to resolve Eq. (5) into
the frequency-dependent and frequency-independent contri-
butions. The frequency-dependent contributions are expected
to depend on ν2, so we fit our data for given direction i to

�Hi(T ,ν) = αi(T ) + βi(T )ν2, i = a∗, b, c, (A1)

where

αi(T ) = �H0,i(ν = 0) + �Hae,i(T ), (A1a)

βi(T )ν2 = �H0,i(ν) + �Hsf,i(ν,T ). (A1b)
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TABLE II. Results of fit of frequency dependence of linewidth at
T = 25 K (shown in Fig. 5) to Eq. (A1).

α β �H0 (240 GHz)
(Oe) (10−3 Oe/GHz2) (Oe) cs

a∗ 60 ± 20 0.7 ± 0.2 20 ± 5 0.010 ± 0.002
b 120 ± 18 2.9 ± 0.2 20 ± 5 0.026 ± 0.001
c 62 ± 61 17.3 ± 0.8 90 ± 5 0.068 ± 0.002

The temperature-independent part �H0 in Eq. (5) is also
split in two parts: the frequency-independent �H0,i(ν = 0)
and the frequency-dependent �H0,i(ν). Our intention is to
obtain the parameters δ and cs . However, both parameters α

and β obtained from the fit consist of two unknown parts.
The difficulty arises from the fact that both �H0,i(ν = 0) and
�H0,i(ν) need to be determined first. The origin of these
contributions was discussed by Oshikawa-Affleck.11 From
their analysis, �H0,i(ν = 0) is expected to be negligibly small
because it is proportional to D4/J 3. If we neglect it, we obtain
δ = 0.03, which is in good agreement with δ = 0.04 ± 0.01
obtained from fits of temperature dependence of the linewidth.
To determine the frequency-dependent high-T term �H0,i(ν),
we assume that the 9 GHz data are the zero-frequency
linewidth limit and subtract it from the 240 GHz linewidth
to obtain the frequency-dependent part, �H0(ν = 240 GHz).
From Eq. (A1b) we see that, by subtracting this from βi(25 K)
(240 GHz)2 we obtain �Hsf (ν = 240 GHz, 25 K). Once
�Hsf (ν = 240 GHz, 25 K) is obtained, the staggered field
coefficients can be calculated by using Eq. (4). The results are
summarized in Table II and correspond, within errors, to the
ones obtained from the fits of the temperature dependence of
the linewidth.

APPENDIX B: ANGULAR DEPENDENCE OF LINEWIDTH
AT T = 25 K AND ν = 240 GHZ

Assuming the most general staggered DM vector allowed
by symmetry, D = (Da∗,0,Dc)J , the following expression is
obtained for the staggered field coefficient cs from Eq. (6):

c2
s (θ,ϕ) =

(
Dcgb sin θ sin ϕ

2ga∗

)2

+
(

(2gbc − Da∗gc) cos θ + Dcga∗ cos ϕ sin θ

2gb

)2

+
(

(Da∗gb + 2gbc) sin θ sin ϕ

2gc

)2

. (B1)

g-tensor components can be directly read from Eq. (3), θ is
the polar angle and ϕ is the azimuthal angle (we take x = a∗,
y = b, and z = c). Equation (B1) gives the coefficient cs for
some general direction of the applied field. Experimentally
determined staggered field coefficients (Sec. IV B) are equated
with Eq. (B1) in the following way: cs,a∗ = cs(θ = π/2, ϕ =
0), cs,b = cs(θ = π/2, ϕ = π/2), and cs,c = cs(θ = 0), which
gives the result (7) quoted in the main text.

Measured angular dependence of the linewidth shown in
Fig. 6 can be compared to Eq. (5) without any free parameters
using expression (B1) for the staggered field parameter by
setting ϕ = 0. We assume the following angular dependence
of parameter ε in Eq. (3): ε = 1 + cos2 θ which gives ε = 1 for
a∗ direction and ε = 2 for c, in accord with the previously ob-
tained results. The temperature-independent correction �H0

in Eq. (5) is also angular dependent. We simulate this depen-
dence in the following way: �H0(θ ) = �H0,a∗ + (�H0,c −
�H0,a∗ ) cos2 θ , where �H0,a∗ = 40 Oe and �H0,c = 450 Oe
are the temperature-independent corrections obtained from fits
of Eq. (5) to the temperature dependence of the linewidth along
the a∗ and c axes, respectively. We also take δ = 0.04 obtained
from the same fits, and D± = (−0.044,0, ±0.0255)J .
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