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Dynamics of azurite Cu3(CO3)2(OH)2 in a magnetic field as determined by neutron scattering
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Azurite, a natural mineral made up of CuO chains, is also an intriguing spin-1/2 quantum magnet. There
has been much debate as to the one-dimensional (1D) nature of this material by theorists and experimentalists
alike. The focus of this debate lies in the interactions between Cu ions within the antiferromagnetically ordered
state below 1.9 K. We present high-resolution inelastic neutron-scattering data that highlight the complexity of
the magnetic ground state of azurite. The application of magnetic fields and temperatures were used to probe
the excitations revealing important information about the dynamics in this system. From this we are able to
conclude that the 1D Heisenberg antiferromagnetic spin chain model is not sufficient to describe the dynamics in
azurite. Instead additional coupling including interchain interactions and an anisotropic staggered field are
necessary to fully model the observed excitations.
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I. INTRODUCTION

Low-dimensional magnetic systems, in particular copper
oxides, are interesting subjects of study due to the novel
physics that can emerge when they are cooled to low
temperatures. Magnetism in these materials arises from the
spin-1/2 moments carried by the Cu2+ sites, and the magnetic
couplings can vary strongly in magnitude and sign depending
on the geometry and environment of the copper oxide bonds
involved. Azurite, Cu3(CO3)2(OH)2, is one such copper oxide
material, which has been the subject of debate in recent
years.1–8 A natural mineral, azurite can be considered one
of the first experimental realizations of the one-dimensional
(1D) distorted diamond chain model.2,9 While it orders
antiferromagnetically below 1.9 K,10,11 there has been much
debate involving the relative exchange interactions between
the Cu ions as shown in Fig. 1. Much experimental analysis
and theoretical modeling have been performed, however there
is as yet no general consensus as to the exact magnitudes
of the exchange interactions either within the 1D diamond
chain, or between chains.1–4,6 Despite this, there is significant
evidence that suggests the exchange interaction J2 is by far
the strongest interaction leading to a coupling of Cu ions
into dimers and monomers.2,4,12 From these results it is now
widely believed that azurite cannot be described in terms of a
simple isotropic exchange chain Hamiltonian, but rather that
interchain coupling and/or anisotropic exchange must also be
taken into account when describing this material.

Recently detailed investigations of the low-temperature
nuclear and magnetic structures has been performed.13,14 From
these studies it was found that the symmetry of azurite was
P 21 rather than the previously determined P 21/c. For the
first time, low-temperature lattice parameters were found
at 1.28 K to be a = 4.999 95(11) Å, b = 5.822 56(14) Å,
c = 10.337 23(19) Å with β = 92.2103(17)◦.14 The magnetic-
moment structure was also revealed in this work where
two different moments were found: m0 = 0.684μB on the

monomer site (Cu1) and m0 = 0.264μB on the dimer site
(Cu2). From this work one can now speculate how the relative
magnetic-moment orientation of the dimer and monomer spins
can affect the local magnetic environment in the ordered phase.
For instance, it was proposed that the non-negligible moment
on the dimer sites originates from the effective staggered field
from the antiferromagnetically coupled monomers.14

In this paper, we present inelastic neutron-scattering data
of the quasi-one-dimensional (1D), S = 1/2 antiferromagnet
(AFM) Cu3(CO3)2(OH)2. These investigations focus on the
magnetic excitations in azurite for applied fields below the
plateau phase—that is, below 11 T when applied perpendicular
to the Cu-chain direction.2,9 We will compare our data with the
ideal Heisenberg model and reveal the inconsistencies between
the two. We use the recent structural and magnetic information
to devise a model that better describes azurite.

II. EXPERIMENTAL METHOD

Inelastic neutron-scattering measurements were conducted
at the Helmholtz Zentrum Berlin (HZB), using FLEX,
the cold-neutron triple-axis spectrometer. A large, naturally
obtained single-crystal sample of Cu3(CO3)2(OH)2, which has
been studied previously,4 was used for all inelastic neutron-
scattering measurements. The sample was aligned with either
an a∗b∗-scattering plane or a b∗c∗-scattering plane such that
measurements could be taken along each of the principal lattice
directions H , K , and L. The sample was kept at 1.5 K to ensure
that the system was in the ordered magnetic phase. Constant-Q,
energy-transfer scans were performed within the range
0–2.5 meV with incident neutrons fixed at ki = 1.3 Å−1.
The collimation was set to guide-60’-open-open with a
horizontally curved analyzer. This combination of parameters
gave an instrumental energy resolution of 0.11 meV.

