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Motivated by the lack of an obvious spectroscopic probe to investigate nonconventional order such as
quadrupolar orders in spin S > 1

2 systems, we present a theoretical approach to inelastic light scattering for
spin-1 quantum magnets in the context of a two-band Hubbard model. In contrast to the S = 1

2 case, where the
only type of local excited state is a doubly occupied state of energy U , several local excited states with occupation
up to four electrons are present. As a consequence, we show that two distinct resonating scattering regimes can be
accessed depending on the incident photon energy. For h̄ωin � U , the standard Loudon-Fleury operator remains
the leading term of the expansion as in the spin- 1

2 case. For h̄ωin � 4U , a second resonant regime is found with
a leading term that takes the form of a biquadratic coupling ∼(Si · Sj )2. Consequences for the Raman spectra
of S = 1 magnets with magnetic or quadrupolar order are discussed. Raman scattering appears to be a powerful
probe of quadrupolar order.
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I. INTRODUCTION

The theoretical quest for exotic phases of magnetic matter
over the past few decades has opened the way for a systematic
investigation of models by various analytical and numerical
means and has led to the conceptual understanding of different
states. This is, for instance, the case of resonating valence bond
states, which have been investigated in the context of high-
Tc superconductors,1 frustrated spin systems,2 and quantum
dimer models.3,4 Yet, suggesting a technique to unravel the
experimental fingerprints of an exotic phase often remains
a challenge: for instance, in the spin liquid case, it is only
recently that theoretical proposals have been made to detect
this state on the kagome lattice with Raman scattering5,6 and
that experiments have been carried out.7

Raman scattering was discovered in the beginning of the
20th century. Loudon and Fleury showed how to use it to detect
magnetic excitations in the beginning of the 1960s.8

It was used for instance in the late 1980s to estimate the
exchange in the cuprates;9 it has also been shown to be a useful
probe to investigate orbital excitations in the context of 4f ma-
terials where a quadrupolar ordering of orbital origin occurs.10

More recently, the investigation of magnetic properties with
this spectroscopic technique in various contexts like frustrated
systems5,6,11,12 or iron pnictides13 has been a very active field
of research.

In fact, inelastic light scattering takes advantage of the fact
that the response is in essence linked to many-body physics
and that the photon polarization enables one to collect valuable
insights on correlated electron systems.14,15 Following this
route, we present here inelastic light scattering as a natural
probe to characterize the order and the low-energy excitations
in spin S = 1 models.

The pecularity of quantum magnets with S > 1/2 is that
they can break SU(2) symmetry with a local order parameter
that is nonmagnetic. The simplest example is provided by
quadrupolar order for S = 1 systems, where the local order
parameter is not the spin but a rank-2 tensor. This has been

extensively studied in the context of the bilinear-biquadratic
model defined by the Hamiltonian:

Heff = J
∑
〈i,j〉

[cos θ (Si · Sj ) + sin θ (Si · Sj )2]. (1)

Ferro- and antiferroquadrupolar phases have been identified
both on the triangular16,17 and square18,19 lattices for suf-
ficiently large biquadratic interactions, and the compound
NiGa2S4, where Ni2+ ions form a triangular lattice of spins
1, has been suggested to exhibit some kind of quadrupo-
lar order.16,17,20,21 Possible mechanisms to produce large
biquadratic interactions include spin-lattice coupling22 and
situations with quasiorbital degeneracy.23

A direct observation of quadrupolar order remains a
challenge, however.16 Quadrupolar states being nonmagnetic,
conventional experimental techniques such as neutron scat-
tering are insensitive to quadrupolar order. By contrast, we
show in the present work that, since light naturally couples
to the charge, inelastic light scattering offers an alternative to
investigate nonmagnetic states.

The paper is organized as follows: in a first sec-
tion, we present the microscopic model and the derivation
of the effective magnetic light-scattering operator. We discuss
the form of this effective S = 1 operator compared to the more
conventional S = 1

2 case. We show that two different resonant
regimes are accessible, depending on the incoming photon
energy, and we discuss the different polarization geometries
relevant to our problem. This leads to a section in which
the expected spectra for the different phases are displayed,
followed by a section devoted to a discussion concerning
potential experimental checks, and by a brief conclusion.

