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Phase diagram of the Cairo pentagonal X X Z spin-1
2 magnet under a magnetic field
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The phase diagram of the XXZ spin-1/2 magnet, equivalent to hard-core bosons, under a staggered magnetic
field and on the Cairo pentagonal lattice is computed at zero and finite temperature by using a cluster mean-field
theory and a stochastic series expansion quantum Monte Carlo. The complex connectivity and the frustration
lead to unconventional phases such as a 1/3 ferrimagnetic plateau stabilized by quantum fluctuations as well as
a 5/12 topological phase induced by a local ice-rule constraint. We also report the presence of a ferrimagnetic
superfluid and its thermal melting. Finally, we discuss the ferro- and antiferro- magnetic (hopping sign) cases.
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I. INTRODUCTION

In recent years, important discoveries in strongly correlated
physics have been reported in systems where frustration plays
a central role. Geometrical frustration is very interesting in
that respect. A large variety of unusual phases is encountered,
from (insulating) exotic spin liquids1–3 to superconductivity.4

Recent developments in frustrated optical lattices of cold
atoms open new directions for stabilizing exotic bosonic
phases such as supersolids5 and Bose metals.6–8

A case of interest is that of ice-rule systems, for which
highly degenerate classical ground state are governed by a
local constraint.9 For spin 1/2 (boson), it corresponds to a
fixed number of up (occupied) and down (empty) spins (sites)
on each elementary brick: a tetrahedron on pyrochlore and
checkerboard lattices10,11 or a triangle on the kagome.12 They
provide striking features such as charge fractionalization,13

Coulomb-gas phases, and even magnetic monopoles.14 Their
quantum melting is of broad interest but remains a highly
nontrivial question; aside from the strength of the interactions,
the lattice geometry can play a relevant role. Some works in
this direction revealed exotic phases, e.g., a commensurate
resonating valence bond supersolid on the checkerboard
lattice.15 Hence, it is natural to search for ice-rule systems with
more complex geometries such as inequivalent site lattices.16

Recently, Ressouche et al. rendered the two-dimensional
Cairo pentagonal structure accessible to experiments by
proposing the iron-based compound Bi2Fe4O9.17 So far it is
the only known compound with this geometry: a spin-5/2
antiferromagnet made of identical nonregular pentagons with
a site-dependent connectivity ci of three (z3 site) and four
(z4 site) neighbors as depicted in Fig. 1(a). Note that this
Cairo lattice is the dual of the Shastry-Sutherland lattice for
which the ground state can be a spin liquid.19 From the
quantum side, substituting iron atoms with copper ones in
Bi2Fe4O9,18 or creating complex optical lattices, the square-
based Cairo lattice, for example [Fig. 1(b)], is undoubtedly
a major challenge. However, in view of the recent original
phases reported in frustrated systems,20–22 inequivalent-site
structures possess all the ingredients that cause one to expect
unconventional physics.

In this paper, we study a spin-1/2 magnet under a staggered
magnetic field, or, equivalently, the extended hard-core boson
Hubbard model, on the Cairo pentagonal lattice. We report
a rich phase diagram obtained both at zero and at low

temperature. We focus on the different insulating phases:
a topological ice rule of two bosons per pentagon, a 2/3
checkerboard, and a pure quantum 1/3 ferrimagnetic phase
with no local constraint. Moreover, a large region of fer-
rimagnetic superfluid is identified as well as its Kosterlitz-
Thouless (KT) transition23 at strong repulsion induced by
thermal fluctuations. We also compare the ferro- and antiferro-
magnetic cases (sign of hopping) and discuss the case of a
uniform magnetic field (nature of the chemical potential).

II. MODEL AND METHODS

Spin 1/2 on the pentagonal lattice can be described by an
extended hard-core boson Hubbard model, with a repulsive
nearest-neighbor interaction V , a hopping t , and a chemical
potential μi , given by

H = −t
∑

〈i,j〉
(b†i bj + h.c.) + V

∑

〈i,j〉
ninj −

∑

i

μini, (1)

where i is the site index, b
†
i is the creation operator, and ni the

number of bosons. The correspondence is done by mapping
S
†
i = b

†
i and Sz

i = ni − 1/2 and Eq. (1) is equivalent to a XXZ
spin-1/2 magnet with spin couplings Jz = V and J⊥ = −2t ,

(a) (b)