The high-resolution time-of-flight spectrometer OSIRIS at
ISIS, UK was also used to probe the magnetic excitations in
azurite.15 Magnetic fields up to 7 T were applied perpendicular
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FIG. 1. (Color online) Diamond chain model showing the struc-
ture of azurite and the relative exchange interactions within the chain.
It is now widely believed that J2 is the strongest interaction in azurite.

to the chain direction (i.e., perpendicular to the b∗ axis). The
sample was mounted onto the end of a Kelvinox dilution
insert and placed within the 7.5-T vertical field magnet. The
temperature of the sample was varied between 0.05 and 20 K
but was stable for each measurement to within ±0.01 K. The
sample alignment was checked in diffraction mode, using the
backscattering detector banks confirming an a∗-b∗ scattering
plane. Data were taken using the chopper package PG002,
which covered an energy-transfer range of −0.2 � E �
2.5 meV with a resolution at E = 0 of 0.025 meV. This energy
range was chosen to maximize the resolution of the AFM spin
chain, which was previously observed below 2.5 meV energy
transfer.4

III. RESULTS

A. Dimensionality of the dynamics

Constant-Q energy scans were taken along each of the
principal lattice directions H , K , and L to ascertain the
1D nature of the low-energy excitations within the ordered
magnetic phase. These measurements were taken along the [H ,
0.5, 0], [1, K , 0], and [0, 0.75, L] directions and can be seen
in Fig. 2. Since recent theoretical work has implied significant
interchain contributions to the interactions in azurite, it was
important to measure the dispersion relation along each of
the three directions. From the data in Fig. 2, there is little
or no observed Q dependence along the H and L directions,
within the resolution of these measurements. In contrast to
this, there is a clear Q dependence for measurements taken
along the K direction—that is, parallel with the diamond
chains of Cu ions. This is in fact the same result studied in
Ref. 4 and has been attributed to the coupling of the monomer
ions along the diamond chain. These results imply that, within
the resolution of these measurements, the interchain couplings
along the L direction are at least an order of magnitude less than
along K .

FIG. 2. (Color online) Constant-Q energy scans taken along each
of the principal lattice directions H , K , and L in azurite [labeled
(a), (b), and (c), respectively]. The intensity of each data set was
normalized to the elastic intensity. Black spots indicate the point
density while smoothing has been applied. The dashed line in (b)
is a guide to the eye. (d) A cosine fit to the excitation observed
in (c) revealing an amplitude of 0.03 meV. This indicates minimal
dispersion along the L direction around an order of magnitude less
than along the K direction.

B. High-resolution TOF

The dynamics within the HK0 plane were measured on
the single-crystal sample by summing together data from 20
different sample rotation positions covering 90◦. These results
reveal the rich nature of the low-energy magnetic scattering
excitations in azurite. It is believed that this scattering results
from an effective 1D chain primarily of monomer spins,
while the dimerized pairs of Cu ions primarily contribute to
scattering at higher energies.16 In this way multiple Brillouin
zones could be mapped out showing the dispersive relation
along the chain direction, as shown in Fig. 3. These data
have been treated for detector efficiency with a background
subtracted and the intensity modulation across the Brillouin
zone is a result of the Cu-form factor. For these measurements,
the sample temperature remained constant at 60 mK in
order to reduce the influence of thermal fluctuations on the
excitations. While the overall dispersion looks very similar to

FIG. 3. (Color online) Inelastic neutron-scattering data covering
two Brillouin zones showing the periodic dispersion along K .
Measurements were taken at 60 mK.
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FIG. 4. (Color online) The dynamic scattering from azurite along
the Cu-chain direction in azurite is shown at 0.04 K (a) and 2.5 K
(b). The periodic dispersion in K at 40 mK resembles the 1D HAFC
with a spinon continuum, however, this model does not allow for
the energy gaps, �1 and �2, clearly observed in this high-resolution
data (indicated by the arrows). The lower plots show the expected
scattering from a 1D HAFC at 0.04 K (c) and 2.5 K (d). The absence
of gaps from the model in (c) indicates that interchain coupling and
anisotropy terms play a significant role in the azurite Hamiltonian. In
contrast, the data and simulation taken above the magnetic ordering
temperature look quite similar.

