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Magnetic properties of URu2Si2 under uniaxial stress by neutron scattering

Frederic Bourdarot,1 Nicolas Martin,1 Stephane Raymond,1 Louis-Pierre Regnault,1 Dai Aoki,2

Valentin Taufour,2 and Jacques Flouquet2
1SPSMS, UMR-E 9001, CEA-INAC/ UJF-Grenoble 1, MDN, 17 rue des Martyrs, F-38054 Grenoble, France

2SPSMS, UMR-E 9001, CEA-INAC/ UJF-Grenoble 1, IMAPEC, 17 rue des Martyrs, F-38054 Grenoble, France
(Received 4 August 2011; revised manuscript received 11 October 2011; published 28 November 2011)

The aim of this study is to compare the magnetic behavior of URu2Si2 under uniaxial stress along the a

axis with the behavior under hydrostatic pressure. Both are very similar, but uniaxial stress presents a critical
stress σ a

x [0.33(5) GPa] that is smaller than the hydrostatic critical pressure px (0.5 GPa) where the ground
state switches from a HO (hidden-order) to AF (antiferromagnetic) ground state. From these critical values and
Larmor neutron diffraction, we conclude that the magnetic properties are governed by the shortest U-U distance
in the plane (a lattice parameter). Under stress, the orthorhombic unit cell stays centered. A key point shown
by this study is the presence of a threshold for the uniaxial stress along the a axis before the appearance of the
large AF moment, which indicates no mixture of the order parameter between the HO ground state and the AF
one as under hydrostatic pressure. The two most intense longitudinal magnetic excitations at Q0 = (1,0,0) and
Q1 = (0.6,0,0) were measured in the HO state: the excitation at Q0 decreases in energy while the excitation
at Q1 increases in energy with the uniaxial stress along the a axis. The decrease of the energy of the excitation at
Q0 seems to indicate a critical energy-gap value of 1.2(1) meV at σa

x . A similar value was derived from studies
under hydrostatic pressure at px .
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I. INTRODUCTION

Puzzling heavy-fermion physicists for more than twenty
years, URu2Si2 is one of the most studied and least understood
uranium compounds. The mysterious phase transition at T0 ∼
17.8 K of this 5f heavy-electron compound is characterized
by large bulk anomalies and sharp magnetic excitations in
q-space and energy, at different Q vectors [Q0 = (1,0,0)
and Q1 = (0.6,0,0)]. Concomitant with this order, a tiny but
persistent antiferromagnetic moment (∼0.02 μB) is measured
in all samples with a wave vector QAF = (0,0,1) (equivalent
to Q0). This tiny staggered moment is difficult to consider
as the order parameter in a conventional antiferromagnetism
frame because it cannot be reconciled with a jump of the
specific heat, �C/T ∼ 300 mJ/K2 mol, involving an entropy
[S ∼ 0.2R ln(2)]. Because there is no determination of the
order parameter (OP), the order in URu2Si2 is named the
hidden order (HO). However, under pressure, URu2Si2 orders
in a high-moment antiferromagnetic (AF) structure with the
wave vector QAF and a moment of 0.36–0.4 μB .1,2 The
well-defined phase diagram (see Fig. 1) shows that when
URu2Si2 switches from a HO to AF state at a critical pressure,
px � 0.5 GPa, the bulk superconductivity disappears3,7 as well
as the antiferromagnetic excitation E0 at Q0, signature of the
HO phase.8 At px , the excitation E1 at Q1 jumps from 5 to
8 meV.8 Under magnetic field (applied along the c axis), the
pressurized AF phase is unstable and URu2Si2 reenters into
the HO state4,5 (see Fig. 1).

Thermal-expansion measurements established that stress
will increase T0 when it is applied along the a axis and decrease
T0 when it is applied along the c axis. The opposite effect is
observed for the evolution of superconductivity.9,10 Recently,
a theoretical model11 indicated that the space group of the
PM (paramagnetic) state and of the HO state are different but
may keep the atomic positions, which explains why most of

the local probes did not detect any modification in the crystal
structure. This new point of view led us to study the variation of
the crystallographic structure and revisit the magnetic behavior
of URu2Si2 under uniaxial stress along the a axis. In an early
experiment, Yokoyama et al. have shown that under uniaxial
stress along the a axis and below T0, the HO state is gradually
mixed to the AF state.12

Uniaxial stress combined with hydrostatic pressure can
provide information about the exchange integrals between
magnetic atoms. For example, when an AF compound switches
to the PM state under pressure, a study under uniaxial stress
can determine which parameter (lattice parameter or ratio
of lattice parameters) governs the magnetic behavior of the
system. However, uniaxial stress is a tool which is not
used very often with neutron scattering, as there is a high
probability of breaking the sample and because large crystals
with a good ratio of height by diameter must be selected
to realize homogeneous uniaxial-stress conditions. In spite
of this, neutron users prefer to use thin samples, as in the
initial experiment on URu2Si2,12 with the difficulty of poor
homogeneity.