II. EFFECTIVE LIGHT-SCATTERING OPERATOR

A. Microscopic parameters

From the point of view of purely atomic physics, spin-1
states can be achieved in the case of transition-metal ions, for
instance, Ni2+ (3d8) in a cubic environment that leads to the
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standard t2g-eg splitting of the orbital d shell. The intra-atomic
electron-electron interaction of the partially filled shell can
then be reformulated as a Hund’s coupling, which favors states
maximizing the spin.

As we want to keep a very general Hubbard model, we
will consider here a lattice of such sites: two degenerate
orbitals at half-filling, i.e., two electrons per site, with nearest-
neighbor hopping and on-site interactions that include inter-
and intraorbital coupling. This two-band Hubbard model is
described by the following Hamiltonian:

HHb =
∑
i,j

∑
m,m′=a,b

t
ij

m,m′c
†
imσ cjm′σ +1

2

∑
m,m′

∑
σσ ′

Umm′njmσnjm′σ ′

+ 1

2

∑
m�=m′

∑
σ �=σ ′

{JHnjmσ njm′σ + JHc
†
imσ cimσ ′c

†
im′σ ′cim′σ

+ JP c
†
im′σ ′c

†
im′σ cimσ ′cimσ }, (2)

where i,j are the site indices, m,m′ refer to the orbitals,
and σ refers to the electronic spin. The hopping parameter
between two neighboring orbitals is tm,m′ , the on-site Coulomb
repulsion is denoted by Umm′ , JH represents the Hund’s
coupling, and JP is the pair hopping amplitude. For the sake of
clarity, we restrict ourselves here to a square lattice, although
the extension to other lattices is straightforward. Furthermore,
we assume that the additional relations, typical of cubic
symmetry, are satisfied, namely Uaa = Ubb, U = Uaa − 2JH ,
and JH = 2JP .

In the Mott insulator regime, at half-filling and for Umm′ �
tm,m′ , the electrons are localized and Hund’s coupling favors
triplet states on each site. The relevant degree of freedom is
then a spin S = 1. At second order in perturbation theory,
the resulting effective spin-1 Hamiltonian is the standard
Heisenberg model:

H(2)
eff = J

(2)
Heis

∑
〈i,j〉

Si · Sj ,

with

J
(2)
Heis = t2

aa + 2t2
ab + t2

bb

U + 2JH

.

As in the case of S = 1/2 effective models for single-band
Hubbard,24,25 pushing the perturbation to fourth order leads
to the emergence of additional terms such as four-site terms26

and biquadratic interactions.

B. Derivation of the effective operator

1. General method

Inelastic light-scattering techniques like Raman are photon-
in photon-out techniques where the incident photon couples
to the charge. Shastry and Shraiman gave a microscopic
description of the process in Ref. 27. The procedure is however
given in a more pedagogical way in Ref. 6. As we follow
very closely the latter, we will not explain in great detail the
derivation but just sketch the main ideas. The photon-electron
interaction is introduced via the Peierls substitution:

cixσ → cixσ exp

[
−i

e

h̄c

∫ ri

−∞
A · dl

]
,

where A is the photon vector potential.

For incoming photon wavelengths much larger than the
lattice spacing, it can easily be shown that the coupling of the
microscopic Hamiltonian to the photon affects only the kinetic
terms and generates a current that depends on the incident (ein)
and scattered (eout) polarizations. After second quantization
of A, a and a† being respectively the photon creation and
annihilation operators, the current term reads

HC = i
e

h̄c

∑
〈i,j〉

∑
m,m′

tm,m′
ij
c
†
imσ cjm′σ

×
∑

kin,kout

(
gineinakin + gouteouta

†
kout

) ·ei→ j ,

with gin,out = √
hc2/ωkin,outV , where V stands for the volume,

and ei→ j is the vector connecting site i and site j .
Hence collecting all the parts of the Hamiltonian describing

the electronic system coupled to the light, we have H =
HHb + HC + Hγ , where Hγ represents the purely photonic
part of the Hamiltonian.

In the limit U � t , the electrons are localized and the low-
energy spectrum of the system can be described by a spin
Hamiltonian. Furthermore, in the limit |U − ωin| � t , Hc can
be treated as a perturbation and one can derive an effective
magnetic Raman operator in the spin sector. Yet, if one is
interested in having an effective operator beyond the standard
limit |U − ωin| 
 t , one has to push the perturbation theory
to fourth order. It is worth pointing out that this effective
description conserves the quantum numbers of the original
Hamiltonian and scattering operator: for instance, since HHb

and HC conserve the total spin, so will the effective Raman
operator and thus we recover the fact that �S = 0 for Raman
excitations.

