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Magneto-optical observation of four-wave scattering in a 15-nm Ni81Fe19 film during large-angle
magnetization precession
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Large-angle magnetization precession induced by a short pulsed magnetic field in a 15-nm thick Ni81Fe19

film is observed by use of a time-resolved magneto-optical Kerr effect technique with sensitivity to all three
components of the magnetization vector. A reduction of the magnitude of the magnetization vector |M| during
large-angle precession is inferred and indicates incoherent dynamics due to excitation of traveling spin waves with
wavelengths smaller than the diameter of the sampling area, that is, the laser spot size for the magneto-optical
measurements. The reduction in |M| depends on the magnetic bias field Hbias, which can be qualitatively
understood by comparison to the theoretical threshold for observing four-magnon scattering in a small time
interval t . We estimate that two-magnon scattering cannot explain the experimental results.
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I. INTRODUCTION

For many years the relaxation mechanisms in magnetic
materials have been studied by use of ferromagnetic resonance
(FMR) experiments. In these experiments the magnetization
is driven by a continuous oscillating electromagnetic field.
Above a certain threshold power (or precession amplitude),
intrinsic magnon-magnon interactions become an important
contribution to the damping of the FMR or k = 0 mode. Energy
is transferred from the FMR mode to traveling spin-wave
modes via three- or four-wave scattering processes.

In the past decade the damped magnetization precession
in thin metallic films that results after application of a short
pulsed magnetic field has been studied with a variety of
techniques.1–5 Precessional magnetization reversal induced by
tailored applied field pulses is significantly faster than domain
wall nucleation and propagation and therefore has application
to information storage.6–8 The large angles attainable in these
experiments mean that the damping mechanisms have differ-
ent relative contributions compared with FMR experiments.
Intrinsic nonlinear damping is much larger than in small-angle
experiments.9,10 In thin magnetic films and for small fields,
four-wave scattering is the dominant nonlinear process.10,11

Evidence that traveling spin waves are excited during
magnetization precession is given by a measured reduction
in the magnitude of the magnetization vector |M|, as seen
by Silva et al.5 in a Ni81Fe19 film by use of time-resolved
magnetization-induced second-harmonic generation (SHG).
This is a reduction in |M| due to the finite laser spot size
of the optical measurement. In other words, the measurement
represents a spatial average of the magnetization vector. Silva
et al.5 measured the in-plane components of the magnetization
vector, and the out-of-plane component was assumed small
and hence was neglected. Gerrits et al.12 studied large-angle
magnetization dynamics in a Ni80Fe20 film for a range of bias
field magnitudes along the easy axis and pulse field amplitudes.

They found a reduction of |M| for small bias fields. Details
of the measurement method used to resolve the two in-plane
components of the magnetization vector by SHG can be found
in Refs. 13 and 14.

In this work the time evolution of all three components
of the magnetization vector is measured by magneto-optical
Kerr effect (MOKE) magnetometry. We employ a special
measurement procedure that allows one to deconvolute the
contributions of the three magnetization components to the
magneto-optical signal. The spatial average of the magne-
tization vector’s magnitude in a 15-nm thick Ni81Fe19 film
after excitation by a pulse field is determined for different
bias field strengths applied along the magnetic easy and hard
axis, respectively. The experimental results are then explained
qualitatively by use of an existing theory for four-wave
scattering in thin films that is based on a semiclassical spin-
wave Hamiltonian. The same traveling spin waves are excited
via intrinsic four-wave scattering and extrinsic two-wave
scattering by inhomogeneities. However, two-wave scattering
cannot explain the results, since the scattering rate is far too
small for a film with a reasonably small number of defects.
Hence, the experimental results represent a true observation of
four-wave scattering.

In Sec. II we detail the experimental technique and the
results for |M| as a function of bias field. In Sec. III we
derive the threshold for observing four-wave scattering in the
Ni81Fe19 film in a small time interval t . The semiclassical
Hamiltonian theory is summarized in the Appendix and is
based on previous works.9,11,15 In Sec. IV we qualitatively
compare the experimental and theoretical results. The conclu-
sions are given in Sec. V.