This paper is organized as follows. In Sec. II, we present
the experimental setup. The results are presented in Sec. III.
Section IV is dedicated to the discussion of our results and their
comparison with previous data. Finally, concluding remarks
are given in Sec. V.

II. EXPERIMENTAL SETUP

Uniaxial stress was applied along the a axis of two single
crystals of URu2Si2 from different batches. The first one is a
small sample with a perfect cylindric shape of diameter (d)
3.78 mm and height (h) 1.66 mm, and the second one has a
parallelepiped shape of surface 12 mm2 with a vertical a axis
of 8 mm in length. An important parameter to perform reliable
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FIG. 1. (Color online) Schematic phase diagram (T ,H,p) of
URu2Si2. The data come from Refs. 3–6. px � 0.5 GPa corresponds
to the critical pressure; p∗ � 1.4 corresponds to the pressure where
URu2Si2 transits directly from the paramagnetic (PM) state to the AF
state. The superconducting phase is not presented in order to simplify
the phase diagram.

uniaxial-stress experiments is, as we will see later, the ratio
of the height by the diameter of the sample that we define as
κ = h/d: κ � 0.5 for the small sample and κ � 2.0 for the large
one (in this case, an average diameter was calculated). The
small sample comes from the same batch as samples previously
used for high field13 and pressure measurements.8 The second
sample is from a new crystal grown in a Tetra-arc Furnace and
annealed for five days at 1075 ◦C. The samples were installed
successively at the bottom of the Institut Laue-Langevin (ILL)
uniaxial-stress stick between two foils of cadmium and gold to
flatten the surface defects of the sample and loading platforms,
and to reduce the friction when the sample is pressed. The stick
was installed in an ILL orange cryostat on the cold-triple-axis
IN12, CRG spectrometer at ILL.

The small sample was principally used to determine
the nuclear structure with neutrons at kf = 1.48 Å−1. The
monochromator and analyzer were put flat vertically and
horizontally in order to enhance the effect of the graphite filter.
The collimators were open-60′-60′-60′. Two filters were used:
one Be filter on ki and one graphite filter on kf [the graphite
filter was oriented such that the neutrons of wavelength λ/2
were diffracted out by the reflection (006) of the graphite; the
neutrons of wavelength λ are not diffracted out as the reflection
(003) of the graphite does not exist]. The large sample was used
for inelastic and elastic magnetic scattering measurements
with kf = 1.5 Å−1. A vertically curved monochromator and
horizontally curved analyzer were used with collimators open-
60′-open-open, one Be filter on kf , plus an uncooled Be filter,
which was installed on ki when magnetic Bragg peaks were
measured.

A complementary neutron Larmor diffraction (NLD) ex-
periment was performed using the IN22 (CEA CRG beam
line at ILL) on the large sample to obtain the distribution
and the temperature dependence of the lattice parameters a

and c. NLD exploits the Larmor precession of the neutron
spin within well-defined magnetic field regions to measure the
particle’s wavelength with high accuracy (Larmor encoding).
The beam is initially polarized by reflection on a Heusler-
111 monochromator. The field is, in practice, simulated by
pairs of radio-frequency spin flippers (RFSFs) separated by a
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FIG. 2. (Color online) Sketch of a neutron Larmor diffraction
setup. The scattering plane is horizontal. Radio-frequency spin
flippers [in blue (dark gray)] are rotated so that their faces are parallel
to the lattice planes which generate the process of diffraction. This
peculiar arrangement cancels out the effect of beam divergence in the
scattering plane.

magnetically screened volume (bootstrap technique described
in Ref. 14). These devices consist of a rectangular coil
producing a vertical static field �B0 and containing another coil
generating a smaller field oscillating in the horizontal plane at a
frequency ωrf = γnB0 (where γn is the neutron gyromagnetic
ratio). The length of the precession region is defined as four
times the distance (bootstrap setup) between the first and
second RFSF in each arm of the spectrometer, respectively, Li

and Lf (see Fig. 2). Larmor encoding is used to perform high-
resolution diffraction measurement thanks to the symmetry
of Bragg’s law, which selects the neutron’s wavelength for
a particular lattice spacing d. Consequently, the total phase,
namely, the rotation angle of the magnetic moment of the
neutron, is defined as ϕ = ωrf 4(Li + Lf )mn/hd sin(θB) and
is measured by projection on the quantization axis of a Heusler
analyzer (mn is the neutron mass and h is the Planck’s
constant). Rotation of the RFSFs so that their faces are
parallel to the lattice planes generating diffraction ensures
that the latter relation is fulfilled for any wavelength in the
incoming beam’s bandwidth. One finally obtains the very
simple equality δϕ/ϕ0 = δd/d0 where subscripted variables
are reference quantities. The advantage of this method is that
the high resolution is achieved with modest beam collimation
as a d spacing creates the same phase for all neutrons. The
experiment was performed with an incident wavelength of
ki = 2.662 Å−1. Using a Larmor frequency ωrf = 670 kHz and
a total effective length [4(Li + Lf )] of 3.44 m, the total Larmor
phases ϕ was close to 8650 rad, with a theoretical resolution of
the order of 5 × 10−6. The technical configuration is described
in Ref. 15.