The effective scattering Hamiltonian obviously depends
on the chosen polarizations of the incoming and scattered
photons; to clarify the discussion, we present in Fig. 1 the
different geometries we have investigated.

The scattering operator can, in general, be decomposed in
two different ways: the first one involves the symmetry of this
operator and the second refers to the different incoming and
outgoing polarization vectors. These two decompositions are
equivalent at second order, but they are different at higher
order (see Ref. 28). Here, we choose to decompose the
scattering operator with respect to the polarization geometries
shown in Fig. 1. To stick to the most conventional notations,
the top-left crossed polarization geometry of Fig. 1 will be
referred to as B1g , while the bottom-left geometry will be
called A1g .

2. Single-band case: results for S = 1/2

This calculation has already been done in Ref. 27. However,
Ko et al.6 recently pointed out some differences in some
channels between the operator calculated initially and their
own calculation. So, as a warm-up, we have rederived the
operators for every channel. We found further differences at
fourth order with respect to the initial calculation.27,29 Defining
Pα ≡ ∑

r Sr · Sr+α , Qα,β,δ ≡ ∑
r (Sr · Sr+α)(Sr+β · Sr+δ),
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FIG. 1. (Color online) Polarization geometries for the incident
and scattered photons. The present decomposition refers to the
scattering sectors at second order in the derivation. Higher-order terms
will mix the sectors as indicated in Table I of Ref. 27.

and � ≡ t/(U − ωi),we found

OB1g
= 4t�

(
1
2 + 2�2

)
(Py − Px) − 2t�3(P2y − P2x),

OA1g
= 4t�

(
1
2 + 6�2

)
(Py + Px) − 2t�3(P2y + P2x)

− 8t�3(Px+y + Px−y) + 32t�3(Qx,y,x+y + Qy,x,x+y

−Qx+y,x,y), OB2g
= 0,

OA′
1g

= 4t�(1 + 8�2)Px + 16t�3Py

− 4t�3P2x − 8t�3(Px+y + Px−y)

+ 32t�3(Qx,y,x+y + Qy,x,x+y − Qx+y,x,y). (3)

In Appendix A, we discuss the differences between this
operator and the result of Refs. 27 and 29 after rewriting it
following the symmetry-based decomposition used in this
reference. To test the validity of our operators, we have
also compared on small clusters the Raman spectra of the
original single-band Hubbard model with those obtained with
the effective operators, with the conclusion that the spectra
obtained with our operators agree much better.

3. Two-band case: results for S = 1

The general procedure is similar to the one of the
single-band case, but starting from the two-band Hamiltonian
described in Sec. II A. There are two main differences between
this case and the single-band case.

First, in the one-band case, the only excited states that
were considered were the terms with two particles on one site,
inducing a Coulomb repulsion U . These terms will still be
present in the two-band case, but other terms where only the
Hund’s coupling is not satisfied will also be present. At fourth
order, this leads to resonances at different incoming energies.

Moreover, since spin-1 live in a three-dimensional space,
there are eight nontrivial Hermitian operators acting on site
(instead of three in the spin-1/2 case). We thus expect new
types of operator to appear, as, for example, the biquadratic
coupling (Si · Sj )2.

To express the Raman operator in this case, we take the
same definition for Pα and Qα,β,δ as for spin-1/2 and we
introduce in addition the operators Rα ≡ ∑

r (Sr · Sr+α)2 and

Tα,β ≡ ∑
r (Sr · Sr+α)(Sr+α · Sr+β). To fourth order in pertur-

bation theory, the resulting operators for B1g and A1g read

OB1g
= Bh(Px − Py) + Bb(Rx − Ry)

+Bh2(Pi+2x − Pi+2y) + B3(Tx,2x − Ty,2y),

OA1g
= Ah(Px + Py) + Ab(Rx + Ry)

+Ad (Px+y + Px−y)

+Ah2(P2x + P2y) + A3(Tx,2x + Ty,2y)

+A3d (Tx,x+y + Tx,x−y + Ty,x+y + T−y,x−y)

+Ap(Qx,x+y,y + Qy,x,x+y − Qx+y,x,y). (4)

The different coefficients are functions of the different param-
eters of the initial Hamiltonian, Eq. (2). They are given in
Appendix B.

