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Quantum criticality of dipolar spin chains
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We show that a chain of Heisenberg spins interacting with long-range dipolar forces in a magnetic field h

perpendicular to the chain exhibits a quantum critical point belonging to the two-dimensional Ising universality
class. Within linear spin-wave theory, the magnon dispersion for small momenta k is [�2 + v2

k k
2]1/2, where

�2 ∝ |h − hc| and v2
k ∝ |ln k|. For fields close to hc linear spin-wave theory breaks down, and we investigate

the system using density-matrix and functional renormalization group methods. The Ginzburg regime where
non-Gaussian fluctuations are important is found to be rather narrow on the ordered side of the transition and
very broad on the disordered side.
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I. INTRODUCTION

The long-range nature and spatial anisotropy of the dipole-
dipole interaction in quantum many-body systems can give rise
to unconventional effects such as exotic ordered phases and
excitation spectra.1 The experimental study of these phases
is now possible due to substantial progress in controlling the
parameters of trapped ultracold atoms. While both bosonic2–4

and fermionic5 dipolar quantum gases have been realized, it
remains a challenge to design purely dipolar spin systems
by localizing ultracold atoms or molecules with permanent
magnetic or electric moments on an optical lattice. A promising
strategy to obtain experimental realizations of dipolar magnets
with localized spins uses trapped ions, which were recently
employed to design spin Hamiltonians with controllable
interactions between the spins.6,7

Heisenberg magnets with dipole-dipole interactions in two
and three dimensions have been investigated theoretically for
more than half a century,8–10 but one-dimensional dipolar spin
chains have not received much attention. This may be due the
fact that in condensed-matter systems the exchange interaction
is usually much larger than the dipole-dipole interaction, so it
has not been possible to realize experimentally purely dipolar
spin chains before the emergence of the field of ultracold
atoms. Recently several authors11–13 pointed out that tunable
spin chains with dipole-dipole interactions can be derived from
two-component dipolar gases as effective models for the spin
degrees of freedom. The investigations presented in this work
are motivated by the expectation that in the near future it will
be possible to design purely dipolar spin chains using trapped
atoms or ions at ultralow temperatures.

In a previous study of dipolar spin chains,14 the long-range
dipole-dipole interaction was truncated at the next-nearest
neighbor, which misses the logarithmic correction to the
spin-wave velocity discussed below. Moreover, the spin-wave
calculations of Ref. 14 did not take into account the tilted
geometry of the classical ground state in the low-field phase,
thus missing the quantum critical point which separates the
tilted phase from the high-field phase where all spins align
with the magnetic field.

II. CLASSICAL GROUND-STATE
AND SPIN-WAVE EXPANSION

We consider a chain of quantum spins Si of spin S in an
external magnetic field h perpendicular to the chain which
are coupled by both dipolar and exchange interactions. If we
choose our coordinate system such that the chain lies along
the x axis and the external magnetic field h = h ẑ points in the
z direction, our Hamiltonian reads

H = −1

2

∑
ij,i �=j

μ2

|xi − xj |3
(
3Sx

i Sx
j − Si · Sj

)

−1

2

∑
ij

Jij Si · Sj − h
∑

i

Sz
i , (1)

where sums are over the N sites xi of a one-dimensional
lattice with spacing a. The long-range dipolar interaction is
characterized by an effective magnetic moment μ = gμB ,
where g is the effective gyromagnetic factor and μB is the
Bohr magneton. We assume that the spins are also coupled by
nearest-neighbor ferromagnetic exchange interactions, that is,
Jij = J > 0 if |xi − xj | = a and Jij = 0 otherwise. Due to
the competition between the Zeeman energy, which favors
alignment of the spins along the z axis, and the dipolar
interaction, which favors spin alignment along the x axis,
the spins align with a finite tilt angle ϑ relative to the field
direction below a certain critical field hc, as shown in Fig. 1.
The magnetization points then in the direction of the unit
vector m̂ = sin ϑ x̂ + cos ϑ ẑ. The tilt angle ϑ in the classical
ground state (S → ∞) can be determined by replacing the
spin operators Si in Eq. (1) by classical vectors Sm̂ of length
S, which yields the classical ground-state energy per site

H0/N = −JS2 − hS cos ϑ − D0S(3 sin2 ϑ − 1)/6, (2)

where D0 is controlled by the dipole-dipole interaction,

D0 = 3S

N

∑
ij,i �=j

μ2

|xi − xj |3 = 6ζ (3)
Sμ2

a3
. (3)
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FIG. 1. (Color online) Classical ground state of the dipolar spin
chain defined in Eq. (1) for h < hc. Big arrows represent the vectors
Sm̂ at the lattice sites (black dots). Small arrows represent the tilted
basis vectors m̂ and e1. The third basis vector e2 = ŷ points into the
plane of the paper.