III. RESULTS

A. Elastic nuclear scattering

URu2Si2 crystallizes in the body-centered-tetragonal struc-
ture (space group I4/mmm). Only three parameters are needed
to describe the nuclear cell: a and c, which are the lattice
constants, and zSi, which is the silicon atomic position along
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the c axis. It is now believed11 that the symmetry goes from
body-centered tetragonal in the paramagnetic state to simple
tetragonal in HO. Both space groups have the particularity
of keeping the same atomic positions and consequently to
conserve the same nuclear structure factor in both states. As
uniaxial stress is applied along one a axis (named av , with v

for vertical), the tetragonal symmetry is broken and the second
a axis (named ah, with h for horizontal) is no longer equivalent
to av: the symmetry becomes orthorhombic. As measurements
are performed on a triple-axis spectrometer, only a few
nuclear reflections are available in the plane (ah, c). However,
the nuclear reflections Q0 = (1,0,0) and Q = (0,0,1) stay
forbidden under uniaxial stress in the paramagnetic state
(above T0), which indicates that the translation (1/2, 1/2, 1/2)
is conserved in the crystal. To confirm this assumption, it
must be checked that the nuclear reflection Q0 = (0,1,0) stays
forbidden. This means that only the fourfold axis disappears
and the space group becomes I mmm in the paramagnetic
state under uniaxial stress. In this new space group, the nuclear
structure is described with a new parameter: the position along
the c axis of the ruthenium atom (zRu).

It is interesting to note that just like the space group
I4/mmm, the space group of the PM state (Immm) under
uniaxial stress along the a axis (σa) may also be transformed
in the HO state into a space group with the same atomic
positions. The space group of the HO state would then be
Pnnm or Pnnn. This may indicate an important property of
the U site symmetry: the transition into the HO state does not
change the atomic position and the HO state exists even if the
fourfold axis is broken to become a twofold axis.

The pressure dependence of the lattice parameters was
determined at 8 K on the small sample using the positions of
the nuclear Bragg reflections, Q = (0,0,2) and Q = (1,0,1).
Both lattice parameters in the scattering plane increase slightly
and almost linearly with the pressure, as expected in the
elastic deformation regime. As the increase of ∂c/∂σ a is
approximatively 2.5 times larger than ∂ah/∂σ a , which is
almost the ratio c/a, the ratio c/ah remains almost constant
under uniaxial stress for the range of pressure from 0.2
to 0.65 GPa. Compared with the dependences of the cell
parameters deduced from the elastic constants (given in
Ref. 16), there is a quite good agreement.

The intensities of the nuclear reflections at Q = (0,0,2)
and at Q = (1,0,1) increase by 77% and 88%, respectively,
at the maximum of the applied uniaxial stress. Even if
these reflections have a small structure factor compared to
the nuclear structure factor of the largest intense reflection
Q = (2,0,0) (1/5 and 1/12, respectively), they are largely
affected by the extinction because of the size of the sample
and the long wavelength of the neutrons. However, the larger
increase of the weaker reflection indicates a modification of
the nuclear structure factor certainly due to a modification of
zSi. This effect will be studied in a future dedicated diffraction
experiment.

B. Elastic magnetic scattering

The magnetic Bragg peak measured at Q0 and 30 K, on
the large sample, presents no intensity for the whole range
of measured stress. Transverse scans are presented in Fig. 3

FIG. 3. (Color online) Intensity on a logarithmic scale of the
magnetic Bragg peak at Q0 for different uniaxial stress at low
temperature (T = 4 K) and above T0 (T = 30 K) for the largest
stress. The inset displays the temperature variation of the magnetic
intensity (also on a logarithmic scale) and shows the different regime
according to whether URu2Si2 is in the HO or in the AF state. T

′σ
x is

defined in the text.

