
PHYSICAL REVIEW B 84, 184427 (2011)

Supersolid phase and magnetization plateaus observed in the anisotropic spin-3
2 Heisenberg model

on bipartite lattices
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We study the spin-3/2 Heisenberg model including easy-plane and exchange anisotropies in one and two
dimensions. In the Ising limit, when the off-diagonal exchange interaction J is zero, the phase diagram in magnetic
field is characterized by magnetization plateaus that are either translationally invariant or have a two-sublattice
order, with phase boundaries that are macroscopically degenerate. Using a site-factorized variational wave
function and perturbational expansion around the Ising limit, we find that superfluid and supersolid phases
emerge between the plateaus for small finite values of J . The variational approach is complemented by a density
matrix renormalization group study of a one-dimensional chain and exact diagonalization calculations on small
clusters of a square lattice. The studied model may serve as a minimal model for the layered Ba2CoGe2O7

material compound, and we believe that the vicinity of the uniform 1/3 plateau in the model parameter space can
be observed as an anomaly in the measured magnetization curve.
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I. INTRODUCTION AND THE MODEL

Finding systems—both theoretically and experimentally—
that exhibit novel quantum phases, among them supersolid
states, played an important role in the study of strongly
correlated systems in the last fifty years. Superfluid (as well
as superconducting) phases and quantum crystals can be
characterized by off-diagonal long-range order1 and diagonal
long-range order, respectively. This classification allows us to
think about supersolid phases as states in which both diagonal
and off-diagonal long range order coexist. Supersolid phases
were first observed in the context of strongly interacting bosons
of 4He that can simultaneously Bose condense and order in
crystalline solid.2–4 Experimental evidence5–8 of the existence
of such phase was found after almost half a century, reviving
the theoretical interest in supersolid states and indicating that
theoretical interpretation might be more difficult than the first
ideas.9–12

Apparently various bosonic lattice models provide a better
understanding of supersolid phases. Quantum Monte Carlo
(QMC) simulations for a hard-core bosonic Hubbard model
on a square lattice with nearest-neighbor and next-nearest-
neighbor interactions suggested that the “checkerboard” super-
solid phase is thermodynamically unstable; however, through
continuous phase transition from the superfluid state, a stable
“striped” supersolid emerges.13 Similar QMC simulations of a
soft-core boson model on a square lattice indicated a supersolid
phase that is stable against phase separation.14,15

Matsuda and Tsuneto, and Liu and Fisher showed that the
bosonic picture of the supersolid state can be mapped onto a
model of magnetic supersolid where the magnetic order breaks
spin rotational symmetry and translational invariance at the
same time.16,17 Such magnetic analogs of the supersolid state
were observed in a triangular lattice via QMC simulations18–20

where frustration and order-by-disorder mechanism plays an
important role in the emergence of the supersolid phase. Clas-
sical Monte Carlo simulation on a triangular lattice supported
by mean-field calculation and Landau theory suggested that

strong anisotropy can stabilize supersolid phases.21 Among
quasi-two-dimensional systems, bilayer dimer models22–25

and orthogonal dimer models26 were also found to exhibit
supersolid states that are stabilized by strong frustration
and/or anisotropy. Supersolid states have also been reported
in the spin-1 Heisenberg chain with strong exchange and
uniaxial single-ion anisotropies.27–30 Furthermore a supersolid
phase was found in three-dimensional spin and hard-core
Bose-Hubbard models as well.31

In this paper we investigate spin-3/2 (quantum) antifer-
romagnetic models on a square lattice and on a chain with
both easy-plane and exchange anisotropies described by the
following Hamiltonian:
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Ŝz
i , (1)

where 〈i,j 〉 indicates nearest-neighbor sites. Our model is
inspired by the quasi-two-dimensional Ba2CoGe2O7, where
the magnetic spin-3/2 Co2+ ions form layers of strongly
anisotropic square lattices.32–35

The paper is structured as follows: In Sec. II we discuss
the phase diagram in the Ising limit and the instabilities of the
plateaus using perturbation theory. In the following section
(Sec. III) we map out the phase diagram using a variational
approximation in different cases and determine the stability
of the plateaus and of the supersolid phases. To check the
reliability of the variational method, we calculate the phase
diagram for the spin-1 model and compare it to the known
results in the literature. In Sec. IV a one-dimensional chain is
studied using a variant of the density matrix renormalization
group method and evidence for the existence of an intermediate
supersolid phase is presented. In Sec. V we show results of an
exact diagonalization study on a square lattice. We conclude
with Sec. VI.
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TABLE I. Summary of ground states in the Ising limit. The
relevant order parameters in the Ising limit are the magnetization
mz = 1

2 (Sz
A + Sz

B ) and the staggered magnetization mst
z = 1

2 |Sz
A −

Sz
B |. We denote the fully and partially polarized antiferromagnetic

states by A3 and A1, the fully and partially polarized ferromagnetic
phases by F3 and F1, and finally the plateau states by P 2 and P 1
corresponding to the 2/3 and 1/3 plateaus, respectively. Although
the partially polarized ferromagnetic state F1 is a plateau with
m/msat = 1/3, we (prefer to) call it the ferromagnetic state and refer
to the plateaus as states that exhibit both finite mz and mst

z . ζ is the
coordination number of the (bipartite) lattice.

|Sz
ASz

B〉 E0/N mz mst
z mz/msat Notation

|↓↑〉 1
4 � − 1

8 ζJz 0 1/2 0 A1

|⇓⇑〉 9
4 � − 9

8 ζJz 0 3/2 0 A3

|↑↑〉 1
4 � + 1

8 ζJz − 1
2 h 1/2 0 1/3 F1

|↓⇑〉 5
4 � − 3

8 ζJz − 1
2 h 1/2 1 1/3 P 1

|↑⇑〉 5
4 � + 3

8 ζJz − h 1 1/2 2/3 P 2

|⇑⇑〉 9
4 � + 9

8 ζJz − 3
2 h 3/2 0 1 F3

II. THE ISING LIMIT AND PERTURBATIONAL
EXPANSIONS AROUND IT

A. The Ising limit

The existence of the gapped phase in our model is due to the
anisotropic terms, so turning off the Ŝx

i Ŝx
j + Ŝ

y

i Ŝ
y

j off-diagonal
Heisenberg term, what remains are the plateaus. For brevity,
we call this J → 0 limit the Ising limit. Since the lattice is
bipartite and we have nearest-neighbor interactions only, the
spins are not frustrated and all the ground states in the plateaus
are either uniform or two-sublattice ordered. The ground-state
wave functions and their properties are listed in Table I, and the
phase diagram as a function of magnetic field and single-ion
anisotropy is outlined in Fig. 1.

Two uniform phases appear in finite magnetic field: the fully
saturated state with Sz = +3/2 on each site and the m/msat =
1/3 plateau state with Sz = +1/2 on the sites. We denote these
states as F3 and F1, respectively. The two-sublattice states
include the two antiferromagnetic Ising-like states A3 and A1
with staggered magnetization |Sz

A − Sz
B | = 3 and |Sz

A − Sz
B | =

1 and vanishing uniform magnetization. In addition we find
two other plateaus, P 1 and P 2, with magnetization that is 1/3
and 2/3 of the saturation magnetization, respectively.