that observed on FLEX and in earlier measurements,4 there are
clearly additional features that are revealed from the higher
resolution study. In particular, there is evidence now of two
gaps at the AFM Brillouin-zone center (0, −0.5, 0) located
at �1 ≈ 0.4 meV and �2 ≈ 0.6 meV. While the periodic
dispersion resembles the scattering from a 1D Heisenberg
antiferromagnetic chain (HAFC) with a spinon continuum,
this model is gapless as demonstrated in the simulation of
Fig. 4(c). Heisenberg interchain interactions would allow for
the observed gaps in the K-dispersion, however, these would
also be responsible for dispersive behavior along the other
principal directions, H and L. Since Fig. 2 showed almost no
dispersion, then we must consider an anisotropic interchain
interaction, which would not be dispersive perpendicular to
the chain.

C. Temperature variation of the low-energy band

Focusing on one Brillouin zone with higher statistics, the
temperature dependence of the low-energy scattering can be
observed, as seen in Fig. 4. The two gaps at the zone center are
clearly evident in the lowest temperature data set, however, at
higher temperatures they are not observed. At 2.5 K azurite
is no longer in its 3D magnetically ordered phase. However,
scattering from the diamond chain and the spinon continuum
is still evident. In particular, the scattering is strongest at the
zone center with a possible sinusoidal dependence resembling
that of the 1D HAFC model. It is clear that while the signal
is much weaker at 2.5 K, the chain dynamics still persist.

While the counting statistics of the higher temperature data
sets are insufficient for a quantitative assessment, they show a
qualitative agreement with the 1D spin chain model.

D. Applied field TOF

By applying a magnetic field we can influence the magnetic
dynamics in such a way as to reveal more about the interactions
within azurite. The dynamics of azurite were observed as a
function of magnetic field up to 7 T applied parallel to the c∗
direction. By applying the magnetic field perpendicular to the
Cu-O chains, we were able to access a greater portion of the
dynamic magnetic phase diagram than if the field were applied
parallel to the Cu-O chains. The zone center and boundaries
were observed to show the most notable changes and have
been plotted as a function of field at 0.04 K in Fig. 5. The
zone-boundary mode at a zero field energy of 1.2 meV clearly
splits into two modes at low fields with a third mode splitting
from around 3 T. While these modes diverge with increasing
field, they do not follow a Zeeman-type splitting.

At the zone center, three modes are clearly visible with
varied behavior in field. The weak upper mode at ≈1.2 meV
tracks the zone-boundary behavior of Fig. 5(a) and could
be a shadow due to secondary scattering processes from
incoherent scattering. The lower gap �1 shows a clear decrease
in energy with applied field while the upper gap �2 remains
approximately constant with field. The different field behaviors
indicate that the origin of the two gaps also differs, as will be
discussed later.

The effect of the applied field on the Q vector of the energy
gaps can reveal information about the character of the two
different modes. Figure 6 shows how the lattice vector of the
dynamics behaves in fields up to 7 T. The lower gap, which
has been displayed by binning the energy range 0.35 < En <

0.45 meV, shows almost no deviation from the zero-field value.
The gap at higher energies 0.55 < En < 0.65 meV shows a
different field dependence with a clear splitting of K from

FIG. 5. (Color online) The field dependence of the low-energy
excitations taken at the zone boundary (a) with Q = [0, −0.25,0]
and the zone center (b) with Q = [0, − 0.5,0]. Gaussian fits to the
excitations show a divergence of the modes at the zone boundary
(c) while each of the three modes at the zone center (d) show
different field-dependent behavior. These data indicate that the nature
of the excitations is not that of standard spin waves in an isotropic
antiferromagnet.
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FIG. 6. (Color online) The variation in Q vector of the zone-
center energy gaps with applied field. Left: the lower gap located in
the range 0.35 < En < 0.45 meV shows almost no change in K with
field (as indicated by the black line) until 6 T when Gaussian fits
indicate a small splitting. Right: the upper gap in the range 0.55 <

En < 0.65 meV shows a more significant splitting at low fields. The
black lines follow the magnetization per spin of the Heisenberg chain
as defined by Eq. (1).

around 1 T. As discussed below, this suggests that the lower
mode has originated more from the transverse continuum (spin
fluctuations perpendicular to the field) and the upper from the
longitudinal continuum (spin fluctuations along the field).