for different stress at low temperature and at T = 30 K for
the largest stress we applied: σa = 0.3 GPa. The resolution
of the spectrometer of 9.12(2)×10−3 Å−1 was determined
using the widths of the two nuclear peaks at Q = (1,0,1) and
Q = (0,0,2). To determine the magnetic correlation lengths,
the magnetic peaks were fitted as a convolution of the Gaussian
resolution with a Lorentzian function. The magnetic intensities
given by neutron scattering at ambient pressure can be associ-
ated to the AF volume fraction, assuming that it comes from
residual AF components induced by local defects inducing
local stresses. At low temperature (T = 2 K), the magnetic
intensity increases slightly for stresses lower than 0.2 GPa and
drastically for larger stresses. The stress dependence of the AF
volume, assuming a saturated AF moment in the AF state of
0.36 ± 0.04 μB (mean value of AF moment of URu2Si2 in
the AF phase under hydrostatic pressure), and the magnetic
correlation length at low temperature are presented in Fig. 4.
Both start to diverge at σa = 0.3 GPa and we estimate the
critical stress σa

x ≈ 0.33 GPa, which is defined as half of
the crystal volume in the AF state. With the hypothesis of
a linear relation between magnetic intensity and AF volume,
the repartition of volumes is 30%/70% of AF/HO states at
σa = 0.3 GPa. A critical temperature T σ

x can be defined as
well when half of the crystal volume is in the AF state: T σ

x

will arise from 0 K just above σa
x . However, this estimation

is based on the assumption of identical AF moment values
when uniaxial or hydrostatic pressure is applied, which may
be wrong as the tetragonal symmetry is broken with the
stress.

The temperature dependence of the AF moment presents
different behaviors according to whether the state is HO or AF.
This modification happens at a value of the AF moment around
0.06 μB , and can be chosen as a criterion for the transition
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FIG. 4. (Color online) Uniaxial stress dependence of the AF
volume and of the correlation length for our two crystals, and also the
AF volume of the crystal determined by Yokoyama in Ref. 12. The
AF volume is determined with the assumption that the moment in
the AF state is mAF = 0.36 μB . For comparison, the correspondence
between the AF volume and an intrinsic moment value is given, but
notice that this scale (in red on left-hand interior side of y axis) is not
linear. LS and sS mean large and small samples, respectively.

temperature T
′σ
x from the HO to AF order (see inset of Fig. 3).

T σ
x is larger than T

′σ
x as it corresponds to a magnetic intensity

equivalent to 0.25 μB . Similar behavior was found in previous
measurements under hydrostatic pressure.1,12,17

A larger critical stress ≈0.55 GPa was determined for
the small sample. This difference is due to the reduced free
expansion condition when the ratio κ is small. It is well
known that for samples with a small κ ratio (κ < 2), as for
our small crystal, or for samples of Yokoyama et al.12 (κ �
0.2), the experimental conditions are between uniaxial stress
(free lateral expansion) and uniaxial strain (no free lateral
expansion), which, in the last condition, increases the critical
pressure. The behavior of the AF volume versus uniaxial stress
in the sample of Ref. 12 (plotted for comparison in Fig. 4)
cannot only be explained by the experimental conditions. The
increase of the AF volume is largely affected by the quality
of the sample: it shows a large AF volume already at low
hydrostatic pressure,18 which does not correspond to the usual
results.19

C. Inelastic magnetic scattering at Q0 and Qinc

For the inelastic neutron-scattering measurements at Q0,
the variation with stress of the intensity of the excitation is
small (see Fig. 5) and the energy gap E0 decreases linearly
from 1.68(1) to 1.27(1) meV. To evaluate the variation of this
intensity, some assumptions were made. First, we consider that
the intensity of the excitation is related to the volume of the
HO phase, which means that this excitation is characteristic of
the HO. Second, URu2Si2 can be described by a single-mode
approximation: sharp dispersion at the antiferromagnetic po-
sition Q0, which gives the intensity of the magnetic excitation
∼1/E0.20 Then the variation of the intensity as a function
of uniaxial stress should be I (σa) = I (σa = 0)VHOE0(σa =

FIG. 5. (Color online) Magnetic excitations at Q0 = (1,0,0) and
Q1 = (0.6,0,0) for σ a from 0 to 0.3 GPa at low temperature.

0)/E0(σa). This gives only a slight decrease of the intensity, in
agreement with the inelastic neutron-scattering measurements.
There is no large modification of the intensity because at the
larger stress that we applied, most of the sample was still in the
HO state. The evolution of the energy gap and of the intensity
versus uniaxial stress along the a axis are very similar to the
results under hydrostatic pressure.21 By considering the critical
stress σa

x = 0.33 GPa, determined from the elastic magnetic
measurements, we can deduce a critical energy gap E0−crit

of 1.2 meV at σa
x , which has the same value as the critical

energy gap under hydrostatic pressure at px . However, the
critical pressure px is two times larger (0.5–0.7 GPa)8,19 than
the critical stress σa

x .
For the incommensurate excitation at Q1, the energy gap

slightly increases with uniaxial stress, then its intensity slightly
decreases (see Fig. 5). The increase of the energy gap from
4.27(1) to 4.48(1) meV is again similar to the results with
hydrostatic pressure.21 Using the single-mode approximation,
a larger decrease of intensity is expected. However, contrary
to the excitation at Q0, the incommensurate excitation at Q1