FIG. 1. (Color online) (a) The Cairo pentagonal lattice and its six-
site unit cell (shaded hexagon) containing two z4 sites (dark circles)
and four z3 sites (light circles). The continuously deformed square-
based Cairo lattice used in this work is displayed in the background.
(b) One of the authorized 5/12 topological ice-rule configurations
with two spins up (bosons) per pentagon (large circles). Thick line:
typical winding loop along which a shift of all encountered bosons at
one lattice site preserves the ice-rule constraint. Shaded square: the
12-site cluster (2 unit cells) used in the CMFT.
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under an effective magnetic field hi . The chemical potential
μi is an adjustable parameter.20 This leads to two important
cases for systems with anisotropic ci ; it can be either (a) site
dependent or (b) constant. In case a, if μi is set to μ + ciV/2,
we have the well-known spin-1/2 magnet under a uniform
magnetic field.24 In case b, the system experiences a staggered
magnetic field hi = μ − ciV/2 depending explicitly on the
connectivity. Experimentally, this can occur in systems with
alternating crystal structure and the possible presence of a
Dzyaloshinskii-Moriya interaction.25 These two cases are of
great importance in quantum magnetism, but the latter case
can obviously provide unexpected behaviors as has recently
been shown in one-dimensional materials.26 In the present
work, we hence focus on the constant μ and draw out the rich
phase diagram induced by the complex connectivity ci . We
use equivalently bosonic or spin language when appropriate.

To simplify the analysis, we map the parameters on a
sphere described by two angles θ and φ in such a way
that μ̄ = sin φ, t̄ = cos θ cos φ, and V̄ = sin θ cos φ, where
(t̄ ,V̄ ,μ̄) are dimensionless. We also consider a deformed
square-based version of the original lattice [see Fig. 1(b)].

The phase diagram (Fig. 3) is obtained by using two
numerical methods, the cluster mean-field theory (CMFT)27

and a stochastic series expansion (SSE) quantum Monte Carlo
(QMC),28 at zero and finite temperature, respectively. The
basis of the CMFT is to consider a finite cluster for which
the internal bonds in Eq. (1) are treated exactly, whereas the
boundary conditions are coupled to an external bath. Here we
use the 12-site cluster shown in Fig. 1(b) (shaded region) and
corresponding to two unit cells. The system is diagonalized and
solved self-consistently. Note that for the triangular lattice, this
method gives an excellent agreement with the QMC results.29

Here it also allows us to consider the frustrated t < 0 case
(antiferromagnet) in addition to the T = 0 properties. The SSE
algorithm provides unbiased quantum simulations for very
large system sizes, in our case, N = l

√
3/4 × l

√
3/4, with l

up to 72 (3888 sites), and at finite temperature T . Usually,
T −1 = 2l is enough to focus on ground state properties.30,31

At very large repulsion, however, the KT temperature TKT

drops significantly, and a finite temperature transition at low
T is expected. In this work, the phase diagram is computed
at T −1 = 100 > 2l (up to l = 48) and thermal effects are
considered.

We consider four quantities: x, the average number of
bosons (spin magnetization); ρS , the superfluid density (spin
stiffness) implemented via the winding numbers in the SSE;28

pn, the average number of pentagons with exactly n up-spins
and the order parameter M2(q) = 〈ψ0|n(−q)n(q)|ψ0〉/N ,

(a) (b) (c)

FIG. 2. (Color online) Schematic representation of the insulating
phases in Fig. 3. Dark (light) circles representz4 (z3) sites and their
size is proportional to the magnetization (boson density). (a) A typical
5/12 topological ice-rule configuration, (b) the 2/3 checkerboard
configuration, and (c) the quantum 1/3 ferrimagnetic configuration.

with n(q) = ∑
i e

iq·ri ni performed separately on all sites of
the non-Bravais square-based lattice at q = (π,π ) (Mall) and
on the zi sublattice at q = (0,0) (Mzi

).31,32 As the square-based
Cairo lattice is a depleted square lattice with extra bonds
[longer bonds in Fig. 1(b)], a finite M(q) is expected even
for a disordered phase, as entirely explained in Ref. 31.

III. OVERVIEW OF THE PHASE DIAGRAM

Figure 3 depicts the zero (CMFT; dashed lines) and finite
(SSE; symbols) temperature phase diagrams in the large
repulsion limit θ/π > 0.3, where insulating phases appear.
To characterize the different phases, we have considered the
two cut lines at fixed θ and φ, respectively, shown in Fig. 3.
Since the phase diagram is very rich, we briefly introduce it
in this paragraph before giving more details in the rest of the
paper. Close to θ = π/2 (V/t → ∞), only reachable by the
mean field, the frustration leads to two magnetization plateaux,
at x = 2/3 and 5/12 (see Fig. 2), at T = 0. Surprisingly,
when quantum fluctuations are turned on (θ < π/2), a third
insulating plateau arises, at x = 1/3. This insulator is not
stabilized at the classical limit and is fully driven by quantum
fluctuations and stabilized by the frustration (t < 0). The
quantum melting of these lobes leads, in spin language, to a
superfluid corresponding to different magnetizations (boson
density) on each sublattice. Uncompensated phases have
already been reported in systems with complex coordination.16