The phase boundaries between different phases are estab-
lished by comparing the ground-state energies. A first-order
phase transition occurs between the A1 and A3 phases at � =
ζJz/2, when the lowest lying energy levels cross. (ζ stands for
the coordination number.) The ground-state degeneracy (4) at
the phase boundary is just the sum of the degeneracy of the
phases it separates (2 + 2). Since the other states are separated
by a gap, we expect that the level crossing will persist even for
finite values of J . The phase transition between the phases P 1
and F1 is of a similar kind.

The phase boundaries between two-sublattice A3 and P 1
states is more interesting: The ground state at the phase
boundary is macroscopically degenerate, and goes as 2 × 2N/2.
This degeneracy is understood in the following way: As we
cross the boundary by increasing the field, the Sz = +3/2

2

5/2

0

1/2

1

3/2

5/41/4

W
N N

WN

W

× N/2

2  2×
N/2

2  2

4
3

0 1/2 3/4 1
Λ/ζ

z
ζ J

z

zJ

h 
 / F1

F3
P2

P1

A3

A1

FIG. 1. (Color online) Phase diagram in the Ising limit as a
function of the anisotropy and magnetic field. The spin configurations
on the A and B sublattices are shown, as well as the degeneracies of
the ground-state manifolds on the phase boundaries (the dashed line is
a first-order phase boundary). Long arrows represent the Sz = ±3/2
spin states, while the short ones the Sz = ±1/2 spin states. The
coordination number ζ = 2 for the chain and ζ = 4 for the square.
F1 and F3 are uniform phases, while the others break the translational
invariance and are twofold degenerate.

spins on the B sublattice do not change, while the Sz = −3/2
spins become Sz = −1/2 on the A sublattice. At the boundary,
the energy of having a −3/2 or −1/2 is equal, and thus they
create the 2N/2 fold degenerate manifold (N/2 is the number
of sublattice sites). The additional factor of 2 comes from the
choice of the sublattice (A or B). Turning on J , this degeneracy
will immediately be lifted (we may think of a pseudospin-1/2
Heisenberg-like effective model to describe this problem), and
a gapless phase appears. The same scenario holds for the
phase boundary between the phases P 1 and P 2. These phase
boundaries are shown by the thick red line in Fig. 1.

Lastly, we examine the phase boundary between the
uniform and two-sublattice states. These phase boundaries are
shown by thick blue lines in Fig. 1 and have a ground-state
degeneracy WN . Let us concentrate on the boundary that sepa-
rates P 2 and F3. The allowed nearest-neighbor configurations
are (+3/2,+3/2), (+3/2,+1/2), and (+1/2,+3/2), while the
(+1/2,+1/2) is not allowed. In the one-dimensional chain this
rule gives a degeneracy WN = FN−1 + FN+1, where FN is the
N th Fibonacci number (W2 = 3, W4 = 7, W6 = 18, W8 = 47,
and so on).36 In the case of square lattice, we cannot give an
explicit formula for WN ; numerically we find W8 = 31 for
the 8-site cluster with D4 symmetry and W10 = 68 for the
10-site cluster with C4 symmetry (the degeneracy depends on
the shape of the cluster).

Starting from this phase diagram, we study the effect of the
off-diagonal exchange J below, using perturbation theory.

B. Mapping to an effective X X Z model

Sufficiently far from the � = 0 and h = 0 points, where
we are essentially dealing with two types of spins only (|⇑〉
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and |↑〉), the F3-P2-F1 phase transitions can be mapped to an
effective spin-1/2 XXZ model:

Heff = J̃
∑
i,j

(
σx

i σ x
j + σ

y

i σ
y

j + �̃σ z
i σ z

j

) − h̃
∑

i

σ z
i , (2)

where the σα
i are the spin-1/2 operators on site i that act

on the Hilbert space made of the |↑̃〉 and |↓̃〉 effective spins.
Selecting the mapping |⇑〉,|↑〉 → |↑̃〉,|↓̃〉 and comparing the
matrix elements between the S = 3/2 Hamiltonian (1) and the
effective Hamiltonian (2), we obtain the following parameters
for the mapping:

�̃ = Jz

3J
, (3)

J̃ = 3J, (4)

h̃ = h − 2� − ζJz. (5)

The mapping is valid in leading order of the off-diagonal
exchange. In this case, the P 2 phase corresponds to the Ising
phase of the effective model, and the F3 and F1 phases to the
saturated phases of effective Hamiltonian. Analogously, the
mapping |↑〉,|↓〉 → |↑̃〉,|↓̃〉 leads to

�̃ = Jz

4J
, (6)

J̃ = 4J, (7)

h̃ = h, (8)

effective interaction terms, and the phases A1 and F1
correspond to the Ising and the saturated phases of the effective
model, respectively.

The effective XXZ model is in a gapped Ising phase for �̃ >

1. Thus it becomes clear from our mapping that the phase P 2
disappears once J � Jz/3 and the phase A1 when J � Jz/4,
with the phase F1 surviving.

The XXZ model has been extensively studied in the
literature, and numerical methods find no trace of supersolids
on bipartite lattices. Instead, the zero-magnetization gapped
phase of the XXZ model (P 2 in the mapping) is separated by
a first-order transition from the gapless superfluid phase.37,38

The phase separation can be prevented, e.g., by longer range
diagonal exchanges.13 Likewise, the supersolid phase can
also be stabilized by introducing second-neighbor correlated
hoppings (in the language of the equivalent hard-core boson
problem), where the hopping on the second neighbor depends
on the occupancy of the site along the hopping path.14,25 Such
terms may arise in higher orders of perturbations theory, but
even then the existence of the supersolids is a question of very
delicate balance between different terms.

The physics of the transitions between P 2 and P 1, and P 1
and A3 cannot be mapped to an XXZ model in simple terms.
In that case we shall distinguish sites that can be occupied
with spins in three different states. Since one of the states (⇑)
occupies one of the sublattices, and the two other states share
the the other sublattice, the mechanism (see, e.g., Ref. 23) that
leads to phase separation is suppressed and the formation of
the supersolid is much more natural.

C. Estimating the first-order phase transitions

From the Ising phase diagram we learned that the boundary
between A1 and A3 is of first order, corresponding to level-
crossing in the energy spectrum that is otherwise gapped. We
may assume that for not too big values of J this holds as well,
so that we can estimate the corrections to the phase boundary
by comparing the ground-state energies that are expanded in
powers of J . The lowest order corrections appear in the second
order:

EA1

N
= �

4
− ζJz

8
− 2ζJ 2

(ζ − 1)Jz

− 9ζJ 2

32� − 8(ζ + 1)Jz

, (9)

EA3

N
= 9�

4
− 9ζJz

8
− 9ζJ 2

(24ζ − 8)Jz − 32�
. (10)

Comparing these energies, we get that the first-order phase
transition between A1 and A3 in the square lattice happens
when

� = 2Jz − 4J 2

3Jz

+ O(J 4) (11)

for small J . In the case of the one-dimensional chain we get

� = Jz − 2J 2

Jz

+ O(J 4). (12)

Similarly, from the second-order corrections given in the
Appendix, Eqs. (A4) and (A3), the boundary between the
phases P1 and F1 is

� = 2Jz − 2J 2

Jz

+ O(J 4) (13)

for a square lattice and

� = Jz − 3J 2

Jz

+ O(J 4) (14)

for a chain.