II. MAGNETO-OPTIC EXPERIMENT

A Ni81Fe19 film with a thickness of 15 nm was grown on
a 100-μm thick glass substrate by means of molecular beam
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epitaxy in an applied field. The magnetization dynamics were
measured by time-resolved MOKE magnetometry. A pulsed
diode laser operating at 407 nm with a pulse width of 83 ps full
width at half maximum (FWHM) was employed. The angle of
light incidence was 62◦ and the laser beam was s polarized.
The sample was placed film-side down on a shorted 430-μm
wide microstripline, which had an impedance of 49 �. The
laser spot was positioned at the middle of the microstrip line
to ensure maximum uniformity of the pulsed magnetic field
within the probe area.

For basic characterization, hysteresis curves were measured
as a function of the in-plane direction of the magnetic field.
The remanence values of the hysteresis curves show a uniaxial
anisotropy. The anisotropy field Huni of the uniaxial anisotropy
was determined by two series of time-resolved measurements.
For the first series, the sample was excited by a microwave
field of 100 mW (20 dBm) power. The microwave frequency
was varied in the range of 0.8–2 GHz in 0.1 GHz steps.
For each frequency the precession amplitude was determined
as a function of the applied magnetic field. This yields the
resonance field for each frequency. For the second series, the
magnetization was excited by a 10 V pulse and the precession
frequency was determined for each applied bias magnetic
field. The experimental results were then fitted with the Kittel
formula under the assumption Happl � Ms , which is fulfilled
in the experiment

ω2 = μ2
0γ

2(Happl + Huni)Ms,

where Happl is the applied magnetic field, Huni is the unidirec-
tional anisotropy field, Ms is the saturation magnetization, and
γ is the gyromagnetic ratio. Assuming γ = 1.76 × 1011 s−1

T−1 (1.76 × 107 Oe−1 s−1), the averaged results from the two
measurement methods are Huni = 0.61 ± 0.02 kA m−1 (7.6 ±
0.2 Oe) and Ms = 867 ± 2 kA m−1 (867 ± 2 emu/cm3). The
difference of the results obtained by these two excitation
methods are only marginal.

Different magneto-optical methods have been employed in
the past to determine the components of the magnetization
vector.16–22 Here we employed a special measurement proce-
dure to determine the time evolution of all three components of
the magnetization vector in calibrated units. Our measurement
procedure is an extension of the procedure employed by Ding
et al.21 to study the spin-reorientation process in ultrathin
ferromagnetic films.

A MOKE measurement in longitudinal geometry depends
linearly on two magnetization components: the out-of-plane
(mz) and the in-plane component (mx) that lies in the plane
of incidence of the light. In addition, there are quadratic
magneto-optical Kerr effect contributions.23 These higher-
order contributions have recently been the subject of much
interest.24,25 The Kerr rotation in longitudinal geometry is
given for the 0◦ measurement (see Fig. 1)26,27 and is, assuming
that the magneto-optical constants themselves are independent
of the sample orientation,

θK (φ = 0◦) = θ lon
K · mx + θ

pol
K · mz + θ

quad(l,t)
K · mxmy

+ θ
quad(p,t)
K · mzmy + θ

quad(p,l)
K · mzmx

FIG. 1. (Color online) Measurement procedure to obtain time
dependence of all three components of the magnetization vector. After
each measurement the sample is rotated together with the applied
magnetic field and the microstrip line in the fixed laser beam.
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where mx , my , and mz are the components of the normalized

magnetization vector m with |m| =
√

m2
x + m2

y + m2
z = 1.