The finite T phase diagram is computed via the SSE method
up to θ/π = 0.485 (circles in Fig. 3). Stronger interaction
results (shaded regions) are extrapolated. The main difference
from the T = 0 case is the presence of disordered regions
(Dis.) due to thermal fluctuations, the KT transition of the
superfluid phases, and/or the melting of the insulating lobes.
Note that small discrepancies between the methods cannot
be avoided. In the following, we detail the phases in Fig. 3.
In particular, we describe the ferrimagnetic character of the

φ

FIG. 3. (Color online) Phase diagram in the (θ,φ) plane and
the comparison between zero (CMFT; dashed lines) and finite
(SSE for θ/π < 0.485; symbols) temperature. Insulating phases
(lobes) are enhanced at zero temperature and by frustration (t < 0).
The ferrimagnetic superfluid (SF) has a Kosterlitz-Thouless (KT)
transition to a disordered region (Dis.) at finite T . Lines 1 and 2 are
the scans used in Figs. 4 and 5, respectively.
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FIG. 4. (Color online) Scan along line 1 in Fig. 3 at strong
repulsion (θ = 0.475π ), for the cluster size l = 40 and at finite T .
From top to bottom: magnetization x (boson density), spin stiffness
ρS (superfluid density), order parameter M2(q) at (π,π ) for Mall

(all sites) and (0,0) for Mzi
(zi sublattice), and average number of

pentagons pn with n up-spins (bosons). Inset: Sublattices used for x

and M2(q) indicated by arrows.

superfluid phase and provide a temperature analysis at strong
interaction before presenting the unconventional insulators.

IV. SUPERFLUIDITY AND THERMAL FLUCTUATIONS

As mentioned above, at zero T and for θ small enough, the
system is a superfluid (ρS �= 0) with an on-site magnetization
(boson density) depending on the connectivity ci . We refer to
this phase as the ferrimagnetic superfluid.24 We have computed
the four physical quantities following the two cut lines depicted
in Fig. 3 at both fixed θ (line 1; Fig. 4) and fixed φ (line 2;
Fig. 5). Figure 4 displays (from top to bottom) x, ρS , M(q),
and pn, as a function of φ and at finite T .

More information can be obtained by computing x and
M(q) on sublattices z3 and z4 as well. For φ < 0.2π , xz3 �=
xz4 , while ρS �= 0, hence corroborating the presence of the
superfluid. At T = 0 and for θ large enough (>0.45π ),

FIG. 5. (Color online) Scan along line 2 in Fig. 3 at φ/π = 0.1 of
ρS as a function of the size l at T = 0.01 (top) and as a function of T

for sizes up to l = 16, 24, 32, and 40 (bottom; symbols). The dashed
line is the 2T/π line, for which a crossing with ρS(T ) indicates the
Kosterlitz-Thouless transition. Shaded areas: disordered phases in
Fig. 3.

transitions either of first order between two lobes or of second
order with a superfluid are observed (reinforced at t < 0).
At finite T (SSE), disordered regions (Dis. in Fig. 3) with a
finite compressibility dx/dφ �= 0 and ρS = 0 emerge, related
to a KT transition; a finite ρS [broken U(1) symmetry] in
two dimensions is indeed allowed up to a TKT temperature.
Figure 5 depicts the size scaling up to l = 72 (top) and the T

dependence (bottom) of ρS for φ = 0.1π (line 2).
As shown in the upper panel in Fig. 5, a transition

between ρ = 0 and �= 0 occurs at the thermodynamic limit.
For 2D systems, the KT transition is located by the universal
jump at ρS(TKT) = 2TKT/π plus some logarithmic finite-size
corrections.30 This is calculated in Fig. 5 for three representa-
tive values of θ/π along line 2: (i) deep in the superfluid phase
(0.435), (ii) close to the transition (0.45), and (iii) in the ρS = 0
region (0.475). We obtain (i) T < TKT, (ii) TKT 	 0.0125 close
to T , and (iii) TKT 
 T with a KT transition at θ/π 	 0.46.
The finiteness of TKT is nontrivial and beyond the scope of
this paper. However, it is related to the propagation of defects
during doping of an insulator. For example, adding a boson in
the 5/12 ice-rule phase results in creating two p3 defects with
zero-energy dynamics. This would be compatible with a small
but finite TKT at the thermodynamic limit.

V. INCOMPRESSIBLE PHASES

A. The 2/3 checkerboard phase

In Fig. 4, at φ/π > 0.3, all the pentagons carry three bosons
(p3 = 1), ρS = 0, and M(q) is finite for the z3 sublattice but
0 at the z4 sites. This is in agreement with filled xz4 sites and
empty xz3 sites. This order is a simple checkerboard crystal
[Fig. 2(b)] and is the largest lobe in Fig. 3, with θmax 	 0.35π
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at φ 	 0.39π since adding one particle costs the energy 4V .
All z3 sites are up-spins.