D. Field-induced instability of uniform phases

The field-induced instability of Ising phases can be thought
of as a softening of magnetic excitations. The simplest
magnetic excitations correspond to lowering or raising the
spins on a site that becomes delocalized due to the off-diagonal
J term. These excitations are gapped in the Ising (plateau)
phases, and the value of the gap changes with magnetic field
and interaction parameters. When the energy gap vanishes,
it means that these excitations can be created in arbitrary
number and an off-diagonal long-range order develops. For
small values of J we can use perturbation expansion to get the
dispersion of these excitations.

In the case of a uniform order the spins on the two sublattices
are equal, and the perturbational expansion of the excitation
energy is simple. Let us pick an example, e.g., the instability
of the fully polarized phase F3 toward the plateau P 2. In
F3 the ground state is

∏
j |⇑j 〉. A spin excitation in this case

corresponds to lowering the ⇑ spin to a ↑ on a given site, with
a diagonal energy cost

�E = h − 2� − 3
2 ζJz. (15)
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TABLE II. Summary of instabilities of uniform phases.

�E Hopping hc

Amplitudes
F3 → P 2 h − 2� − 6Jz 3J/2 2� + 6Jz + 6J

F1 → P 2 2Jz − h + 2� 6J 2� + 2Jz − 6J

F1 → A1 −2Jz + h 2J 2Jz + 8J

The off-diagonal terms move the excitations onto the neigh-
boring sites, as shown in Fig. 3(a), with a

〈↑i⇑j |H|⇑i↑j 〉 = 3J

2
(16)

hopping amplitude, leading to the following dispersion:

ωk = h − 2� + 3
2 ζ (Jγk − Jz). (17)

Here

γk = 1

ζ

∑
δ

exp(ik · δ), (18)

where the summation is over the vectors δ pointing toward the
ζ nearest neighbors. The quantity γk takes its minimal value
−1 at k = (π, . . .), and its maximal value 1 at k = (0, . . .).
For the one-dimensional chain (ζ = 2)

γk = cos kx, (19)

and

γk = 1
2 (cos kx + cos ky) (20)

for the square lattice (ζ = 4). In the F3 phase this excitation
is gapped with a minimum at k = (π, . . .), and lowering the
magnetic field the gap closes when

hsat = 3
2ζ (Jz + J ) + 2�. (21)

Instabilities of this kind are summarized in Eqs. (A7)–(A9);
the corresponding critical fields are shown in Table II and are
plotted in Fig. 2(a) for J/Jz = 0.2. We shall mention that these
results are not independent from the mapping we discussed in
the previous subsection.

We note that in the case of the F3 phase Eqs. (17) and (21)
are exact, while for F1 higher order terms in J/Jz appear in
the dispersion.

E. Dispersion of spin excitations in translational symmetry
breaking states on the square lattice

The instability (softening) of the excitations in the
two-sublattice gapped phases (A1, A3, P 1, and P 2) that
break the translational symmetry occur in the second order
of exchange coupling J . Namely, the on-site excitations
on the two sublattices have different energy, and depending
on the energy difference we shall apply a different scheme for
the degenerate perturbation calculation. As an example, we
discuss the lower instability of the 2/3-plateau P 2 phase.

The wave function in the Ising limit of the P 2 phase is
given by

|
P 2〉 =
∏
j∈A

∏
j ′∈B

|↑j 〉|⇑j ′ 〉. (22)

1/2

 2

 1

 0

3/2

5/2

 0  5/4 1 3/4 1/2 1/4

/  
J

z
z

h

Λ/ζ zJ

ζ

 4

 0  1  2  3  4  5

 10

 8

 6

 2

 0

h
J/

Λ/Jz

z
z

SF
P2

SS

P1

A3

SS

SF

A1

F1

A3

F3
P2

J=0.2 Jz

A1

F1

F3

P1

(b)

(a)

FIG. 2. (Color online) (a) Instabilities (thick lines) of the gapped
phases in the square lattice as obtained from the perturbation theory
for J/Jz = 0.2. We also show the J = 0 phase boundaries of Fig. 1
with thin lines for comparison. (b) Variational phase diagram as a
function of �/ζJ and hz/ζJ for large exchange anisotropy J/Jz =
0.2 and a bipartite lattice with ζ neighbors. Dashed lines stand for
first-order, while solid lines denote second-order phase transitions.
The solid dot ending the first-order transition represent a tricritical
point.

Applying the S−
i operator on the A and the B sublattices, we

get ∣∣�A
i

〉 = |↓i〉
∏
j∈A

j �=i

∏
j ′∈B

|↑j 〉|⇑j ′ 〉, (23)

∣∣�B
i

〉 = |↑i〉
∏
j∈A

∏
j ′∈B

j ′ �=i

|↑j 〉|⇑j ′ 〉, (24)

with diagonal excitation energies

�EA = h − 6Jz, (25)

�EB = h − 2� − 2Jz, (26)
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FIG. 3. (Color online) (a) Schematic figure for the first-order
hopping process that occurs during the instability of uniform
phases F1 and F3, where the dispersion is ∝4γk. (b) Schematic
representation of the second-neighbor correlated hopping that gives
the dispersion ∝16γ 2

k . There are 8 neighboring places where the
magnon can hop through a virtual state on the B site.

respectively. The two energies are identical when � = 2Jz—
this is actually the phase boundary between the P1 and F1

phase in the Ising phase diagram, Fig. 1.
First we discuss the case when the energy difference

is larger than J : When �EB − �EA = 4Jz − 2� 
 J , the
ground-state manifold is given by the |�A

i 〉 states. Since
〈�B

i |H|�A
i ′ 〉 = √

3J for neighboring i and i ′ sites and
〈�A

i |H|�A
i ′ 〉 = 0, the |↓〉 excitation acquires dispersion in a

second-order process in J , where the |↑〉 excitations on the B
sublattice can be viewed as a virtual state [see Fig. 3(b)]. This
leads to

ωP 2→P 1(k) = h − 6Jz − 3J 2

4Jz − 2�
16γ 2

k + ω
(2)
P 2→P 1, (27)

where the ω
(2)
P 2→P 1 denotes additional second-order contribu-

tions in J that are independent of k—the full form of the
dispersion is given in Eq. (A15). In other words, the gap closes
quadratically for small values of J . A similar calculation can
be done for the �EA − �EB = 2� − 4Jz 
 J case, when
the ground-state manifold is given by the |�B

i 〉 states, and
we similarly get a dispersion, Eq. (A14) in the Appendix,
where the hopping amplitude is quadratic in J (we note that
an additional virtual state assists the hopping).

When the two excitation have equal energy at � = 2Jz,
the perturbation theory outlined above obviously fails [the
hopping amplitudes in both Eqs. (A14) and (A15) diverge].
In that case we shall include both |�A

i 〉 and |�B
i 〉 states into

the ground-state manifold. Actually, we can do it also when
the energies are not equal, and to get the dispersion of the
spin excitations, we need to diagonalize the following 2 × 2
problem in k space:

H′
P 2 =

(
h − 6Jz 4

√
3Jγk

4
√

3Jγk h − 2Jz − 2�

)
, (28)

where we neglected second-order contributions. The 2 × 2
matrix is easily diagonalized, leading to the

ωk = h − 4Jz − � ±
√

(� − 2Jz)2 + 48J 2γ 2
k (29)

dispersion. We notice that for � = 2Jz the dispersion becomes
linear in J , while for J � |� − Jz| expanding the square root
we get

ωk = h − 4Jz − � ± (� − 2Jz) ± 24J 2γ 2
k

� − 2Jz

. (30)

In other words, we obtain the result of the second-order
perturbation theory, Eq. (27). To be consistent, we shall take
into account all the second-order processes that contribute to
the dispersion. This can be done systematically, and the full
expression is given in Eq. (A19). The critical field at which the
gap vanishes can then be determined without difficulty, and
the instabilities of this type, given by Eqs. (A17), (A18), and
(A19), are shown in Fig. 2(a) for J/Jz = 0.2.