does not vanish in the AF state: its energy gap E1 just shifts to
higher energy. Therefore, as the HO-AF transition is first order,
it is possible that we are measuring a mixture of E1 in the HO
state at an energy transfer of ∼4.5 meV, with E1 in the AF state
at higher energy. This may explain why the intensity decrease
is less than expected. In the case of hydrostatic pressure, the
energy gap E1 jumps from �5 to �8 meV,21 but it may be
smaller in the uniaxial-stress case. Nevertheless, the initial
evolutions of the gaps under uniaxial stress or hydrostatic
pressure below the stress or pressure threshold in the HO state
are very similar and give the same critical energy gap E0−crit ∼
1.2 meV.
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FIG. 6. (Color online) Thermal expansions of a and c lattice
parameters in URu2Si2. Dots, full lines, and dashed lines represent
our NLD data and the results from dilatometry measurements taken
from Refs. 22 and 23, respectively: red and blue colors are for the a

and c lattice parameters.

D. Thermal expansion and distribution of the lattice
parameters a and c

Using NLD, we have measured the temperature variation
of the a and c lattice parameters in URu2Si2 at ambient
pressure. Thermal expansions from 10 to ≈85 K along the
two axes have been inferred from the (2,0,0) and (0,0,4) Bragg
reflections, respectively. They were performed with increasing
temperature. The thermal expansion value at 10 K given by
dilatometry22 was used to normalize our data. The results are
shown in Fig. 6 and are compared to a data set obtained by
means of a three-terminal capacitance method (from Refs. 22
and 23). Along the a axis, we observe two clear changes
in the slope at T0 ∼ 17.5 K and Tχ ∼ 45 K. The first one
corresponds to the transition from HO to the PM phase. The
second one is located at the position of the maximum in the
easy-axis magnetic susceptibility.24 Along c, T0 is marked by
an inflection point in the curve, whereas Tχ corresponds to
a local minimum. The two diffraction and bulk measurement
data sets are only qualitatively consistent: the main features are
seen, but absolute values differ. We have no clear explanation
for this discrepancy, which might come from a different sample
thermalization.

Another consequence of the linear relation between the
Larmor phase ϕ and the lattice parameter d is that the final
beam polarization Pf (ϕ0) yields the cosine Fourier transform
of the lattice spacing distribution function f (d/d0) through

Pf (ϕ0) = Pi exp

[
−ϕ2

0(δd/d0)2

16 ln 2

]
, (1)

where f (d/d0) is assumed to be Gaussian, Pi is the beam
polarization extrapolated to the zero phase, ϕ0 is the total
phase corresponding to the mean neutron wavelength (ϕ0 ∝
d0 ∝ λ), and δd/d0 is the FWHM of f (d/d0). In practice, we
find that Pi ∼ 0.72, while the natural polarization provided
by reflection on the Heusler monochromator and analyzer is
∼0.90. The difference between usually natural polarization
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FIG. 7. (Color online) Final beam normalized polarization as a
function of the total phase ϕ0. The black line represents, for the sake
of comparison, a resolution curve that has been obtained by scattering
on a “perfect” Si single crystal. Red and blue points correspond to the
value of the normalized polarization measured at ϕ0 = 8650 rad and
T ∼ 2 K. Red and blue lines correspond to a law of the form of Eq. (1)
applied to the respective cases of the a and c lattice parameter. Inset:
Final beam polarization at ϕ0 = 8650 rad as a function of sample
temperature.

and Pi is due to the divergence of the neutron beam through
RF coils.

Figure 7 shows the remaining normalized polarization
[Pf (ϕ0)/Pi] for ϕ0 = 8650 rad at T = 2 K. This polarization
gives a relative distribution width of δa/a0 = 4.5(3) × 10−4

and δc/c0 = 4.4(2) × 10−4. A recent published experiment
using NLD25 has determined that the distribution of the lattice
parameter c was surprisingly two times smaller than the
distribution of the in-plane parameters a, i.e., 2.1 × 10−4 and
4.05 × 10−4, respectively. The outcome of our study is that
both distributions are isotropic, independent of the temperature
between 2 and ∼80 K, within error bars (see inset of Fig. 7).
We would like to point out that those values have to be
taken as high limits because extrinsic effects may slightly
depolarize the beam, and that the quality of our sample of
URu2Si2 is as good as perfect high-quality silicon single crystal
(comparison shown in Fig. 7). Nevertheless, the values of the
lattice parameter distributions are the same along a and c.

IV. DISCUSSION

Within the linear elastic deformation regime, the hydro-
static pressure and uniaxial stresses are coupled with the strains
by the well-known stress tensor, which can be represented
by the cij matrix.26 The pressure variation of the strains of
all the U-U distances in the crystallographic cell, as well as
the ratio η = c/a, were calculated using the elastic constants
obtained with the ultrasonic-sound velocity extrapolated to
T = 0 K.16 Table I summarizes the derivative coefficients,
which are relevant for our study.