Minimizing H0 with respect to the tilt angle ϑ , we find
cos ϑ = h/D0 for h � D0 and ϑ = 0 for h > D0. In this
work, we show that at the critical magnetic field hc, where
the tilt angle ϑ vanishes, the system undergoes a continuous
quantum phase transition. Classically the critical field is hc =
D0, but for small S the value of hc is substantially smaller than
D0 due to quantum fluctuations. Since Hamiltonian (1) has no
continuous spin symmetry, and the Z2 symmetry Sx

i → −Sx
i

is spontaneously broken in the tilted phase, we expect that the
quantum phase transition belongs to the universality class of
the two-dimensional Ising model.

To calculate the spin-wave spectrum, we expand the spin
operators in the tilted basis {e1,e2,m̂} shown in Fig. 1.
Introducing spherical basis vectors ep = e1 + ipe2 with p =
±, we write Si = S

‖
i m̂ + S⊥

i and S⊥
i = 1

2

∑
p=± S

−p

i ep. We
then express the spin components in terms of canonical
boson operators bi using the Holstein-Primakoff transforma-
tion, S

‖
i = S − b

†
i bi , S+

i = (S−
i )† = [2S − b

†
i bi]1/2bi . Retain-

ing only quadratic terms in the bosons and Fourier transform-
ing bi = 1√

N

∑
k eikxi bk , our bosonized spin Hamiltonian is

approximated by

H ≈ H0 +
∑

k

[
Akb

†
kbk + Bk

2
(b†kb

†
−k + b−kbk)

]
, (4)

with

Ak =
[
D0

3
+ Dk

6

]
(3 sin2 ϑ − 1) + J0 − Jk + h cos ϑ (5)

and Bk = −Dk

2 cos2 ϑ , where Jk = 2JS cos(ka) and

Dk = D0

ζ (3)

∞∑
n=1

cos(nka)

n3
. (6)

The infinite series
∑∞

n=1
cos(nka)

n3 represents the so-called
Clausen function Cl3(ka) = Re Li3(eika), where Li3(z) is the
polylogarithm15 and Re denotes the real part. From the known
series expansion of Li3(eμ), we obtain for |ka| 
 1

Dk/D0 = 1 − 3
2 (ka)2d1 ln(d2/|ka|) + O[(ka)3], (7)

where d1 = 1/[3ζ (3)] and d2 = e3/2. Using a Bogoliubov
transformation to diagonalize the Hamiltonian (4), we obtain
the magnon dispersion Ek =

√
A2

k − |Bk|2, which is shown
graphically in Fig. 2. For simplicity, we set J = 0 from
now on. For |ka| 
 1 and |h − D0| 
 D0, the magnon
dispersion is then approximated by Ek ≈

√
�2 + v2

kk
2, where

the square of the gap is �2 = D0(h − D0) for h > D0 and
�2 = 2D0(D0 −h) for h < D0. The squared velocity v2

k

exhibits a logarithmic divergence for small wave vectors,
v2

k = v2
0 ln(1/|ka|) + c2

0, with v2
0 = (D0a)2d1 and c2

0 = 3
2v2

0 .
The logarithmic divergence of vk is a unique signature of
the 1/|x|3 decay of the dipolar interaction in one dimension.
Indeed, logarithmic corrections to the dispersion are character-
istic of one-dimensional systems with long-range interactions
decaying as 1/|x|β with odd β (see Refs. 16 and 17 for the
case of the Coulomb interaction, β = 1, and Ref. 18 for the
case of an arbitrary β).

Despite the unusual logarithmic correction to the dispersion
in Gaussian approximation, it seems at first glance that
our spin-wave approach remains valid for all values of the
magnetic field. This is not the case, however, because in
a narrow range of magnetic fields close to D0 the leading
quantum correction to the magnetic moment m per site
completely overwhelms the classical result m ≈ S. Retaining
the leading 1/S quantum correction to m, we obtain

m = 1

N

∑
i

〈S‖
i 〉 = S + 1

2
− 1

N

∑
k

Ak

2Ek

. (8)

Because Ek=0 vanishes for h → D0 while Ak=0 remains finite
for sufficiently small |h − D0|, the last term in Eq. (8) becomes

FIG. 2. (Color online) Graph of the spin-wave dispersion Ek for J = 0 and h < D0 (left) and for h > D0 (right). In the middle, we show
the gap � as a function of (h − D0)/D0.
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FIG. 3. (Color online) (a) Spin-wave result for the one-loop
corrected total magnetic moment m given in Eq. (8) as a function
of h/hc for S = 1

2 . The curves are for J = 0 and hc = D0. The inset
shows m/S vs the logarithm of the reduced magnetic field |h − hc|/hc

for h < hc (solid line) and for h > hc (dashed line). (b) Corresponding
DMRG results. The critical magnetic field hm

c (∞) ≈ 0.507D0 was
determined by extrapolation of the critical fields hm

c (N ) of N -site
chains with open boundary conditions, as shown in the inset.

arbitrarily large, which is also evident from the numerical
evaluation of Eq. (8) shown in Fig. 3(a).