III. VARIATIONAL PHASE DIAGRAM

In this section we construct the phase diagram variationally,
assuming either uniform or two-sublattice ordering. We search
for the ground state in the following site-factorized variational
form:

|
〉 =
∏
i∈A

∏
j∈B

|ψA〉i |ψB〉j , (31)

where

|ψA〉 ∝ u0|⇑〉 + eiξ1u1|↑〉 + eiξ2u2|↓〉 + eiξ2u3|⇓〉,
(32)

and a similar expression for |ψB〉. In the general case, there
are 6 independent variational parameters for |ψA〉 and another
6 for |ψB〉 that are determined by minimizing the ground-state
energy

E = 〈
|H|
〉
〈
|
〉 . (33)

Recalling that the Hamiltonian is O(2) symmetric and com-
mutes with the Ŝz = ∑

i S
z
i operator, the state rotated by

ϕ around the z axis and given by the exp(−ϕŜz)|
〉 wave
function has the same energy as the state described by |
〉.
We can therefore reduce the number of independent parameters
for sites A from 6 to 5, so in total we have reduced the number
of independent parameters from 12 to 11. It appears, however,
that all the phases we have found are coplanar, and after a
suitable rotation the amplitudes in the wave function can all
be chosen to be real.

The site-factorized variational wave function (31) is ac-
tually indifferent to the connectivity of the lattice; the only
information about the lattice that enters the expression of the
energy is the number of the neighbors ζ . For concreteness,
we look at the case of the square lattice; however the results
can be easily generalized to any bipartite lattice by replacing
J → ζJ/4 and Jz → ζJz/4 in equations and phase diagrams
shown below.

Before proceeding to discussion of the phase diagrams, let
us mention briefly that for the gapped phases the variational
wave function is of the same form as it is in the Ising limit, when
we neglected the off-diagonal terms. Similarly, the expressions
for the ground-state energy are also identical, since to get
a contribution from the off-diagonal Ŝx

i Ŝx
j + Ŝ

y

i Ŝ
y

j term, we
need to tilt the spins out of the z axis. Furthermore, the
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boundary of the gapped phases, assuming a continuous phase
transition, can be determined by studying the stability of the
gapped variational wave function |
0〉: The 0 eigenvalue of
the ∂2E/∂uα∂uβ indicates a second-order phases transition,
where uα and uβ are coefficients of a wave functions that is
orthogonal to |
0〉.

A. Phase diagram in zero magnetic field

First let us take a look at the zero-field phase diagram.
We find two—the completely and the partially aligned—axial
antiferromagnetic states, A3 and A1, as well as a superfluid
U (1) phase between them. This latter is referred to as a
planar state in Ref. 39 for the spins are aligned in the lattice
plane, but also can be called superfluid since spin-rotation
symmetry breaking phases exhibit finite spin stiffness21 that
is the property of such phases. In the following we refer
to this phase as SF0. Between the planar superfluid SF0

and the two axial antiferromagnets A1 and A3 an additional
superfluid phase appears. The in-plane components of this
conical antiferromagnet have the same properties as the
planar superfluid but it exhibits finite staggered magnetization
too, inheriting the property of the antiferromagnetic phases.
Therefore we call this phase SFA. A schematic figure
of the various phases is shown in the phase diagram in
Fig. 4.

The relevant order parameters for zero external field are the
staggered magnetization mst

z = 1
2 |Sz

A − Sz
B |, and the superfluid

order parameter OU (1) = 1
2 |S⊥

A − S⊥
B |, where S⊥

j = (Sx
j ,S

y

j ).
OU (1) is actually the in-plane staggered magnetization. The
expectation values of order parameters as a function of �/Jz

are shown in Fig. 5 for various values of J/Jz.
The first-order phase boundary between the two axially

aligned antiferromagnetic phases is � = 2Jz. It can be
determined by comparing the ground-state energies of A3 and
A1 listed in Table I.
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3/25/413/41/21/40

 1.2

 1

 0.8
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J z

Λ/ζJz

FIG. 4. (Color online) Variational phase diagram for h = 0 as a
function of �/Jz and J/Jz. Solid lines stand for continuous (second-
order) phase boundaries, while the dashed line denotes the first-order
phase boundary of the phase A3.
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FIG. 5. (Color online) Order parameters as a function of �/Jz

for different values of J/Jz. The axial antiferromagnets have finite
staggered magnetization, and zero U (1) order parameter. In the planar
superfluid phases mst

z = 0 but the expectation value of OU (1) is finite,
while the conical antiferromagnet exhibits both types of order.

The ground-state wave functions of sites A and B in the
planar superfluid phase SF0 can be expressed as

|
A〉 = e−iϕŜz
A |
SF〉, (34)

|
B〉 = e−i(ϕ+π)Ŝz
B |
SF〉, (35)

with a single variational parameter η:

|
SF〉 = 1√
3η2 + 1

(|⇑〉 +
√

3η|↑〉 +
√

3η|↓〉 + |⇓〉).

(36)

ϕ can take arbitrary value and is related to the U (1) symmetry
breaking (we recall that the Hamiltonian commutes with the
Ŝz operator), as it determines the direction that the spins point
to in the xy plane:

〈
A|Ŝx
A|
A〉 = 3η(η + 1)

3η2 + 1
cos ϕ, (37)

〈
A|Ŝy

A|
A〉 = 3η(η + 1)

3η2 + 1
sin ϕ, (38)

〈
A|Ŝz
A|
A〉 = 0. (39)

The ground-state energy as a function of parameter η reads

E
SF0
0 (η)

N
= 3

4

η2 + 3

3η2 + 1
� − 18η2(η + 1)2

(3η2 + 1)2
J. (40)

In the energy expression the Jz term is absent, as this
wave function has only the spin component in the xy plane.
Minimizing the energy gives a cubic equation for η. However,
a given η value minimizes the energy for the

�

J
= 3(η2 − 1)(3η + 1)

3η2 + 1
(41)

parameter in the Hamiltonian. For small values of � we find

η = 1 + �

6J
+ �2

144J 2
+ O(�3) (42)

184427-6



SUPERSOLID PHASE AND MAGNETIZATION PLATEAUS . . . PHYSICAL REVIEW B 84, 184427 (2011)

and the ground-state energy can be approximated as

E
SF0
0 = −9

2
J + 3

4
� − �2

16J
+ O(�3), (43)

which gives the phase boundary with the antiferromagnetic
phase A3,

J = Jz − �

3
− �2

72Jz

+ O(�3), (44)

as seen in Fig. 4.
For � = 0, when the anisotropy is absent, η = 1 and

Eq. (36) is just a spin coherent state of the spin-3/2 Néel
state of the SU(2) symmetric Heisenberg model rotated into
the xy plane. For � > 0 the Sz = ±3/2 components in the
wave function are suppressed. In the � → +∞ limit the
η = �/3 + O(1) and we are left with a wave function with
Sz = ±1/2 spin components only. Out of these two states we
can mix a spin pointing to arbitrary direction; however the
length of the spin is not constant—it is the largest when lying
in the xy plane (the length is then 1 as opposed to 1/2 when
pointing in the z direction, a consequence that they are still
S = 3/2 spin). For this reason the antiferromagnetic exchange
term gains the most energy with the planar spins, as in Eq. (36).
When the exchange interaction becomes anisotropic, and the
Ŝz

i Ŝ
z
j term becomes strong, this energy can compensate the

directional length dependence of the spin and can choose a
spin configuration with a finite z and xy component. This
happens in the conical superfluid phase, denoted by SFA in
Fig. 4.