Before going further, Table I can only be used in the case
of hydrostatic pressure (column 2) or uniaxial stress along
av in the free lateral expansion conditions (column 3), as
emphasized in Ref. 27 (study made for the case of an isotropic
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TABLE I. Derivatives of the strain in the linear elastic regime of
av , ηh, and ηv vs X with X = {p,σ a}. The strain is defined as the
relative variation of a parameter. It is represented with a hat on the
parameter [̂ζ = �ζ/ζ = ζ (X)−ζ (0)

ζ (0) ].

X p σa

Stress (−p,−p,−p,0,0,0) (0,−σ,0,0,0,0)
Symmetry

(
a,a,c, π

2 , π

2 , π

2

) (
ah,av,c,

π

2 , π

2 , π

2

)
I4/mmm Immm

∂η̂h

∂X

c13+c33−c11−c12
−2c2

13+c33(c11+c12)
c13(c13+c11−c12)−c12c33

(c11−c12)[c33(c11+c12)−2c2
13]

10−3 GPa−1 1.2 0.6
∂η̂v

∂X

c13+c33−c11−c12
−2c2

13+c33(c11+c12)
c13(c11−c12−c13)+c11c33

(c11−c12)[c33(c11+c12)−2c2
13]

10−3 GPa−1 1.2 5.4
∂âv

∂X

c13−c33
−2c2

13+c33(c11+c12)

c2
13−c12c33

(c11−c12)[c33(c11+c12)−2c2
13]

10−3 GPa−1 −2.8 −4.4

crystal). The free lateral expansion condition is fulfilled only if
the ratio κ � 2. For our small crystal, or any crystal with κ <

2, Table I cannot be used. In the case of very thin samples with
no free lateral expansion, the setup fulfills the experimental
conditions for a uniaxial strain, where ∂âv

∂σ a can be estimated
to ∼−1/c11 = −3.9 GPa−1. In this condition, the critical
stress for URu2Si2 will increase by 12%. However, as the
experimental conditions are not under control if κ 
 2, the
results are largely uncertain. In the experiments of Ref. 12, as
κ � 0.2, their results cannot provide any reliable output for
the critical stress.

Let us now compare the hydrostatic critical pressure px

generally found in the range of 0.5–0.7 GPa to the uniaxial
critical stress along the a axis, σa

x � 0.33 GPa. At the HO-AF
transition, we consider that the relevant parameter (ζ ) is either
the U-U distance (a) or the ratio η. At the hydrostatic critical
pressure or at the uniaxial critical stress, ζ should have the same
critical value (ζx). This is also true for ζ̂ , which is the relative
variation of ζ [̂ζ = �ζ/ζ = ζ (X)−ζ (0)

ζ (0) ]. So, ζ̂x = ∂ζ̂

∂X
Xx is a

constant independent of constraint X (see figure in Table II),
where X may be either hydrostatic pressure (p) or uniaxial
stress (σa) (X = {p or σa}). To fulfill this condition, at the
transition when URu2Si2 switches from the HO to the AF
state, the experimental ratio px

σ a
x

≈ 1.7 ± 0.3 should match the

ratio ∂ζ̂

∂σa
/

∂ζ̂

∂p
calculated in Table II. Only av fulfills this relation

and the shortest U-U distance in the plane appears as the

best candidate to control the magnetic properties of URu2Si2.
However, to complete our discussion, the parameters ηh and
ηv have also been considered in the following. In Table II,
ζ̂x have been calculated at the critical hydrostatic pressure px

and at the critical uniaxial stress σa
x . It is interesting to note

that with the shortest U-U distance in the plane as the relevant
parameter, if the uniaxial stress is applied along the [1,1,0]
direction, the critical stress σxx

x should be larger (≈0.8 GPa)
than the hydrostatic critical pressure or uniaxial critical stress
along the a axis. Also, it is not possible to switch from the HO
to AF state applying a stress along the c axis, in agreement
with thermal-expansion results.

The NLD result shows a difference between our distribution
of the lattice parameter c and the previous distribution
measurement; then there is almost no difference for the
distributions of the lattice parameter a.25 Their c distribution
is two times smaller than their a distribution, whereas we
obtain an isotropic distribution along these two directions.
Nevertheless, the tiny AF moment does not reveal a large
difference, namely, 0.020(4) μB in our case to be compared to
0.012 μB in their case. Our larger distribution may be explained
as we use a larger crystal of �100 mm3 to realize reliable
inelastic experiments.