θ lon
K and θ

pol
K are the longitudinal and polar magneto-optical

constants, respectively. θ
quad(l,t)
K , θ

quad(p,t)
K , θ

quad(p,l)
K , θ

quad(l2,t2)
K ,

θ
quad(p2,t2)
K , and θ

quad(p2,l2)
K are the six quadratic magneto-optical

constants.
The precessional motion of the magnetization in this

experiment is highly elliptical. Therefore mz is significantly
smaller than mx and my . Also it will be shown that the quadratic
magneto-optical constants are two orders of magnitude smaller
than the polar magneto-optical constant. This allows us to
neglect any quadratic magneto-optical contributions, which
are proportional to either mz or m2

z . The above equation then
simplifies to

θK (φ = 0◦) = θ lon
K · mx + θ

pol
K · mz + θ

quad(l,t)
K · mxmy

+ θ
quad(l2,t2)
K · (

m2
x−m2

y

)
+ θ

quad(p2,t2)
K · m2

y−θ
quad(p2,l2)
K · m2

x. (2)

The longitudinal and polar magneto-optical constants for
the sample were determined by measurement of in-plane and
out-of-plane hysteresis curves at the same angle of incidence as
the time-resolved measurements. Half of the amplitude of the
respective hysteresis curves gives these two magneto-optical

184413-2



MAGNETO-OPTICAL OBSERVATION OF FOUR-WAVE . . . PHYSICAL REVIEW B 84, 184413 (2011)

constants, namely θ
pol
K = 141.8 ± 0.9 mdeg and θ lon

K = 37.5 ±
0.3 mdeg.

In order to deconvolute the three components of the
magnetization vector, a series of four measurements was
performed for each bias field. The addition of one additional
measurement step compared to the procedure employed
by Ding et al.21 allows us to account for part of the
quadratic contributions to the magneto-optical Kerr effect
signal.

In Fig. 1 we show the four steps of the measurement
procedure. Prior to the measurement procedure any tilt of the
sample with respect to the plane of incidence is removed.
Moreover, prior to each measurement it is determined with a
fiducial mark that the laser is always focused onto the same
area on the sample. After each measurement the sample is
rotated by 90◦ together with the static applied magnetic field
and the microstripline, which generates the dynamic magnetic
field. During this rotation, only the magneto-optical geometry
is changed, and so the geometry of the sample, with respect to
the static and the dynamic magnetic field, remains the same.
For the four measurements, the following formulas apply for
the measured Kerr signal:

θK (φ = 0◦) = θ lon
K · mx + θ

pol
K · mz + θ

quad(l,t)
K · mxmy

+ θ
quad(l2,t2)
K · (

m2
x−m2

y

) + θ
quad(p2,t2)
K

·m2
y−θ

quad(p2,l2)
K · m2

x, (3)

θK (φ = 90◦) = θ lon
K · my + θ

pol
K · mz − θ

quad(l,t)
K · mxmy

+ θ
quad(l2,t2)
K · (

m2
y−m2

x

)
+ θ

quad(p2,t2)
K · m2

x−θ
quad(p2,l2)
K · m2

y, (4)

θK (φ = 180◦) = −θ lon
K · mx + θ

pol
K · mz + θ

quad(l,t)
K · mxmy

+ θ
quad(l2,t2)
K · (

m2
x−m2

y

)
+ θ

quad(p2,t2)
K · m2

y−θ
quad(p2,l2)
K · m2

x, (5)

θK (φ = 270◦) = −θ lon
K · my + θ

pol
K · mz − θ

quad(l,t)
K · mxmy

+ θ
quad(l2,t2)
K · (

m2
y−m2

x

)
+ θ

quad(p2,t2)
K · m2

x−θ
quad(p2,l2)
K · m2

y. (6)

These four simultaneous equations then yield:

θK (0◦) − θK (180◦)

2
= θ lon

K · mx, (7)

θK (90◦) − θK (270◦)

2
= θ lon

K · my, (8)

θK (0◦) − θK (90◦) + θK (180◦) − θK (270◦)

4

= θ
quad(l,t)
K mxmy + X

quad
K

(
m2

x − m2
y

)
, (9)

FIG. 2. (Color online) Comparison of the left- and right-hand side
of Eq. (9). The left-hand side is the higher-order magneto-optical
contribution to the Kerr signal, which is determined by the four
measurements, and is arbitrarily set to zero before the pulse onset
(black squares). The red triangles show the best fit of the right-hand
side of Eq. (9), given that we know mx and my , and this fit corresponds
to θ

quad(l,t)
K = 1.6 ± 0.3 mdeg and Xquad = −0.6 ± 0.8 mdeg. For

those fits a time independent offset was added, which sets the
magneto-optical signal for t = 0 ns to zero. The magnetic field
Hbias = 0.61 kA m−1 (7.6 Oe) is applied parallel to the easy axis.