The phase boundary of the conical superfluid phase (SFA)
toward the planar phase (SF0) and fully polarized AFM phase
(A3) is a complicated expression. It is shown in Fig. 4.
Starting from phase A1 at a given � value, a second-order
phase transition occurs to the superfluid phase SFA. When
the exchange coupling J is large enough, in-plane spin
components appear continuously as we reach into SFA. The
ground state can be expressed as follows:

|
A〉 ∝ e−iϕŜz
A (|⇑〉 + u|↑〉 + v|↓〉 + w|⇓〉), (45)

|
B〉 ∝ e−i(ϕ+π)Ŝz
B (w|⇑〉 + v|↑〉 + u|↓〉 + |⇓〉), (46)

with real u, v, and w variational parameters.
The instability of the partially aligned AFM phase A1

against canting gives the phase boundary

J = Jz(Jz − �)

Jz − 4�
(47)

between A1 and SFA.
The same model for one dimension has been treated by

mean-field calculations in Ref. 39 for quantum spin 1/2, 1,

and 3/2. The phase diagram for the case S = 3/2 is similar
to our findings; however the conical superfluid phase SFA is
missing due to a more restricted variational wave function they
used.

B. Heisenberg exchange with on-site anisotropy

In the following we discuss the phase diagram as the
function of magnetic field and single-ion anisotropy when the
exchange between two neighboring sites is SU(2) symmetric
(i.e., the J = Jz Heisenberg model with on-site anisotropy).

h z

Λ/ζ

/ζ
J

Jz

z

0

2

4

6

8

10

0 1 2 3 4 5

F1

SFF

F3

zJ=J

FIG. 6. (Color online) Phase diagram as a function of �/J and
hz/J (Jz = J ).

The phase diagram outlined in Fig. 6 was calculated by the
variational method introduced above.

On the hz = 0 line the ground state is the planar superfluid
phase (SF0) introduced previously. As the magnetic field
becomes finite, the spins cant out of the plane continuously, and
the superfluid ground state SFF exhibits finite magnetization
mz alongside the finite staggered in-plane order parameter
OU (1) (Fig. 7). A schematic figure of the conical SFF is
shown in Fig. 6 and the ground-state wave function can be
characterized as

|
A〉 ∝ e−iϕŜz
A (|⇑〉 + u|↑〉 + v|↓〉 + w|⇓〉), (48)

|
B〉 ∝ e−i(ϕ+π)Ŝz
B (|⇑〉 + u|↑〉 + v|↓〉 + w|⇓〉), (49)

where u, v, and w are all real numbers.
The ground-state energies of the axial ferromagnetic phases

and the fully polarized ferromagnetic state are given in Table I.
Analytical expression for the ground-state energy of SFF

is beyond our reach; however, the phase boundary with the
neighboring F3 phase can be given by calculating the critical
field for the polarized phase. This is exactly the same as
the instability approximation for F3 in the case of the Ising
limit, and is given by the same Eq. (21). Above the saturation
field the fully polarized ferromagnetic phase is stabilized. For
large enough values of � the spins become shorter and the
partially polarized plateau phase F1 emerges. Calculating the
instability of F1, the phase boundary turns out be

h = J + 2Jz + � ±
√

J 2 − 14J� + �2. (50)

As expected, from the mapping to the effective XXZ model
(Sec. II B), we found no evidence for gapped phases that break
the translational symmetry.

C. The effect of exchange anisotropy and the emergence of the
supersolid phase

Finally let us examine the collective effect of exchange and
single-ion anisotropies as well as the magnetic field. In the
previous subsection we learned that only the ferroaligned spins
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FIG. 7. (Color online) Order parameters as a function of magnetic
field for different values of � parameter. The fully and partially
polarized ferromagnets F3 and F1 exhibit finite magnetization mz,
while in the conical ferromagnetic phase SFF the expectation values
of both mz and OU (1) are finite.

in F1 and F3 are present as gapped phases for the case of the
Heisenberg exchange (Jz = J ), with a superfluid phase (canted
antiferromagnet) in between them. As the value of J/Jz is low-
ered, islands of plateaus and antiferromagnetic phases emerge
in the sea of the superfluid phase. We choose a relatively large
anisotropy J/Jz = 0.2, as in that case we learned from the
perturbational expressions that the 2-fold degenerate gapped
phases might be stable, as shown in Fig. 2(a). Indeed, the
variational phase diagram, shown in Fig. 2(b), displays all the
phases we were looking for: The superfluid phase takes place
around the axial ferromagnets, while between the plateaus
and axial antiferromagnetic phases—i.e., the gapped phases
that exhibit staggered diagonal magnetic order—a very robust
supersolid phase arises.

The extension of the supersolid around the phases A1 and
P 2 is the broadest at their tips, when � is not too large. As we
increase �, the supersolid region decreases, and eventually
vanishes for � → +∞. Since in this limit the mapping to
the XXZ model becomes exact (Sec. II B), our finding is also
consistent with numerical works on the XXZ model on the
square lattice that do not seem to find the supersolid.13,37,38

The variational calculation finds all the phase boundaries
to be of second order, except a single first-order one around
� ≈ 2Jz [shown in dashed line in Fig. 2(b)] that is inherited
from the J = 0 phase diagram, Fig. 1.

The expression of the phase boundaries of the axial ferro-
magnetic phases are the same as in the Heisenberg limit [see
Eqs. (21) and (50)]. We determined the phase boundaries of
the plateaus and axial antiferromagnetic states by calculating
spin wave instability. We found that the boundary for the 2/3
plateau can be given as

� = h

2
− � ±

√
(� − 3Jz)2 − 9J 2, (51)

with � = 2Jz + 6J 2

h/2−3Jz
. Similar calculations give

h =
√

2
(
J 2

z − J 2
) + 2(Jz − �)2 − 2�,

(52)
� =

√
[J 2 − �(� − 2Jz)]2 + 32J 2�(2� − Jz)

for the phase boundary of the partially polarized axial
antiferromagnetic phase A1,

� = � − h

2
±

√
(� − 3Jz)2 − 9J 2 , (53)

with � = 2Jz + h
2 + 6J 2

h/2−3Jz
, for the phase boundary of P 1

plateau, and

� = 3Jz −
√

h2

4
+ 9J 2 (54)

for the boundary of the axial antiferromagnetic phase A3.
When J = 0 Eq. (53) and (54) give back the h = 6Jz − 2�

phase boundary that separates A3 and P 1 in the Ising
limit. The ground-state energies and phase boundaries for
the superfluid and supersolid phases can only be obtained
numerically. The ground-state wave function for the superfluid
with ferromagnetic mz is given by Eq. (49), and for the
supersolid by

|
A〉 ∝ e−iϕŜz
A (|⇑〉 + u|↑〉 + v|↓〉 + w|⇓〉), (55)

|
B〉 ∝ e−i(ϕ+π)Ŝz
B (|⇑〉 + u′|↑〉 + v′|↓〉 + w′|⇓〉), (56)

where u, u′, v, v′, w, and w′ are all real. Figure 8 shows the
evolution of the order parameters which can be used to find
out the nature of the phases as we increase the magnetic field
for a few selected values of �/Jz.