IV. ANALYSIS AND DISCUSSION

A. Comparison to the 1D HAFC model in a field

To gain more insight into the physics of azurite we first
consider the effect of applied field and how this influences the
spin-1/2 Heisenberg chain model. In Figs. 7(a), 7(c), and 7(e)
we demonstrate how applied field will affect the spin correla-
tions for the 1D Heisenberg model. These simulations involve
taking the average contribution from the spin correlations
along the field direction S||(Q,ω) and perpendicular S⊥(Q,ω).
The spin correlations are computed for finite chains of 192 sites
using the integrability-based ABACUS method.17–19 Overall,
the general features observed in S(Q,ω) compare favorably
with the neutron-scattering data shown in Figs. 7(b), 7(d), and
7(f) despite the absence of gaps. However, it is clear that the
rotational symmetry in azurite is broken by the applied field.
One point of difference with the simulations though is the extra
intensity around the zone boundary and apparent flattening of
the modes across the zone. This is evident in Fig. 7(f) in
particular. The origins of these differences are not clear as yet
and they may be a result of anisotropies in the Hamiltonian.

In zero field there is only one contribution to the scattering
S(Q,ω) for the Heisenberg model, which is shown in Fig. 8(a).
However, in an applied field, the separate contributions from
S||(Q,ω) and S⊥(Q,ω) combine to give the scattering pattern
in Fig. 8(b) for 4.5 T. Here, we define S||(Q,ω) as the spin
correlations longitudinal to the applied field and S⊥(Q,ω) as
the average of the spin correlations transverse to the applied
field. In contrast to zero field, the 4.5-T scattering from the
transverse and longitudinal correlations can be considered
separately as in Figs. 8(c) and 8(d), respectively.

The transverse and longitudinal continua behave very
differently in applied fields and have been modeled in Fig. 9.
Here the transverse (left panels) and longitudinal (right panels)

FIG. 7. (Color online) (a), (c), and (e) show simulations of the
inelastic neutron-scattering data for applied fields 2, 4.5, and 6 T.
These can be compared to the experimental results for the same fields
in (b), (d), and (f). The simulation is at zero temperature and the data
were taken for the temperature T = 0.04 K, which is small compared
to the exchange couplings in the system. A background from the
zero-field data set has been subtracted from the data on the right.

continua have been calculated for an anisotropic Heisenberg
Hamiltonian,

H =
N∑

j=1

JxS
x
j Sx

j+1 + JyS
y

j S
y

j+1 + JzS
z
jS

z
j+1 − HzS

z
j , (1)

FIG. 8. (Color online) Simulation of the 1D HAFC at zero field
(a) and at 4.5T (b). The 4.5-T simulation can be separated into
the two components: transverse (c), indicating the spin correlations
perpendicular S⊥(Q,ω), and longitudinal (d), indicating the spin
correlations along the field direction S ||(Q,ω).
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FIG. 9. (Color online) Simulation of the anisotropic Heisenberg
Hamiltonian, as defined in Eq. (1) from Ref. 20, where Jx = 1, Jy =
0.5, and Jz = 1. The transverse (left column) and longitudinal (right
column) continua scattering have been plotted for applied magnetic
fields (from top to bottom) Hz = 0.01,0.05,0.1, which correspond to
approximately Hsat/40, Hsat/8, and Hsat/4, respectively where Hsat for
azurite is 11 T. While the zone center of the transverse mode shows no
field induced splitting around K = 0, the longitudinal mode shows
significant splitting (see text for details). Both show a strong field
dependence at the zone boundary.