C. Relevant limits and geometries

One of the major advantages of Raman scattering lies
in the possibility of using light polarization to select and
characterize the excitation that one is willing to investigate.
As the derivation remains very systematic, so far, we have
taken care of all the different polarizations. At second order,
only A1g and B1g geometries have nonvanishing operators.
Therefore, in the rest of the paper, we will mainly focus our
attention on these two cases.

In addition to the usual decomposition due to the incoming
and outgoing polarizations, one should also be aware of the
information that can be accessed through a suitable choice
of the incoming photon energy. The Raman operators and
the associated prefactors of Appendix B lead to many terms.
However, since all the prefactors depend on the incoming
photon energy, it is possible to adjust ωin to get close to
a resonance and highlight specific terms of the scattering
operators.

In the limit h̄ωin � U + 2JH ∼ U , the second-order pro-
cesses will be dominant, and the other terms can be neglected.
Therefore, in this case, we can restrict ourselves to the
Fleury-Loudon Raman operator:

h̄ωin ∼ U ⇒
{OA1g ∝ ∑

r (Sr · Sr+x + Sr · Sr+y),

OB1g ∝ ∑
r (Sr · Sr+x − Sr · Sr+y).

Another interesting limit occurs when h̄ωin ∼ 4U . In this
case, we will favor processes where there is an intermediate
state with four electrons at the same site. Such processes occur
at fourth order if they involve only two sites. Moreover, as they
can change the local spin by �S = 2, they have to be related
to the operator (Si · Sj )2. This explanation is confirmed by the
exact coefficient of the Raman operator given in Appendix B.
So, in this limit, we can consider that the Raman operator
reduces to

h̄ωin ∼ 4U ⇒
{OA1g ∝ ∑

r (Sr · Sr+x)2 + (Sr · Sr+y)2,

OB1g ∝ ∑
r (Sr · Sr+x)2 − (Sr · Sr+y)2.

So, in two different limits, the Raman operator can be written
in a quite simple way for the B1g and the A1g geometries.
The next section will be devoted to an investigation of the
Raman spectra calculated from these four operators in different
situations.
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FIG. 2. (Color online) Raman spectra of the spin-1 Heisenberg
model [θ = 0 of the Hamiltonian of Eq. (1)] for A1g and B1g

polarizations. The left column represents the inelastic response as a
function of the energy loss for an incoming photon of energy h̄ωin �
U , which corresponds to the Loudon-Fleury operatorsOFL ∝ ∑

i[Si ·
Si+x ± Si · Si+y]. The right column corresponds to an incoming
photon energy of h̄ωin � 4U , and hence to the biquadratic form of
the scattering operators OBiq ∝ ∑

i[(Si · Si+x)2 ± (Si · Si+y)2]. The
spectra have been computed for a 16-site cluster.

III. RESULTS: EXPECTED SPECTRA

The goal of this section is to look at the Raman response
for specific angles θ of Eq. (1). We do not mean here to
give a quantitative and exhaustive analysis of the expected
spectra but rather a qualitative description of them and, most
importantly, of their evolution throughout the different phases.
These investigations are carried out numerically. The presented
spectra have been obtained with Lanczos and the continued
fraction30 for a 16-site square lattice cluster with periodic
boundary conditions. This cluster has additional symmetries,31

but this is of no consequence for our present purpose, which
is to investigate the overall shape and behavior of the spectra
for different phases.

The results and spectra discussed in the present section are
summarized in Fig. 2 and in Fig. 3.
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FIG. 3. (Color online) Raman spectra for a model with purely
biquadratic coupling [θ = − π

2 of the Hamiltonian of Eq. (1)] for
A1g and B1g polarizations. The left column represents the inelastic
response as a function of the energy loss for an incoming photon of
energy h̄ωin � U , which corresponds to the Loudon-Fleury operators
OFL ∝ ∑

i[Si · Si+x ± Si · Si+y]. The right column corresponds to
an incoming photon energy of h̄ωin � 4U , and hence to the bi-
quadratic form of the scattering operators OBiq ∝ ∑

i[(Si · Si+x)2 ±
(Si · Si+y)2]. The spectra have been computed for a 16-site cluster.

A. Heisenberg AF phase

The most conventional Heisenberg antiferromagnetic phase
is obviously reached for θ = 0 in the Hamiltonian of Eq. (1).
The Raman response in the B1g geometry for the Fleury-
Loudon operator exhibits a bimagnon peak, which can be
understood with a standard spin-wave calculation: linear
spin-wave theory leads to a peak at a Raman loss h̄� =
h̄(ωin − ωout) ≈ 8J , which softens down to h̄� ≈ 7.8J after
taking into account magnon-magnon interactions, as shown for
instance by Chubukov and Frenkel32 or Canali and Girvin.33

This is in qualitative agreement with our numerical result.
For the same polarization, the biquadratic operator gives the
same response with additional peaks for higher Raman losses
corresponding to multimagnon excitations.