Obviously, for any S < ∞ there is a range of magnetic fields
where the tilt angle is small and the leading quantum correction
to the magnetization is larger than the classical result m ≈ S.
In this regime, our simple spin-wave approach breaks down
and we need more sophisticated methods to investigate the
behavior of the system. We have studied the quantum critical
regime |h − hc| � hc using both the numerical density-matrix
renormalization group (DMRG)19 and the analytical functional
renormalization group (FRG)20 methods.

III. DMRG APPROACH

Using the DMRG, we have calculated the ground state
and its magnetization for systems of up to N = 128 sites
and a varying bulk magnetic field h in the z direction. In
the simulations, we kept up to 320 density-matrix eigenvalues,
leading to a maximum discarded weight of 10−12. It should be
noted that DMRG simulations of the dipolar spin chains are
numerically demanding for several reasons. First, the long-
range nature of the interaction leads to increased correlations
between different parts of the system that have to be encoded

in the variational ground state. Hence, the number of states
that need to be kept is rather high compared to the usual spin
chains with nearest-neighbor Heisenberg interaction. Second,
the SU (2) spin symmetry is broken, so that Sz is not a
good quantum number. Therefore, the restriction of the basis
states to a certain spin component Sz, which is normally
used to significantly increase the efficiency of the DMRG,
is not possible. Finally, for h<hc the ground state is twofold
degenerate due to the Z2 symmetry Sx

i →−Sx
i . Accordingly,

it is crucial that we mix two states into the density matrix and
target both states of the ground-state doublet. In the h/hc →0
limit, the system is fully polarized in either the +x or the
−x direction, but while the Z2 symmetry is spontaneously
broken in the infinite chain, the variational DMRG ground
state, which always describes a finite system, is an arbitrary
linear combination of two states with opposite polarization
directions. Since the mixing angle is not fixed, the measured
magnetization in the x direction is random. We have found
that we can obtain reliable results by adding a small local
magnetic field hx = 10−10μ2/a3 on the end sites. This field
explicitly breaks the Z2 symmetry and, consequently, leads to
a unique ground state while generating an energy difference
of the order 10−10μ2/a3 in the formerly degenerate doublet
states.

In finite systems, the correlation length ξ is bounded by
the system size L. Therefore, phase transitions are strictly
possible only in infinite systems; the inverse size 1/L plays
the role of an additional parameter that moves the system away
from the critical point. To determine the critical parameters in
the thermodynamic limit, the dependence of thermodynamic
quantities on the system size can be investigated with finite-
size scaling theory. In this context, one uses the notion of
a pseudocritical field hc(L) associated with indications of
critical behavior in a finite system of size L. Note that, for
a given system, multiple definitions of hc(L) that result in
the correct value of hc in the limit L → ∞ are possible. In
general, one finds that the pseudocritical field hc(L) scales
as L−1/ν , where ν is the correlation-length critical exponent
and ξ ∝|h−hc|−ν . The order parameter scales as mx(hc,L)∝
L−β/ν , with β the order-parameter critical exponent. For the
two-dimensional Ising universality class, the relevant critical
exponents have the values ν = 1 and β = 1

8 .
In Fig. 3(b), we show our numerical result for the total

magnetic moment

m =
√

m2
x + m2

y + m2
z , mα = 1

N

∑
i

〈
Sα

i

〉
. (9)

Since my vanishes for the field direction selected here, the
total magnetic moment is determined by mx and mz only.
While the value of mx drops from about one-half to zero in
the vicinity of the pseudocritical field hc(L), mz increases
linearly for h � hc(L) and enters a saturation regime for
h � hc(L). Consequently, m exhibits a minimum close to
hc(L). By determining the position hm

c (N ) of this minimum
for systems of different numbers of sites N = L/a, we obtain
an approximate value hm

c (∞) ≈ 0.507D0 upon extrapolating
to N → ∞.