According to the phase diagram under pressure, an intrinsic
AF moment exists only in the AF state (with a value of mAF �
0.36–0.40 μB at low temperature).28 This assumption means
that in the regime of linear elastic deformation, the AF moment
exists only above (or below) a critical value ζx of the relevant
parameter. Thus, it is possible to calculate the AF volume
which corresponds to the integration of the distribution of the
relevant parameter above (or below) the critical value ζx . In this
same way, the variation under hydrostatic pressure or uniaxial
stress of the AF volume can be calculated: the variation of ζ ,
which corresponds to the average value of the distribution is
given by the formula ζ (X) = ζ0(1 + ∂ζ̂

∂X
X), with X = {p or

σa}. With the assumption of a Gaussian distribution of the
relevant parameters ζ , the AF volume is given by

VAF/V0 =
∫ ∞

ζx

2
√

ln 2

δζ
√

π
e
−{ 2

√
ln 2[ζ−ζ (X)]

δζ
}2

dζ

= 1/2 ∗ erfc

[
2
√

ln 2 ∂ζ̂

∂X
(Xx − X)

δζ/ζ0

]
, (2)

TABLE II. The relevant parameters ζ = ηh, ηv , and av: value at ambient pressure, ratio of the derivatives of ζ̂ between uniaxial stress
along the a axis and hydrostatic pressure, and values of ζ̂x at the critical pressure px = 0.6 GPa and at σ a

x = 0.33 GPa. The figure on the
right explains the assumption of why ζ̂x should be equal at px and σ a

x , which is the critical value where URu2Si2 switches from HO to
AF.

ζ ζ0
∂ζ̂

∂σa

/
∂ζ̂

∂p
ζ̂x at px ζ̂x at σ a

x

ηh 2.318 0.5 0.72×10−3 0.20×10−3

ηv 2.318 4.5 0.72×10−3 1.78×10−3

av 4.125 Å 1.6 −1.68 × 10−3 −1.45 × 10−3
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FIG. 8. (Color online) Pressure and uniaxial-stress dependences
of m0 with η or av as relevant parameters. The fits were made with
mAF = 0.4 μB and using the formula (2). The dashed and solid lines
correspond to η and av as relevant parameters, respectively. For the
hydrostatic pressure fit, the parameters were taken from Ref. 25; for
uniaxial stress, they come from this study. The derivatives ∂ζ̂

∂X
were

taken from Table I.

where V0 is the total volume of the sample, and ζ0 is the value of
the relevant parameter ζ at ambient pressure. The erfc function
is the complementary error function, which can be found in
the scientific library of PYTHON (NUMPY and SCIPY).29

Formula (2) shows that the slope of the AF volume versus
the pressure or the uniaxial stress increases when the width
of the distribution ∂ζ is smaller, but also is larger for uniaxial
stress than for hydrostatic pressure as the derivative of the
strain ∂ζ̂

∂X
is larger. This may explain why with samples of bad

quality (large distribution δζ ) the moment has a smaller slope
and increases linearly with pressure.

Figure 8 represents the pressure and uniaxial-stress vari-
ation of the AF moment [mAF ∗ √

VAF(p)/V0], with av or η

as relevant parameters. Our data under uniaxial stress along
the a axis are compared to the hydrostatic pressure results of
Ref. 25. It is clear that η does not appear to be the relevant
parameter. With av as the relevant parameter, the shape of
the transition at σa

x or px is well explained. However, it is
no longer possible to explain the tiny moment at ambient
pressure with only a simple Gaussian distribution. We manage
to reproduce the pressure dependence of the tiny AF moment
with two other sources: either with an additional contribution
to the a distribution (a tail in the distribution due to defects)
or to intrinsic exotic nanostructured defects related to the high
sensitivity of URu2Si2 to pressure, uniaxial stress, or magnetic
field.30

The suspicion that these exotic defects come from the
unusual effects is due to the fact that the detected tiny AF
moment appears related to the energy gap at Q0, which is a
signature of the hidden order,8 and to the AF moment mAF by

the relation m0(X) = mAFe
− E0(X)

Er , with Er � 0.64 meV and
X corresponding either to magnetic field studies at p = 0 or
uniaxial stress at H = 0 (Fig. 9). The hydrostatic pressure

0.0 1.0 2.0 3.0

10–2

10–1

E0(T=0K) (meV)

m
(E

0)
 (

μ B
)

σa at H=0T
H at p=0GPa
mAF
mAF*Exp(−E0/Er)

E
0−

cr
it=

1.
2 

m
eV

FIG. 9. (Color online) Tiny AF moment at low temperature vs AF
gap E0 on a logarithmic scale from measurements under magnetic
field13,31,32 and this study under uniaxial stress. The green area
(vertical bar in middle of figure) is not taken into account in the fit
because it corresponds to a mixture of both phases (HO and AF). The
red line corresponds to a fit with Er = 0.64 meV and mAF = 0.36 μB .

dependence of the AF energy gap E0 was previously deter-
mined at low temperature:21 the energy gap E0(p) decreases
linearly with pressure up to the critical pressure with a critical
gap E0−crit � 1.1(1) meV. In this study, the uniaxial-stress
dependence of the AF energy gap E0 has the same behavior
with a larger slope, but a smaller critical stress σa

x leading to
the same critical gap E0−crit � 1.2(1) meV.