B. The 1/3 ferrimagnetic phase

The 1/3 plateau is one of the unexpected phases obtained in
this geometry, which arises only under quantum fluctuations
(see Fig. 3), at both 0 and finite T . It is stabilized under either
a staggered or a constant24 magnetic field, and its expansion
is 10 times larger (in units of V/t) for t < 0. It is insulating
(ρs = 0) with no ice-rule constraint (p1,2 �= 0; Fig. 4) and no
broken lattice symmetry.32 The internal unit cell densities xz3

and xz4 mismatch (Fig. 4), showing a ferrimagnetic character
at magnetization 1/3 [Fig. 2(c)]. As displayed in Fig. 4, at
finite T the 1/3 phase is surrounded by two phase transitions,
a first order with the superfluid phase for φ/π 	 0.01 and
a continuous transition with the disordered phase. At T =
0, however, the disordered phase is not present and a first-
order transition between the 1/3 phase and the 5/12 one is
obtained (dashed lines in Fig. 3). The tip of the 1/3 lobe in
Fig. 3 is located at θ/π 	 0.455, precisely where the first-order
transition vanishes.

C. The topological ice-rule phase

The 5/12 plateau is stabilized when the magnetic field is
staggered (constant μi). Stable at the Ising limit (CMFT), this
phase is robust against both quantum and thermal fluctuations,
specifically at t < 0 (Fig. 3). In Fig. 4, ρS = 0 and an average
of 2 bosons at z3 sites, compared to 0.5 at z4 sites, per unit
cell is observed. M(q) is larger than the depletion-induced
internal structure signal, indicating a clear difference between
the sublattices.31,32 With p2 = 1, we deduce the presence of an
ice rule of two bosons per pentagon. A typical configuration
of this 5/12 phase is shown in Fig. 2(a). By labeling the
z4 sites inside a unit cell as za

4 and zb
4 (inset in Fig. 4), we

identify a finite distribution of xza
4

and xzb
4

with respect to
φ related to the degeneracy of the ground state. Classical
zero-energy configurations in standard ice-rule systems can
generally be connected by quantum tunneling of a finite
number of particles on a closed path. This leads, through
perturbation theory, to a quantum effective Hamiltonian, e.g.,
quantum dimer models15,33,34 or loop models.13,35 Here no
such local moves are available; only winding loops invoking
the boundary conditions instead [see Fig. 1(b)]. Bosons on such
a loop have only two possible positions that respect the ice-rule
constraint, and a tunneling from one to the other results in a new
5/12 configuration. For a cluster of size l, there are l/4 distinct

contours in each direction (x and y). For a given configuration,
the number of bosons on such a contour is a conserved quantity
and each set of these quantities defines a topological sector.
Only the global shift of the bosons along a winding loop
can change this number and, thus, the topological sector;
the system is protected from local disorder. Starting from
the most symmetrical 5/12 configuration [Fig. 1(b)], the total
number of winding loops is l/2. A shift of the bosons along
one direction cancels the possible winding loops along the
other. The number of connected configurations is then simply
� = 2 × 2l/4. The zero-temperature entropy per site hence
scales as S/N = (l+4) log 2

3l2 and vanishes at the l → ∞ limit.
Since all the configurations are frozen, the phase transition
is not smooth, as confirmed by the sudden appearance of
the distribution. We estimate the width of the 5/12 plateau
by the expansion of this distribution, e.g., 0.13(1) � φ/π �
0.26(1) in Fig. 4. To our knowledge, isolated sectors have
always been reported in systems where local moves were also
available.33

VI. CONCLUDING REMARKS

We report the phase diagram of spin-1/2 magnets (hard-
core bosons) on the Cairo pentagonal lattice, at zero (CMFT)
and finite (SSE) temperature. The anisotropic connectivity
leads, at constant μi , to a staggered magnetic field.25,26

Various insulating phases are identified, among which is a
pure quantum-induced 1/3 ferrimagnetic phase, not stabilized
in the Ising limit (θ = π/2).24 An original 5/12 topological
ice-rule phase is evidenced, emphasizing the main difference
between spin-1/2 systems under staggered and those under
uniform fields. In this system, the effect of frustration (t < 0)
enhances the insulating phases. Finally, a zero vs. finite T

comparison reveals a KT transition located at strong repulsion
as well as a partial melting of the lobes. The two methods
employed here are in good agreement. Open issues remain,
such as the complete description of the phase transitions and
the temperature properties. Nevertheless, the spin-1/2 Cairo
magnet is a very promising candidate for exploration of new
states of matter.
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