In contrast to the spin-wave results in Fig. 3(a), the total
moment is finite for any h and exhibits a large asymmetry,
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FIG. 4. (Color online) DMRG results for the order parameter
mx = 1

N

∑
i〈Sx

i 〉 as a function of (h − h′
c)/h′

c for S = 1
2 and different

N . The main plot shows the scaled magnetization Nβ/νmx with
exponents β = 1

8 and ν = 1 of the two-dimensional Ising model vs
N [h − h′

c]/h′
c, with h′

c = 0.516D0 chosen to optimize the collapse
of the data. The inset shows the raw data as a function of h/D0.

indicating that the Ginzburg regime where non-Gaussian
fluctuations are important is very broad on the disordered side
(h > hc) of the transition. This corresponds to a regime where
the order parameter mx is zero but the magnetization mz along
the field direction is not yet saturated due to large correlations
〈Sx

i Sx
j 〉 in the x component of the spin.

In order to ascertain whether the phase transition belongs
to the Ising universality class, we also investigate the behavior
of the order parameter mx separately. In Fig. 4, we plot the
scaled magnetization Nβ/νmx(h,N ) with ν = 1 and β = 1

8
versus N [h − h′

c]/h′
c for different values of N = L/a, where

the critical field h′
c is chosen to optimize the collapse of

the data. The collapse of the data onto a single curve for a
critical field h′

c ≈ 0.516D0 shows that our numerical results
for the magnetization are consistent with the two-dimensional
Ising universality class. The value h′

c estimated from the
best collapse of the data and the value hm

c (∞) obtained by
extrapolating the minimum of m/S in Fig. 3(b) differ by only
2.1%. We ascribe the imperfect collapse of the N = 48 data
to the fact that the dipolar interaction is long range, so that
sufficiently large systems have to be treated before the true
critical behavior manifests itself.

IV. FRG APPROACH

To investigate our model for general S and to verify that
the RG flow in the vicinity of the critical point indeed is
consistent with the Ising universality class, we have studied
the effect of spin-wave interactions using the functional
renormalization group.20 Since we are interested in the critical
fluctuations, we may simplify the calculations using the
Hermitian field parametrization of the spin-wave interactions21

in which we express the Holstein-Primakoff bosons bk in
terms of two canonically conjugate Hermitian field operators,
bk = [φk

√
hk + i
k/

√
hk]/

√
2, where hk = Ak + |Bk|. Since

the fluctuations of the canonical momentum 
k remain gapped
at the quantum critical point, we may integrate over the
field 
k in Gaussian approximation and obtain an effective

Euclidean action Seff[φ] for the field φk describing the
critical fluctuations. The Gaussian propagator of the φ field is
then G0(K) = (ω2 + E2

k )−1, where K = (k,iω) denotes both
momentum and frequency, and the effective action Seff[φ] of
the critical fluctuations can be expanded as

Seff[φ] = 1

2T

∑
K

G−1
0 (K)φ−KφK + 1

T

∞∑
n=0,n�=2

1

n!N
n
2 −1

×
∑

K1...Kn

δK1+···+Kn,0

(n)
0 (k1 · · · kn)φK1 · · · φKn

, (10)

with T being the temperature. The interaction vertices



(n)
0 (k1 · · · kn) can be expressed in terms of the Fourier

transform Dk of the dipole-dipole interaction by expanding
the spin operators in powers of the Holstein-Primakoff bosons
bk and then setting bk → φk

√
hk/2. For vanishing external

momenta, the interaction vertices have finite limits 

(n)
0 ∝

S1− n
2 , and in the symmetric phase (h > hc) the odd vertices

vanish.
The magnon spectrum can be obtained from the poles

of the true propagator G(K) = [G−1
0 (K) + �(K)]−1, where

�(K) is the irreducible self-energy of the effective field theory
defined in Eq. (10). Since the higher order vertices involve
increasing powers of 1/S for large S, one could calculate �(K)
perturbatively. However, the corrections become arbitrarily
large for h → hc, which is not surprising because all higher
order vertices of our (1 + 1)-dimensional field theory are
relevant at the Gaussian fixed point, with canonical dimension
+2. To regulate the infrared singularities, we replace the
inverse Gaussian propagator by G−1

0,�(K) = G−1
0 (K) + R�(k),

using the regulator function R�(k) proposed by Litim.22 In the
limit of vanishing flow parameter �, the regulator vanishes, so
that we recover our original model.