where S
x,y,z

j are spin-1/2 operators as defined in Eq. (1) from
Ref. 20, with applied fields increasing up to Hz = 0.1. The
units of Hz are coupled to the relative values of Jx , Jy , and
Jz used in the calculation. For the particular values used to
calculate Fig. 9 a saturation field of Hz ≈ 0.4 is equivalent to
the observed plateau limit of ≈11 T for azurite. The anisotropy
in this XYZ model is responsible of the energy gap observed
at the zone center. As can be seen, the transverse mode does
not split in K at the zone center whereas the longitudinal does.
However, both show significant splitting at the zone boundary.
Since the lower mode observed in azurite (0.4 meV) (Fig. 6)
does not appear to split in K with field we can deduce that
this originates from the transverse continuum while the upper
gapped mode (0.6 meV), which does split with applied field,
originates from the longitudinal continuum.

The magnetization per spin in a spin-1/2 Heisenberg chain
versus field can be approximated using the following equation
from Ref. 21:

σ (h) = 1

π
a sin

1

1 − π/2 + πhsat/2h
, (2)

where 0 < h < hsat and hsat = 11 T for azurite. The incom-
mensuration along K (to be compared to the right panels
of Fig. 9 for the longitudinal mode) is Q(h) = 1/2 ± σ (h).
This uses the relationship between magnetization and filling
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FIG. 10. (Color online) Plot of the magnetization curve for the
isotropic XXX antiferromagnet. The blue line is the exact curve
obtained from the Bethe ansatz. The green dashed curve is the
approximation in Eq. (1). The subplot gives the difference between
exact and approximate curves, which remains small throughout the
parameter range considered.

factor for spinons. It also includes the field-dependent quantum
renormalization factors. The incommensuration should go
from 0.5 in zero field to 0.35 and 0.65 by 7 T in azurite and
be approximately linear in this field region. This looks similar
to what is actually observed in azurite in Fig. 6 and confirms
that the approximation of Eq. (1) is sufficiently accurate with
respect to the exact solution as seen in Fig. 10.

To see more clearly how the continuum boundaries shift
with applied field, a simulation of the inelastic neutron-
scattering data is plotted in Fig. 11 showing the field depen-
dence of all modes together and taken as a cut along K between
0.22 and 0.28. This calculation captures important features of
the modes that were seen in Fig. 5. From the mode splitting
at the zone boundary one can deduce that the character of the
observed excitations is not that of standard spin waves in an
isotropic antiferromagnet. In spin-wave theory the excitations

FIG. 11. (Color online) Simulation of the inelastic neutron-
scattering data from Fig. 5(a) at the zone boundary in applied fields
up to 7 T.
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are oscillatory modes that are not changed significantly at
the zone boundary. The strong zone boundary behavior with
field is often seen for spinon systems with strong quantum
fluctuations.22

It is clear from the current high-resolution results that
the simple 1D Heisenberg antiferromagnetic chain model is
insufficient to fully describe azurite. When determining a
suitable model to describe the excitation spectra, additional
terms such as anisotropy and interchain coupling must be
considered. Despite the broad similarities between the 1D
HAFC model and the azurite data, these additional terms
are more effective at describing the details in the neutron-
scattering data.

B. Anisotropy

As observed in Fig. 9, by introducing anisotropy into the
system, an energy gap opens up in the excitation spectra. This
can be modeled by the anisotropic XYZ Hamiltonian, which
can be written as

H =
∑

i

JzS
z
i S

z
i+1 + (Jx + Jy)

4
(S+

i S−
i+1 + S−

i S+
i+1)

+ (Jx − Jy)

4
(S+

i S+
i+1 + S−

i S−
i+1), (3)

where Sz
i and Sz

i+1 are the spin matrices at neighboring sites and
the exchange interactions Jx �= Jy �= Jz. Here, the excitations
in the pure XYZ chain are gapped spinons that form an empty
particle and filled hole band.23 Neutrons measure continua of
pairs of these excitations just as in the isotropic case. Although
the spherical rotational symmetry is completely broken there is
only one type of spinon that is now gapped. Within a mean-field
theory the particle and hole dispersions are given by20

ω(k) = ±
√

(t cos (k) − h)2 + �2 sin2 (k), (4)

where t and � are calculable from the Jx , Jy , and Jz

and h is the magnetic field. The transverse continuum of
scattering is given by pair states of momenta k1 and k2 at
Q = k1 + k2 + π and energy ω = ω(k1) + ω(k2). Whereas the
longitudinal continuum moment is Q = k1 − k2 with the same
energy relation ω = ω(k1) + ω(k2). The energy gap for zero
field is the same for the longitudinal and transverse continuum
so it does not explain the different gaps in the continua that we
actually observed.