In the A1g geometry, the Fleury-Loudon operator commutes
with the Heisenberg Hamiltonian and the Raman response
vanishes. This is not the case for the biquadratic operator:
as in the Fleury-Loudon case, the two-magnon features
disappear, but the multimagnon peaks, which arise from the
noncommutating part of the operator with the Hamiltonian,
remain visible. It would be really interesting to check this
prediction experimentally, namely that intensity shows up at
larger Raman loss energy when the incoming light frequency
is in the range 4U/h̄.

B. Ferro-quadrupolar order

For quadrupolar order, the relevant order parameter, Q (see
Ref. 34), and its descendant observables like Q · Q can be
written in terms of spin operators:

Qi · Qj = 2(Si · Sj )2 + Si · Sj + Cst. (5)

An easy point to investigate corresponds to θ = −π/2, where
the Hamiltonian reduces to its biquadratic part.

As already discussed, there are two resonant regimes: the
first one for an incoming photon energy h̄ωin � U leading
to the bilinear Fleury-Loudon operator, and a second one for
h̄ωin � 4U , at which the leading term of the scattering operator
is proportional to (Si · Sj )2. Since in Eq. (5) both bilinear and
biquadratic couplings appear in the quadrupole-quadrupole
observable, both resonant regimes offer the possibility to
investigate quadrupolar order.

Concerning the physics occurring at h̄ωin � U , the Fleury-
Loudon scattering Hamiltonian is expected to give access to
quadrupolar excitations, and this turns out to be the case:
the Raman response exhibits a marked peak for a Raman
loss of h̄� ≈ 5J , which can be understood as coming from
a pair of quadrupolar excitations. Indeed, a flavor-wave34,35

calculation gives the dispersion of the quadrupolar excitations
across the Brillouin zone, as displayed in Fig. 4, with a
2J excitation at (π,0), leading to a peak close to a Raman
loss of 4J . This prediction corresponds to the excitation of
two noninteracting quadrupolar excitations. However, this
simple picture does not take into account particle-particle
interactions, which in the present case appear to shift the peak
position at higher energy. At first glance, it is not obvious that
the Loudon-Fleury scattering operator offers the possibility
to investigate quadrupolar excitations, since this scattering
resonance is mostly known to highlight the bimagnon peak.
Yet, in contrast to the conventional magnetic scattering, the two
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FIG. 4. (Color online) Flavor-wave dispersion for a ferro-
quadrupolar order corresponding to θ = −π/2 in Eq. (1).

scattering geometries, A1g and B1g , have comparable spectra,
as none of the operator commutes with the Hamiltonian.
The similarity of the two spectra for the two polarization
geometries seems to be a signature of a ferro-quadrupolar
phase.

The second resonance, for an incoming photon energy
of h̄ωin � 4U , is associated to a scattering operator with
biquadratic spin terms. As quadrupolar ordered phases are a
ground state of the Hamiltonian when (Si · Sj )2 dominates,
one expects that the effective Raman operator for h̄ωin �
4U probes directly quadrupolar excitations. Indeed, this is
confirmed by our calculations and the obtained results can be
explained in a straightforward manner. For the A1g geometry,
the Raman operator commutes with the Hamiltonian, hence
the response vanishes. One should note, however, that for
real systems many terms appear in the scattering operator
and longer-range terms in the Hamiltonian should also be
considered; all these facts combine to give a finite Raman
response even in this geometry. Yet, exactly as for conventional
magnetic Raman scattering, the amplitude of the response
should be much stronger for B1g polarizations, as shown in
Fig. 2. One recovers the quadrupolar excitation at h̄� ≈ 5J .