We use a simple truncation of the formally exact hierarchy
of FRG flow equations20 for scalar field theories of the type
(10) to resum the perturbation series, expanding the flowing
self-energy as

��(K) = ��(0) + Y�k2 + (
Z−1

� − 1
)
ω2 + O(k3,ω3), (11)

with flowing coupling constants ��(0), Y�, and Z�. The scale-
dependent long-wavelength magnon spectrum is then

E2
�,k = �2

� + [
v2

� ln(1/|ka|) + c2
�

]
k2, (12)

where the renormalized squared gap is �2
� = Z�[�2 +

��(0)], and the renormalized magnon velocities are given by
v2

� = Z�v2
0 and c2

� = Z�(c2
0 + Y�). Note that in general the

low-energy expansion of the self-energy can also contain terms
proportional to k2 ln(1/|ka|) and ω2 ln(1/|ka|), which are of
the same order as the terms retained in Eq. (11). However, we
find that the flowing self-energy ��(K) is analytic in K = 0
for any finite �, due to the presence of the regulator function
R�(k), so that these terms do not appear in our FRG approach.
Moreover, in our truncation we retain only the momentum- and
frequency-independent parts 


(3)
� and 


(4)
� of the three-point

and four-point vertices. This truncation is then not sufficient to
calculate the critical exponent η for the anomalous dimension,
which is determined by the frequency-dependent part of the
four-point vertex.
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FIG. 5. (Color online) FRG results for the critical field h(S)
c as

a function of the spin S. For the relevant values of S > 1
2 that

might be investigated in a future DMRG study, we find h(1)
c =

0.79D0, h(3/2)
c = 0.83D0, and h(2)

c = 0.85D0.

Analyzing the structure of the FRG flow equations in the
vicinity of the quantum critical point, corresponding to a
non-Gaussian fixed point of the flow equations,23 we find that
the FRG confirms the Ising universality class expected from the
general symmetry arguments and numerically derived within
the DMRG analysis. For h = hc the wave function renormal-
ization factor Z� and the rescaled three-point vertex γ

(3)
� ∝

Z
3/2
� 


(3)
� /(�a)2 flow to zero in the limit � → 0, while the

rescaled four-point vertex γ
(4)
� ∝ Z2

�

(4)
� /(�a)2 approaches a

finite fixed-point value. In particular, the three-point vertex is
marginally irrelevant at the fixed point, flowing asymptotically
as γ

(3)
� ∼ [ln(�0/�)]−1/2 in the limit � → 0. (Here �0 ∼ 1/a

is the initial RG scale, corresponding to an ultraviolet cutoff.)
Importantly, we also find that the logarithmic correction to the
spin-wave velocity becomes marginally irrelevant at the fixed
point, namely v2

� ∼ [ln(�0/�)]−r for � → 0, with r ≈ 0.017,
while c2

� remains finite. This signals that scale invariance
is eventually restored at the critical point, strengthening the
confidence in the finite-size scaling analysis of the DMRG
results.

Besides investigating the behavior of the RG flow in the
vicinity of the non-Gaussian fixed point, we may also use the
FRG approach to estimate the critical field h(S)

c for different

values of the spin S. For a given magnetic field h < hc, we fine-
tune the tilt angle ϑ(h) so that the linear vertex 


(1)
� vanishes

for � → 0 and fix the value of the critical field hc where
the magnetization m drops more steeply, corresponding to
the limit ϑ(hc) → 0. For S = 1

2 we obtain h
(1/2)
c ≈ 0.72D0,

which is significantly smaller than the classical result hc =
D0. However, the DMRG result hc ≈ 0.51D0 is even smaller,
showing that our FRG truncation probably still misses some
sizable effects of quantum fluctuations. In Fig. 5, we plot our
FRG results for higher values of the spin.

V. CONCLUSIONS

In this work, we have calculated the magnon spectrum and
the magnetization curve of dipolar spin chains in a transverse
magnetic field using spin-wave theory and renormalization
group methods. We have shown that at a critical field h = hc

the system exhibits a quantum critical point belonging to the
two-dimensional Ising universality class. Outside the critical
regime, where the excitation spectrum is well described
by linear spin-wave theory, the magnon velocity exhibits a
logarithmic dependence on the wave vector, which might be
useful to characterize dipolar interactions in experimental
realizations of spin chains. Using the numerical density-
matrix renormalization group method, we have presented
quantitatively accurate results for the magnetization curve
and the location of the critical point for the case of spin
S = 1

2 , finding a strong reduction in the value of hc in
comparison to the classical limit (S → ∞). Finally, analyzing
an effective low-energy field theory for our model by means
of the functional renormalization group method, we have
pointed out the emergence of a scale-invariant excitation
spectrum in the vicinity of the critical point, where the
logarithmic correction to the magnon velocity becomes an
irrelevant perturbation, thus confirming the consistency of
our numerical DMRG results with the expected universality
class.
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