A first-order transition at σa
x or px indicates usually a strong

repulsion between the two order parameters governing each
side of this transition line, where both order parameters can be
mixed only if a coupling exists between them and, in particular,
if both break time-reversal symmetry. The invariance of the
nuclear crystallographic structure between the PM and HO
states with the loss of symmetric elements in the HO state,
keeping the atomic position at ambient pressure as well as with
hydrostatic pressure, and also under uniaxial stress along a, is
in agreement with the idea developed in Refs. 11 and 33 with
the proposals for quadrupole or hexadecapole solutions for the
hidden order. The ordering of any even-parity multipole will
not break time-reversal symmetry and thus at low stress mixing
between HO and AF will not occur. However, two resonant
x-ray scattering measurements ruled out the possibility of
any quadrupole ordering by resonant x-ray scattering.34,35

A hexadecapole remains a sound solution. Such a ground
state was proposed in a model based on a unified complex
order parameter, where the real part is a hexadecapole (not
breaking time-reversal symmetry) and the imaginary part is
the magnetic dipole (breaking time-reversal symmetry).33,36

However, it was proposed that the critical stress along a (or
[1, 1, 0]) should be two times smaller than the hydrostatic
critical pressure.37 It would be interesting to probe the critical
stress along the [1, 1, 0] direction, as we expect here a large
increase of the critical stress compatible with the shortest U-U
distance as the relevant parameter (�0.8 GPa).
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On the other hand, mixture of the HO state with the AF
state is possible in models with odd multipole ordering. The
octupole model developed by Kiss and Fazekas38 seems to
disagree with the results of this paper, as they have considered a
coexistence of both order parameters under uniaxial stress. The
dotriacontapole also breaks time-reversal symmetry.39 Both
order parameters, HO and mz, belong to the same group rep-
resentation and therefore may generally be mixed. However,
according to Ref. 39, the tiny AF moment is not a real AF
moment, as proven by the latest NMR results,40 where neither
the large (0.3 μB) nor the small (0.02–0.04 μB) moments
were detected, excluding a homogenous small static classical
AF moment in URu2Si2. Then the small signal measured by
neutron scattering is the noncollinear dotriacontapole itself,
which has an extremely short-range stray field. However,
such a multipole may only have a finite cross section at
high momentum transfer,34 which seems incompatible with
the small momentum transfer of the tiny moment. Moreover,
there is no experimental trace of the dotriacontapole in the AF
state as proposed in Ref. 39. Another contradiction is that if
the U-U distance is the relevant parameter, then the critical
value for a occurs for a variation of 1.5%, which is one order
of magnitude larger than the present experimental results (see
Table II).

In previous considerations, the 5f localized character of
the U atoms played a key role. Other possibilities exist for
the hidden-order parameter corresponding to m(Q0) based on
more itinerant models, such as a dynamic order parameter
(symmetry breaking by dynamical antiferromagnetic fluctua-
tions of the hidden order).41–43 In this case, the HO breaks time-
reversal symmetry only for a short time. The theoretical Fermi
surface computed for the symmetry-broken state suggests that
the body-centered translation vector is broken in the HO phase,
in good agreement with the observation and the fact that the
Fermi surface of HO and AF are quite similar, i.e., QHO = QAF,
as seen in the experimental results.3,8 The calculation of the

Fermi surface in the orthorhombic structure symmetry, using
the cell parameters induced by uniaxial stress, may ascertain
this itinerant model.

V. CONCLUSION

The comparison of the uniaxial stress along the a axis
to hydrostatic pressure measurements shows that both phase
diagrams are quite equivalent, with a critical pressure almost
two times smaller in the case of the stress (0.33 compared to
0.6 GPa). The magnetic properties of URu2Si2 appear to be
governed by the shortest U-U distance (a parameter) and not
by the ratio η = c/a. NLD results invalidate the simple model
of a large lattice parameter distribution to explain the tiny
AF moment as extrinsic. The study of the hidden-order state
(more exactly, of its fingerprint, i.e., the excitation E0) under
uniaxial stress indicates that this order can exist in a fourfold
axis local symmetry as well in a twofold axis symmetry. It is in
agreement with a loss of the fourfold axis symmetry on the U
site when entering in the HO state, as for the group P 42/mnm

(this space group is one of two possible space groups proposed
by H. Harima,11 but the only one that loses the fourfold axis
on the U site).

The most promising model is the hexadecapole model
developed in Refs. 36 and 37 and further discussed using
the symmetry argument in Ref. 33. It will be interesting
with this model to estimate the evolutions of the excitations
at Q0 and Q1, and to compare them to the experimental
results already measured under pressure, stress, and magnetic
field.13,31,32
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