IV. DISCUSSION

As summarized in Figs. 2 and 3, the signal corresponding to
a Néel ordered and a ferro-quadrupolar phase are qualitatively
different. Hence Raman scattering offers the opportunity to
detect quadrupolar ordering in a relatively straightforward
manner. The systematic is rather simple: one should ana-
lyze the Raman spectra obtained for two scattering geome-
tries (parallel and crossed polarizations) as presented here
and tune the incoming photon energy, this last step being
of course the most crucial one as it enables one to switch
from the standard Loudon-Fleury limit to the biquadratic form
of the scattering operator. This is one of the main messages of
the paper: the microscopic derivation of an effective magnetic
scattering operator for S = 1

2 systems leads to one resonance
at h̄ωin � U , since there is only one possible intermediate
state. This situation is no longer valid for S = 1 compounds;
as a spin-1 is formed by a system of two electrons per site
strongly coupled via Hund’s rule, different intermediate states
can be accessed: one with three electrons at one site, leading

to the usual resonance at h̄ωin � U and another one with
four electrons at one site leading to a second resonance at
h̄ωin � 4U . Of course, many other intermediate states are
possible, however, at second order, the only possibility is to
have three electrons at one site; therefore, the Loudon-Fleury
term will dominate and, at fourth order, biquadratic terms
are only appearing along with intermediate states having
quadruple occupancies.

However, going from the first resonant regime (h̄ωin � U )
to the second one (h̄ωin � 4U ) requires an adequacy between
the materials and the available light source. Indeed, having a
handle on the in and out polarizations remains much easier
for visible light and, if U is too large, one would end up with
incoming photons in the UV region of the light spectrum. A
promising route might be to try organic systems, in which all
interactions, including U , are smaller than in oxides.

Turning to the specific case of the ferro-quadrupolar
phase, the experimental investigation would require two steps:
(i) for an incoming photon energy of h̄ωin � U , one should
start with a geometry corresponding to the A1g polarization and
observe a spectrum with a peak at about h̄� ≈ 5J . By keeping
the same photon energy and slowly rotating the outgoing
polarization until getting to the B1g polarization, one should
not observe much variation, but a small hardening of the main
peak. (ii) The second step consists of tuning the incoming
photon energy to h̄ωin � 4U and, to collect the spectra
for the different polarizations from B1g to A1g , the Raman
response should this time exhibit strong modifications: going
from a marked peak to much broader features. In principle,
performing the experiment within the Loudon-Fleury limit
should be sufficient. However, if one does not know precisely
the value of J in the considered compound, this two-step
procedure allows a clear identification of the ferro-quadrupolar
order. Precise calculations for the specific compound would
also give information about J after fitting the data. Also, and
from a more fundamental perspective, one should notice that
the second resonance regime should exist even in the case
of a standard Heisenberg phase. In this situation, the Raman
spectra should exhibit not only a bimagnon peak, but also more
spectral weight at higher energy loss.

V. CONCLUSION

In the present paper, we have derived a general effective
inelastic light-scattering operator for spin-1. We have shown
that this operator offers two different resonant regimes de-
pending on the choice of the incoming photon energy. On the
basis of calculated spectra, obtained by exact diagonalization
of finite clusters, we have shown that the different phases
of interest (Néel and ferro-quadrupolar) exhibit characteristic
fingerprints that allow a clear identification of each type of
ordering. This work, for the square lattice, illustrates the
potential of the Raman scattering technique as a probe for
characterizing quadrupolar order; one of the best candidates for
such a phase remains NiGa2S4, where the spin S = 1 located
on the Ni2+ ions form a triangular lattice. It is clear that a
direct application for this compound is not entirely possible, as
it requires another derivation and a suitable decomposition of
the scattering channels, which is left for further investigation.
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APPENDIX A: COMPARISON OF EFFECTIVE
RAMAN OPERATORS

In this Appendix, we aim at comparing an effective
magnetic Raman scattering operator in the Mott insulating
state for a spin S = 1

2 model to the original Raman current
operator that is associated to the Hubbard model. We present
here a comparison for the Hubbard model on an (4 × 2 =
8)-site ladder for B1g polarization as well as for a six-site
chain. The effective scattering operator derived in the present
paper shows some differences compared to Shastry and
Shraiman’s; we also provide graphs to compare our results to
theirs.