C. Interchain coupling

While anisotropy is likely to be responsible for opening one
energy gap in the ground-state excitation spectrum, interchain
coupling can be used to describe the multiple gaps observed.
The effects of interchain coupling in azurite have previously
been downplayed due to the minimal dispersion observed
in the earlier inelastic neutron-scattering results,4 however,
more recently the importance of interchain coupling has been
highlighted as necessary to fully describe the interactions
between Cu ions.6,8 In fact, some form of anisotropic interchain
coupling may also account for the slight dispersion between
the chains, observed in Fig. 2. For KCuF3, a model HAFC
with weak interchain coupling, the quantum field theory works
almost perfectly and is accurate to a few percent. In contrast,

for azurite the agreement with the quantum field theory for
coupled Heisenberg chains is only within 30%. This means
that an anisotropic interchain coupling (Ising like) is a credible
possibility and interchain couplings should be considered to
have a similar influence to within-chain anisotropy.

Interchain coupling theories that have been developed
for the Heisenberg case, may also be applied for the case
of Heisenberg chains coupled through an Ising interchain
interaction. These theories treat the ground state and dynamics
of the spin chain using nonperturbative quantum field theories
and include the interchain effects within a random-phase
approximation (RPA) scheme. Whilst the random-phase ap-
proximation is exact in the limit of an infinite number of
neighboring chains it has been found to be accurate for real
quantum magnets and we expect that it can give a reasonable
approximation of interchain coupling involved in azurite.
The various RPA formulas outlined in the discussion below
can be adapted to explain the Néel ordering temperature
TN = 1.9 K, ordered moment 〈S〉 = 0.684μB (m0 = 〈S〉 /S),
and gap energy � = 0.40 meV. These can all be related to
the interchain coupling J⊥ by using quantum field theory.
For instance, we can estimate the interchain coupling by
considering the relationship between the energy gap and the
ordered monomer moment as outlined in Essler et al.24 A
combination of Eqs. (15) and (56) from this paper gives
the simple relation |J⊥| = 1/J (0.175[�/m0])2 = 0.048 meV.
Similarly, taking the earlier RPA approach of Schulz,25 the
interchain interaction can be approximated as 0.065 meV for a
gap � = 0.4 meV. If we consider the critical temperature,
TN = 1.9 K, to influence the strength of the interchain
coupling, we find that for a cubic lattice the interchain
coupling would be |J⊥| = 0.083 meV as outlined in the work
of Bocquet.26 This is a more sophisticated analysis, which
considers higher-order correction terms than the RPA of Essler
and Schulz and their effect on the transition temperature.
Corrections to the RPA are also taken into account for the
energy gap and ordered moment by Irkhin and Katanin,27

which gives a similarly improved estimate of the interchain
coupling as |J⊥| = 0.086 meV with the following formula:
m0 ≈ 1.085(J⊥/J )1/2.

The effect of three-dimensional ordering of an array of
spin chains is to induce an effective staggered field on the
chains. In azurite, the spinons in the continuum are bound
into well defined modes by the interchain coupling. Within
this spinon picture for the Heisenberg chain, the staggered
field produces two modes, one with gap �1, which is a
doublet that has a polarization perpendicular (transverse) to
the staggered field (ordering direction). A breather mode
(consisting of two bound solitons, or four bound spinons)
also forms with a gap �2, which has a polarization along
the staggered field direction (longitudinal). In the special case
of pure Heisenberg interaction the gap ratio �1:�2 is 1:

√
3.