D. S = 1 phase diagram

At this stage, it is useful to compare the predictions of the
variational approach to a better studied problem. Supersolid
phases have been found in a spin-1 anisotropic Heisenberg
antiferromagnet in Ref. 23, so we constructed the variational
phase diagram for this model as well. The Hamiltonian is
identical to Eq. (1), but now with S = 1 spin operators.
The phase diagrams, for vanishing J and J = 0.2Jz, are
shown in Fig. 9. In the Ising limit, Fig. 9(a), we find two
uniform phases (denoted as 00 and 11, using the values of
the Sz components) and two phases breaking the translational
symmetry: the 11̄ with zero magnetization and the 10 one-half
magnetization plateau. The XXZ-like physics can be identified
for the transition between the 11, 10, and 00 phases, where the
supersolidity is a fragile phase. The region between the 10 and
11̄ is of a different nature, and we expect the supersolid to be
robust in this part of the phase diagram. And that is exactly
the region where Ref. 23 found supersolidity. Furthermore, the
nature of the phase transitions is also in qualitative agreement,
inasmuch as the order of the phase transitions is concerned.
Specifically, we recover the first-order transition between the
upper boundary of the 10 phase and the superfluid. It is also
useful to compare Fig. 9(b) to the phase diagram of the
one-dimensional chain obtained by DMRG:29 The extent of
the gapped phases is reduced in the chain, and the supersolid
survived only in a small region close to the 11̄ phase.

184427-8



SUPERSOLID PHASE AND MAGNETIZATION PLATEAUS . . . PHYSICAL REVIEW B 84, 184427 (2011)

m
st z

O
U

(1
)

hz ζ/  Jz

0

1/2

1

1/3

0 0.5 1 1.5 2 2.5

m
z

m
xy

0

1/2

m
st z

O
U

(1
)

0

1/2

1

1/3

m
z

m
xy

0

1/2

1

1/3

Λ/ζ

Λ/ζ

J

Jz

z

=3/8

=9/8

m
st z

O
U

(1
)

OU(1)

mst
z

0

1/2

1

1/3

m
z

m
xy

mz
mxy

0

1/2

1

1/3 Λ/Jz=0

P2

SS SF

A1

SS

SF F1 SF

SSA3

F3SF

P1

A3

SS

FIG. 8. (Color online) Expectation value of order parameters
per site as a function of h/Jz for different values of �/Jz. In
the axial antiferromagnetic phases A1 and A3 only the staggered
magnetization has finite expectation value. For � = 0 there is
a first-order phase transition from the completely polarized A3
phase to the superfluid phase. All the other field-induced transitions
are second-order transitions. The superfluid phase exhibits finite
magnetization mz and finite staggered in-plane magnetization OU (1).
The ferromagnetically ordered phases F3 and F1 are characterized
by finite magnetization mz, while the plateaus (P 1 and P 2) have an
additional finite staggered magnetization mst

z . In the supersolid phase
all four order parameters have finite expectation values.

The calculation of the phase diagram is quite
straightforward—assuming two-sublattice order, the varia-
tional wave function is given by Eq. (31), now with

|ψA〉 ∝ u1|1〉 + eiξ0u0|0〉 + eiξ1̄u1̄|1̄〉 (57)

and a similar expression for |ψB〉. We are now dealing with
8 independent variational parameters altogether, which can
be reduced to 7 by using the U (1) symmetry of the model.
Similarly to the spin-3/2 case, we get solutions where all
the amplitudes can be chosen to be real numbers for the
Hamiltonian we look at.

The saturation field is given by hsat = � + ζJz + ζJ , and
from the stability analysis of the 11̄, 00, and 10 gapped phases
we get the following equations for their phase boundaries:

h2 = (ζJz − � − ζJ )(ζJz − � + ζJ ), (58)

h2 = �(� − 2ζJ ), (59)

(h − �)(ζJz + � − h)(h − ζJz + �) = 2ζ 2J 2�, (60)

respectively.
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FIG. 9. (Color online) The phase diagram of the anisotropic S =
1 model in the (a) Ising limit for a bipartite lattice with coordination
number ζ and (b) for the square lattice (ζ = 4) when J = 0.2Jz,
obtained from the variational calculation.

IV. SUPERSOLID IN THE ONE-DIMENSIONAL MODEL

In this section we complement the variational study using
a variant of the density matrix renormalization group40

(DMRG) method on the anisotropic S = 3/2 spin chain. A
quantum Monte Carlo study has shown that a supersolid phase
can realized in the anisotropic S = 1 spin chain,27 a result
confirmed by DMRG calculations in Refs. 28–30. Therefore
it is plausible that a supersolid state is also present in the
anisotropic spin-3/2 chain.

We map out the phase diagram for the chain and search for
signatures of supersolid phases. The DMRG method we used
optimizes variationally a wave function based on a matrix-
product state41 (MPS) ansatz for an infinite chain. Algorithms
using this approach are efficient in one-dimensional systems
because they exploit the fact that the ground-state wave
functions are only slightly entangled. For mapping out the
phase diagram, we used comparably small matrix dimensions

184427-9
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FIG. 10. (Color online) Zero-field phase diagram for the infinite
chain as a function of �/Jz and J/Jz, as obtained from DMRG cal-
culation with χ = 25. Panel (a) shows the staggered magnetization.
Panel (b) shows the half-chain entanglement entropy, i.e., the von
Neumann entropy of the reduced density matrix for a bipartition of
the chain into two half chains.

of χ = 50, while for estimating the central charge we used
matrices up to χ = 200.

The zero magnetic field phase diagram is shown in Fig. 10.
We can clearly identify the gapped A3 and A1 uniaxial phases
with finite value of the staggered magnetization mst

z and small
entanglement entropy, and a gapless phase with algebraic
correlations (Luttinger liquid). The extension of the A1 phase
is limited to J/Jz � 0.25 values, following the estimate based
on the mapping to the XXZ model in Sec. II B.

Figure 11 shows the phase diagram in the present finite
magnetic field. Again, the gapped phases can be identified
using the uniform and staggered magnetization (mz and
mst

z ), and the small entanglement entropy. The extension of
the gapped phases essentially follows the variational phase
diagram [see Fig. 2(b)]. However, the supersolid phase is more
fragile in the one-dimensional case due to strong quantum
fluctuations. Consequently, the gapless phase in the phase
diagram is predominantly a simple Luttinger liquid (LL) with
algebraically decaying correlations and characterized by the
integer central charge that measures the number of gapless
modes. We calculated the central charge of the gapless phases
using the method outlined in Ref. 42 for a few selected points in
the phase diagram. Within numerical accuracy we find c = 1,
as shown in Fig. 12. This is in accordance with our expectation
originating from the mapping to the effective XXZ model, that
the gapless phases between the F3 and P 2, P 2 and F1, and
F1 and A1 are all Luttinger liquids.