In order to stick to Shastry and Shraiman’s origi-
nal notations of Ref. 27, we recall their results for the
reader:

Os = 2t�(Py + Px) + 8t�3(P2x + P2y + Px+y + Px−y)

+ 32t�3(Qx,y,x+y + Qy,x,x+y − Qx+y,x,y),

Od = 4t�
[

1
2 − 4�2

]
(Py − Px) + 8t�3(P2y − P2x),

Oo = 64t�3
∑

r

iεμ,μ′Sr · (Sr+μ × Sr+μ′ ),

Oe = −16t�3(Px+y + Py−x). (A1)

While our derivation gives

Os = (2t� + 24t�3)(Py + Px) − 2t�3(P2x + P2y)

− 8t�3(Px+y + Px−y)

+ 32t�3(Qx,y,x+y + Qy,x,x+y − Qx+y,x,y),

Od = 4t�
[

1
2 + 2�2

]
(Py − Px) − 2t�3(P2y − P2x),

Oo = 0, Oe = 0. (A2)

Ko et al.6 already noticed that there is no chiral term
appearing in Oo, unlike in Shastry and Shraiman’s derivation.
To check our derivation, we perform a numerical analysis on
finite clusters. The quantities we compare are the height of
a most prominent peak in the exact model and the height
of the same peak in the effective model at second and
fourth order. We performed this analysis on two different
clusters.

(1) A (2 × 4 = 8)-site cluster with open boundary con-
ditions. This choice is motivated by the fact that it is the
smallest cluster where some bounds have the correct prefactor
in the x direction (for smaller clusters, some fourth-order
renormalization factors will not be present in the term

 0.99  0.991  0.992  0.993  0.994  0.995  0.996  0.997

H
ei

gh
t (

ar
b.

ωin/U

Effective model, second order
Effective model, fourth order, current work
Effective model, fourth order, Shastry & Shraiman
Hubbard model

un
its

)

FIG. 5. (Color online) Comparison of the height of the main
Raman peak for a fixed Raman loss as a function of the incoming
photon energy for different models for a (2 × 4)-site ladder with open
boundary conditions. The hopping amplitude has been set to t = U

2000 ,

so that t 
 U and J = 4t2

U
= U

106 .

Si · Si+x), while periodic boundary conditions would lead to
the renormalization of some terms with respect to the infinite
case coming from processes where a doublon goes through the
four sites of one leg. The results for this cluster are presented
in Fig. 5.

(2) A six-site chain with periodic boundary conditions. This
cluster is very useful to check the prefactor of Si · Si+2x . As
the term Si · Si+x commutes with the Hamiltonian on this
cluster, only the Si · Si+2x term contributes to the scattering
amplitude; thus we can check very precisely the coefficient.
Here, it is not possible for a doublon to travel through the entire
system at fourth order, and therefore we can choose periodic
boundary conditions. The results for this cluster are presented
in Fig. 6.

As can be seen in these figures, in both cases the spectrum
derived from our effective Raman operator agrees very well
with that calculated directly with the original Hubbard model,
while the effective operator of Shastry and Shraiman leads to
significant differences beyond the second order.

 0.993  0.9935  0.994  0.9945  0.995  0.9955  0.996  0.9965  0.997

H
ei

gh
t (

ar
b.

 

ωin/U

Effective model, second order
Effective model, fourth order, present work
Effective model, fourth order, Shastry & Shraiman
Hubbard model

un
its

) 

FIG. 6. (Color online) Same as Fig. 5 for a six-site chain with
periodic boundary conditions.
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APPENDIX B: COEFFICIENTS OF THE EFFECTIVE SPIN-1 RAMAN OPERATOR

In this Appendix, we list the expression of the prefactors of the effective spin-1 Raman operator defined in Eq. (4). The terms
enclosed in a square box are those that dominate at the two resonances:

Bh = t2
aa + 2t2

ab + t2
bb

2(2JH + U − ωin)
+ 2t4

1 + 8t4
2 + 4t4

4 + 2t4
ab

(2JH + U − ωin)3

+ 2(t4
1 − 2t4

4 + t4
ab)

(2JH + U − ωin)2(4JH + U − ωin)
− 4t4

4

(2JH + U − ωin)2(5JH − 2JP + U − ωin)

+ 2
(
t4
2p + t4

ab

)
(2JH + U − ωin)2(5JH − 2JP + U − ωin)

+ 2(4t4
2 + t4

2p + 2t4
4 + t4

ab)

(2JH + U − ωin)2(5JH + 2JP + U − ωin)
,

Bh2 = −2t4
1 − 8t4

2 − 4t4
4 − 2t4

ab

(2JH + U − ωin)3
+ t4

1 − 2t4
4 + t4

ab

(2JH + U − ωin)2(4JH + U − ωin)