In general this ratio will vary with anisotropy for an XYZ

Hamiltonian. For the case where the applied field and staggered
field directions coincide then the lower mode with gap �1,
which has a transverse polarization, will remain commensurate
as is observed, whilst the upper mode with �2 will split in Q

with field, as also observed.
In the current experiments the applied field was along

the c axis when the magnetic ordering was observed for the
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monomers to be in the ac plane at an angle of 55◦ from c.14

The spin fluctuations along the b axis then are both transverse
to the field and to the magnetic order. They then should not
split in Q and will have a lower gap energy that changes
only weakly with field. Neutron measurements are sensitive
to the fluctuations perpendicular to Q and since the chain
direction (b) was aligned almost completely perpendicular to
the wave-vector transfer, the b-axis mode (transverse) is more
strongly probed rather than the a correlation. The correlations
for the c component (longitudinal) will always appear strongly
because they are vertical and therefore always perpendicular to
Q transfer. These will pick up the incommensuration from the
longitudinal nature of the field in relation to the ordering and
so we expect incommensuration of the upper mode, as is seen.

In the spin chain material CDC (CuCl2 ·2 (dimethylsul-
foxide)), which is a fundamentally Heisenberg system with
very small interchain coupling,28 similar behavior to azurite is
seen. In particular, solitons and breathers are observed as well
as the incommensurate behavior of these modes. However,
the situation is not identical to azurite, which is probably an
XYZ chain with larger interchain coupling. Also, in CDC
the staggered field is due to the applied field combining with
the Dzyaloshinskii-Moriya interaction whereas for azurite the
staggered field is probably from an interchain coupling effect.

Finally, the most powerful method to determine the ex-
changes in a quantum magnet is to use the method of saturation
(which was developed to understand Cs2CuCl4 in Ref. 29). So
far only the exchange couplings along the chain direction in
azurite have been observed by applying fields above 11 T.4 It
is interesting to note that the energy gap at the zone center
does not close at the onset of the plateau phase (Hc1 ≈ 11 T).
This is a signature of anisotropy and/or interchain coupling.
The scale of this gap at 11 T was around 0.142 meV giving
an interchain coupling of J⊥ ≈ 0.071 meV, which agrees well

with the values deduced above. In addition the scattering at
the zone center, Q = (1,0,0), when linearly extrapolated as a
function of field (as seen in Fig. 4 from Ref. 4) also does not
close at 0 T. A possible explanation for this involves interchain
coupling from the (1,0,0) that is ferromagnetic along 110, 100,
and 1-10 directions. This requires more detailed analysis but
may indicate the presence of frustrated interchain interactions.
To understand this saturation phase better, the dispersions
along the a and c directions should be measured such that
the couplings within the plateau phase can be extracted.

V. CONCLUSION

In summary, high-resolution inelastic neutron-scattering
results have shown that azurite is not well described by the 1D
HAFC model. Instead, more complex interaction pathways are
a necessary addition to the spin-chain Hamiltonian to describe
the observed features. Anisotropic interchain interactions of
around 10% of the intrachain interactions are required to
explain the two gapped modes in the dispersion along the chain
direction. The 3D long-range magnetic ordered state can also
be attributed to the presence of these interchain interactions.
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(2003).

24F. H. L. Essler, A. M. Tsvelik, and G. Delfino, Phys. Rev. B 56,
11001 (1997).

25H. J. Schulz, Phys. Rev. Lett. 77, 2790 (1996).
26M. Bocquet, Phys. Rev. B 65, 184415 (2002).

27V. Y. Irkhin and A. A. Katanin, Phys. Rev. B 61, 6757
(2000).

28M. Kenzelmann, Y. Chen, C. Broholm, D. H. Reich, and Y. Qiu,
Phys. Rev. Lett. 93, 017204 (2004).

29R. Coldea, D. A. Tennant, K. Habicht, P. Smeibidl, C. Wolters, and
Z. Tylczynski, Phys. Rev. Lett. 88, 137203 (2002).

184419-8

http://dx.doi.org/10.1103/PhysRevB.68.134431
http://dx.doi.org/10.1103/PhysRevB.68.134431
http://dx.doi.org/10.1103/PhysRevB.56.11001
http://dx.doi.org/10.1103/PhysRevB.56.11001
http://dx.doi.org/10.1103/PhysRevLett.77.2790
http://dx.doi.org/10.1103/PhysRevB.65.184415
http://dx.doi.org/10.1103/PhysRevB.61.6757
http://dx.doi.org/10.1103/PhysRevB.61.6757
http://dx.doi.org/10.1103/PhysRevLett.93.017204
http://dx.doi.org/10.1103/PhysRevLett.88.137203