We have searched for a supersolid phase in the vicinity
of the gapped phases that break the translational invariance.
We made a scan by varying the field for a fixed value of
�/Jz and J/Jz; the results are plotted in Fig. 13. For the
simulations, we added a tiny magnetic field of order 10−4

along the x axis to break the U(1) symmetry around the z axis.
A finite value of the diagonal (staggered magnetization mst

z )
and off-diagonal (magnetization along the x axis, mx) order
parameter indicates the presence of the supersolid. It appears
that the supersolid is stable in a small region only, between the
A3 and P 1 gapped phase, with a continuous phase transitions.

FIG. 11. (Color online) Phase diagram as a function of �/Jz and
h/Jz for (a)–(c) J/Jz = 0.1 and (d)–(f) J/Jz = 0.2. We show the
uniform and the staggered magnetization along the z axes, where
the plateau phases can be identified. The large increase of the
entanglement entropy indicates gapless phases. The phase diagram is
obtained from DMRG calculation with χ = 25.

Both the magnetization and the staggered magnetization in the
supersolid show a square-root-like behavior at the lower and
upper critical fields, like the magnetization in the XXZ model
does; see for example Ref. 43. This is due to the density of
the states of the spinons, and is already observed in the XY

model, when it is mapped to free fermions. Recall that the
density of states of free fermions has a van Hove singularity at
the band edges, and this shows up as a square root singularity
in the magnetization curve of the XY (and XXZ) model. In
Fig. 14 we straighten out this singularity. This singularity is
also inherited for the staggered magnetization at the critical
fields. The central charge in the supersolid is also c = 1 (the

S
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J/Jz=0.2

h=5,Λ=1
h=3,Λ=1
h=4,Λ=1.5
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FIG. 12. (Color online) Estimate of the central charge from the
entanglement entropy for four different points in the LL phase and one
point in the supersolid phase (the h/Jz = 1.95, �/Jz = 0.5 point).
The solid lines are fits based on the S = c

6 ln ξ + const. formula, with
c set to 1. In all these points the gapless phases are characterized by
c = 1 central charge.
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FIG. 13. (Color online) The magnetic field dependence of the
order parameters as a function of the magnetic field for J/Jz = 0.2
and �/Jz = 0.5. The curves are the result of DMRG calculations with
χ = 40 and with a small field hx/Jz = 10−4. In (a), the nonvanishing
off-diagonal order parameter mst

x shows the extension of the gapless
phases. The finite value of the mst

z and mx indicate a robust supersolid
phase, as seen in (b).

lowest line in Fig. 12; here we set the hx = 0, as otherwise a
finite hx induces a gap in the spectrum).

From variational calculations, we expect a continuous phase
transition into the supersolid also at the upper edge of the P1

phase. Numerically, however, we find a first-order transition
into the LL phase.

V. EXACT DIAGONALIZATION STUDIES

To get further insight into the problem in higher dimensions,
we have numerically diagonalized small (8- and 10-site)
clusters of spin S = 3/2 arranged on the square lattice with
periodic boundary condition and searched for the signature of
different phases in the energy spectrum. The two-sublattice
states break translation symmetry, so we expect two degen-
erate ground states with momentum k = (0,0) and (π,π ) in
the thermodynamic limit. In the gapped phases, these two
levels are well separated from the other states, while in
the supersolid, where both translational symmetry and U(1)
symmetry breaking occurs, we expect two copies of the
Anderson towers in the spectrum that is the signature of the
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FIG. 14. (Color online) The magnetization has a square root
singularity at (a) lower hc,1/Jz = 1.8579, and (b) upper hc,2/Jz =
2.0195 critical field. The solid lines show the m2

z ≈ 2.68(h −
hc,1)/Jz + 16.9(h − hc,1)2/J 2

z and (1 − mz)2 ≈ 1.27(hc,2 − h)/Jz +
13.2(hc,2 − h)2/J 2

z fits to the magnetization curves.

 2

 0

−2

−4E
/J

z

−6

−8

−10
 2

 0

−2

−4

−6

E
/J

z

−8

−10
 1.5  1.6  1.7  1.8  1.9  2  2.1  2.2  2.3

(a)

(b)

z

J = 0.2 J
S  = 1

S  = 0z

z

z

(0,0)
J = 0.2 J

(π,π)
(3π/5,π/5)

(2π/5,4π/5)

(2π/5,4π/5)
(3π/5,π/5)

(π,π)
(0,0)

(π,π)

(0,0)

z/JΛ

FIG. 15. (Color online) The first few lowest lying energy levels
of a 10-site cluster for (a) Sz = 0 and (b) Sz = 1 as a function of
�/Jz. We set J = 0.2Jz. The inset shows the available k points in
the Brillouin zone.

U (1) symmetry breaking.44,45 Unfortunately, the large spin
makes the finite-size scaling difficult, and without a finite-size
scaling we cannot be sure about the exact nature of the ground
state. Nevertheless, even our small cluster gives important
support for the variational phase diagram.

In Fig. 15 we show the energy spectrum for the C4

symmetric 10-site cluster and J = 0.2Jz around � = 2Jz,
where we expect the first-order transition from the phase A3
into the supersolid to happen. In zero field the ground state
has Sz = 0, and in Fig. 15(b) we see that the energy-level
curvatures of lowest lying states in the k = (0,0) and (π,π )
sector are essentially indistinguishable for � � 1.88Jz and
well separated from the higher levels. This indicates the
presence of a gapped, two-sublattice state that we can associate

FIG. 16. (Color online) The gap � = E(π,π ) − E(0,0) as a function
of �/Jz and h/Jz for the 10-site cluster. The solid curves separate
the different Sz sectors.
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FIG. 17. (Color online) Magnetization as a function of magnetic
field, as obtained from variational calculation and exact diagonaliza-
tion. Here J = 0.2Jz, and �/Jz =0, 1.5, and 4.5. hsat is the saturation
field [Eq. (21)].

with the A3 phase. The sharp level anticrossing at � ≈ 1.88Jz

indicates a first-order transition. In the Sz = 1 sector we ob-
serve the spin excitations with a narrow bandwidth and a k ↔
(π,π ) − k symmetry, following Eq. (A16) as calculated from
the perturbation theory in Sec. II E. For � � 1.88Jz, the k =
(0,0) and (π,π ) levels are also close, and the these two levels
are equally close and reversed in order for Sz = 1 in Fig. 15(a),
an indication for the U(1) symmetry breaking, possibly with
translational symmetry breaking (the supersolid phase).

In Fig. 16 the energy gap between the k = (0,0) and (π,π )
ground states in the different Sz sectors is shown as a function
of �/Jz and magnetic field, as this may serve as an indicator
of the translational symmetry breaking. We can identify the
gapped phases (except for A1) and their extension is even
quantitatively in good agreement with the variational phase
diagram, shown in Fig. 2(b). The consistency between the
variational and exact diagonalization result is also supported
in Fig. 17, where we compare the magnetization calculated by
these two methods.

VI. CONCLUSIONS

In this paper we studied the effect of exchange and easy-
plane anisotropies on the formation of magnetization plateaus
and supersolids in spin-3/2 system on (unfrustrated) bipartite
lattices, with the aim to extend the results of earlier studies on
the stability of supersolids in anisotropic spin-1 model on the
square lattice23 and spin-1/2 bilayer systems22,24,25 to larger
values of spins.