+ t4
2p − 2t4

4 + t4
ab

(2JH + U − ωin)2(5JH − 2JP + U − ωin)
+ 4t4

2 + t4
2p + 2t4

4 + t4
ab

(2JH + U − ωin)2(5JH + 2JP + U − ωin)
,

Bb = − 4
(
t4
2p − 2t4

4 + t4
ab

)
(2JH + U − ωin)2(4U − ωin)

,

B3 = t4
1 + 4t4

2 + 2t4
4 + t4

ab

(2JH + U − ωin)3
+ −t4

1 + 2t4
4 − t4

ab

(2JH + U − ωin)2(4JH + U − ωin)

+ −t4
2p + 2t4

4 − t4
ab

(2JH + U − ωin)2(5JH − 2JP + U − ωin)
+ −4t4

2 − t4
2p − 2t4

4 − t4
ab

(2JH + U − ωin)2(5JH + 2JP + U − ωin)
,

where the parameters t1, t2, t2p, t4 are defined in terms of the original microscopic hopping parameters by

t4
1 = 1

2 (t4
aa + t4

bb), t4
2 = 1

2 (t2
aat

2
ab + t2

abt
2
bb), t4

2p = t2
aat

2
bb, t4

4 = taat
2
abtbb,

Ah = t2
aa + 2t2

ab + t2
bb

2(2JH + U − ωin)
+ 4t4

1 + 16t4
2 + 8t4

4 + 4t4
ab

(2JH + U − ωin)3
+ 4

(
t4
1 − 2t4

4 + t4
ab

)
(2JH + U − ωin)2(4JH + U − ωin)

− 8t4
4

(2JH + U − ωin)2(5JH − 2JP + U − ωin)
+ 4

(
t4
2p + t4

ab

)
(2JH + U − ωin)2(5JH − 2JP + U − ωin)

+ 4
(
4t4

2 + t4
2p + 2t4

4 + t4
ab

)
(2JH + U − ωin)2(5JH + 2JP + U − ωin)

+ 4
(
t4
2p − 2t4

4 + t4
ab

)
(2JH + U − ωin)2(2JH + 3U − ωin)

,

Ah2 = −2t4
1 − 8t4

2 − 4t4
4 − 2t4

ab

(2JH + U − ωin)3
+ t4

1 − 2t4
4 + t4

ab

(2JH + U − ωin)2(4JH + U − ωin)

+ t4
2p − 2t4

4 + t4
ab

(2JH + U − ωin)2(5JH − 2JP + U − ωin)
+ 4t4

2 + t4
2p + 2t4

4 + t4
ab

(2JH + U − ωin)2(5JH + 2JP + U − ωin)
,

Ab = − 4
(
t4
2p − 2t4

4 + t4
ab

)
(2JH + U − ωin)2(4U − ωin)

, A3 = t4
1 + 4t4

2 + 2t4
4 + t4

ab

(2JH + U − ωin)3
+ −t4

1 + 2t4
4 − t4

ab

(2JH + U − ωin)2(4JH + U − ωin)

+ −t4
2p + 2t4

4 − t4
ab

(2JH + U − ωin)2(5JH − 2JP + U − ωin)
+ −4t4

2 − t4
2p − 2t4

4 − t4
ab

(2JH + U − ωin)2(5JH + 2JP + U − ωin)
,
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Ad = −8t4
1 − 32t4

2 − 16t4
4 − 8t4

ab

(2JH + U − ωin)3
+ 2(t4

1 − 2t4
4 + t4

ab)

(2JH + U − ωin)2(4JH + U − ωin)

− 4t4
4

(2JH + U − ωin)2(5JH − 2JP + U − ωin)
+ 2(t4

2p + t4
ab)

(2JH + U − ωin)2(5JH − 2JP + U − ωin)

+ 2(4t4
2 + t4

2p + 2t4
4 + t4

ab)

(2JH + U − ωin)2(5JH + 2JP + U − ωin)
,

Ap = −2(2t4
1 + 8t4

2 + 4t4
4 + 2t4

ab)

(2JH + U − ωin)3
, A3d = t4

1 + 4t4
2 + 2t4

4 + t4
ab

(2JH + U − ωin)3
+ −t4

1 + 2t4
4 − t4

ab

(2JH + U − ωin)2(4JH + U − ωin)

+ −t4
2p + 2t4

4 − t4
ab

(2JH + U − ωin)2(5JH − 2JP + U − ωin)
+ −4t4

2 − t4
2p − 2t4

4 − t4
ab

(2JH + U − ωin)2(5JH + 2JP + U − ωin)
.
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