In the Ising limit (J = 0) we find both uniform and
translational symmetry breaking magnetic phases with gapped
excitation spectrum with zero finite magnetization (magneti-
zation plateaus). We discussed the macroscopic degeneracy
of the ground state at the phase boundaries and showed that
when the off-diagonal exchange interaction J becomes finite

this degeneracy is lifted and new gapless phases emerge. All
the plateaus continuously evolve from the Ising limit, and the
degeneracy of the boundaries in the Ising limit gives a hint on
the order of the phase transition and on the nature of the gapless
state. Not surprisingly, our variational calculation shows that
the supersolid phases are concentrated around the plateaus that
break the translational symmetry. In particular, the tendency
toward supersolidity is greatly enhanced when the degeneracy
of the boundary is 2 × 2N/2 (due to the choice of two states
on the sites of one of the sublattices, while the sites of the
other sublattice are occupied with a third type of states), as
in this case the diagonal translational order is preformed, and
the off-diagonal order is easily established on the sublattice
occupied with the two states. In addition, for large anisotropies
we have confirmed the stability of the plateau states using
perturbation theory, and found a good agreement between the
two approaches regarding the extension of the gapped phases.

In zero field we plotted the variational phase diagram as a
function of the on-site and exchange anisotropies. Aside from
the axial antiferromagnetic phases and planar superfluid phase,
we find a biconical superfluid which simultaneously exhibits
the diagonal and off-diagonal staggered characteristics of the
former phases.

In the J = Jz Heisenberg limit, when the exchange inter-
action is SU(2) invariant [but we keep the on-site anisotropy
� that breaks the SU(2) symmetry], the plateau and supersolid
phases disappear and only the uniform phases and the
superfluid phase between them are present.

The variational phase diagrams for zero and finite magnetic
field were compared to DMRG calculations carried out in
one dimension. We have found convincing evidence for a
supersolid state that is realized in a region between two
gapped phases that break the translational symmetry. For a
two-dimensional square lattice, we performed exact diagonal-
ization on small clusters for J/Jz = 0.2 and identified the
characteristics of various phases from the energy spectrum.
The extension of the gapped phases based on these calculations
proved to be in good qualitative and quantitative agreement
with the variational findings.

Our study was initially inspired by the Ba2CoGe2O7 layered
material, where Ref. 35 estimates �/Jz ≈ 8 and J ≈ Jz. While
these anisotropies are not strong enough to stabilize a magne-
tization plateau, an anomaly occurs around m/msat = 1/3 in
the magnetization curve. This is also observed experimentally:
The magnetization curve changes its slope at h ≈ 9 T, as seen
in Fig. 3(b) in Ref. 34.
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APPENDIX: PERTURBATION EXPANSION

Here we are presenting the results of the Rayleigh-
Scrödinger perturbation theory applied to states and excitations
in the J → 0 limit.
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1. Second-order corrections in J to the ground-state energy

The second-order corrections to the energy (per site) of the
different phases are as follows:

ε
(2)
A1 = −8J 2

3Jz

− 9J 2

2(4� − 5Jz)
, (A1)

ε
(2)
A3 = − 9J 2

2(11Jz − 4�)
, (A2)

ε
(2)
F1 = − 12J 2

2� − Jz

, (A3)

ε
(2)
P 1 = − 6J 2

7Jz − 2�
, (A4)

ε
(2)
P 2 = −3J 2

2Jz

, (A5)

ε
(2)
F3 = 0. (A6)

2. First-order degenerate perturbation theory for excitation
spectrum of the uniform F1 and F2 phases

ωF1→P 2 = −h + 2Jz + 2� + 6Jγk, (A7)

ωF1→A1 = h − 2Jz + 8Jγk, (A8)

ωF3→P 2 = h − 6Jz − 2� + 6Jγk, (A9)

where γk is defined in Eq. (18).

3. Second-order degenerate perturbation theory for excitation
spectrum of the staggered phases

ωP 1→A3 = h + 2� − 6Jz − 36J 2

8Jz − 2�

− 9J 2

4(8Jz − 4�)
16γ 2

k + 48J 2

7Jz − 2�
, (A10)

ωP 1→P 2 = −h + 6Jz − 3J 2

2Jz

+ 48J 2

7Jz − 2�

− 3J 2

6Jz − 2�

(
16γ 2

k + 8
)
, (A11)

ωA1→F1 = −h + 2Jz − 27J 2

4� − 4Jz

− 12J 2

2� − 2Jz

+64J 2

3Jz

+ 36J 2

4� − 5Jz

− 2J 2

Jz

(
16γ 2

k + 8
)

− 3J 2

2� − 4Jz

16γ 2
k , (A12)

ωP 2→F3 = −h + 6Jz + 2� − 9J 2

8Jz

(
16γ 2

k + 8
) + 12

J 2

Jz

,

(A13)

ωP 2→F1 = h − 2Jz − 2� − 12J 2

2Jz + 2�
− 9J 2

8Jz

16γ 2
k

− 3J 2

2� − 4Jz

16γ 2
k + 3J 2

Jz

, (A14)

ωP 2→P 1 = h − 6Jz + 21J 2

4Jz

− 3J 2

4Jz − 2�
16γ 2

k , (A15)

ωA3→P 1 = −h + 6Jz − 2� − 12J 2

10Jz − 2�
+ 36J 2

11Jz − 4�

− 9J 2

8(5Jz − 2�)

(
16γ 2

k + 8
)
. (A16)

In the case for which we include the excitations on both
sublattices, the S−

i excitations from the A1 in the k space
are eigenvalues of the

HA1 =
(

2Jz − h − 2J 2

Jz

(
16γ 2

k + 8
) − 27J 2

4�−4Jz
− 12J 2

2�−2Jz
4
√

3Jγk

4
√

3Jγk 2� − 2Jz − h − 12J 2

Jz
− 9J 2

4(4�−6Jz)

(
16γ 2

k + 8
)
)

− 8ε
(2)
A1 (A17)

matrix. If we expand for J up to second order, this will give Eq. (A12), the corrections to the dispersion directly to the F1 phase.
Similarly, for the P1 phase

HP 1 =
(

2� + h − 6Jz − 36J 2

8Jz−2�
6Jγk

6Jγk 2Jz + h − 2� − 8J 2

3Jz
− 3J 2

6Jz−2�

(
16γ 2

k + 8
)
)

− 8ε
(2)
P 1, (A18)

and for the P2 phase

HP 2 =
(

−6Jz + h − 27J 2

4Jz
4
√

3Jγk

4
√

3Jγk −2Jz + h − 2� − 12J 2

2Jz+2�
− 9J 2

8Jz

(
16γ 2

k + 8
)
)

− 8ε
(2)
P 2. (A19)

1C. N. Yang, Rev. Mod. Phys. 34, 694 (1962).
2G. V. Chester, Phys. Rev. A 2, 256 (1970).
3A. J. Leggett, Phys. Rev. Lett. 25, 1543 (1970).

4A. F. Andreev and I. M. Lifshitz, Sov. Phys. Usp. 13, 670 (1971).
5E. Kim and M. H. W. Chan, Nature (London) 427, 225 (2004).
6A. S. C. Rittner and J. D. Reppy, Phys. Rev. Lett. 97, 165301 (2006).

184427-13

http://dx.doi.org/10.1103/RevModPhys.34.694
http://dx.doi.org/10.1103/PhysRevA.2.256
http://dx.doi.org/10.1103/PhysRevLett.25.1543
http://dx.doi.org/10.1070/PU1971v013n05ABEH004235
http://dx.doi.org/10.1038/nature02220
http://dx.doi.org/10.1103/PhysRevLett.97.165301
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43M. Klanjšek, H. Mayaffre, C. Berthier, M. Horvatić, B. Chiari,
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