θK (0◦) + θK (90◦) + θK (180◦) + θK (270◦)

4

= θ
pol
K · mz + 1

2
θ

quad(p2,l2)
K · (

m2
x + m2

y

)
+ 1

2
θ

quad(p2,t2)
K · (

m2
x + m2

y

)
, (10)

where X
quad
K = θ

quad(l2,t2)
K − 1

2θ
quad(t2,p2)
K − 1

2θ
quad(p2,l2)
K is a

combination of quadratic magneto-optical constants. Equa-
tions (7) and (8) show that the two in-plane components
of the magnetization vector can be extracted from the four
measurements. Once mx and my are known as a function of
time, Eq. (9) can then be used to calculate the two constants
θ

quad(l,t)
K and X

quad
K . Fits to the data for the bias magnetic

field parallel to the easy axis (see Fig. 2) yield the following
average values for the quadratic magneto-opical constants:
θ

quad(l,t)
K = 1.6 ± 0.3 mdeg and Xquad = −0.6 ± 0.8 mdeg. For

these fits a time independent offset was added, which sets the
magneto-optical signal for t = 0 ns to zero.

θ
quad(l,t)
K is between one and two orders of magnitude smaller

than the linear Kerr constants θ
pol
K = 141.8 ± 0.9 mdeg and

θ lon
K = 37.5 ± 0.3 mdeg quoted above. This may be partly

because the film is polycrystalline. The fact that θquad(l,t)
K is very

small underlines that it was justified to drop the higher order
magneto-optical contributions proportional to mz and m2

z in the
step from Eq. (1) to Eq. (2). We can also, therefore, assume that

the remaining magneto-optical constants are small (θquad(p2,l2)
K ,

θ
quad(p2,t2)
K ∼ 0). The quadratic magneto-optical contributions

in Eq. (10) are proportional to m2
x + m2

y . The time-dependent
contribution of m2

x + m2
y is much smaller than 1. This together

with the fact that the higher order magneto-optical constants
are themselves small allows one to ignore the higher order
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FIG. 3. (Color online) In the upper panel (a) the time evolution of
the calibrated in-plane components mx (red triangles) and my (black
squares) are shown. The calibrated out-of-plane component mz is
shown in the lower panel (b). The magnetic field Hbias = 1.07 kA m−1

(13.5 Oe) is applied parallel to the easy axis.

magneto-optical contributions in Eq. (10) and then the out-of-
plane component of the magnetization vector mz can also be
found.

To explore the dynamics during large angle precession,
the magnetization is excited by a voltage pulse with an
amplitude of 28.4 V, a rise time of 240 ps, and a width of
2.14 ns FWHM, which gives an effective pulse magnetic field
Hpulse perpendicular to the bias field Hbias, as illustrated in
Fig. 1. The magnetization trajectory can be reconstructed with
the methods discussed above. In Fig. 3 the time evolution
of the three calibrated magnetization components is shown
for a static magnetic field Hbias = 1.07 kA m−1 (13.5 Oe)
parallel to the easy axis. The normalized magnitude |m|
of the magnetization vector and the in-plane angle of the
magnetisation φ relative to its starting direction can be
calculated from the individual components. The results for
a bias field of Hbias = 2.08 kA m−1 (26.1 Oe) applied parallel
to the hard axis are shown in Fig. 4. The pulse field is applied at
t ∼ 1.5 ns and causes the magnetization to reorient in-plane by
roughly 25◦, precessing about the new equilibrium direction.
This reorientation implies that the field pulse has an amplitude
of Hpulse = 0.47 kA m−1 (5.9 Oe).

What is most interesting is that |m| shows a marked
reduction during the large-angle precession of between 5%
and 10% in Fig. 4 (see black squares, at top).

The overlying oscillations in |m| are due to a slightly
imperfect deconvolution of the three components of the
magnetization vector. If the magnetization precession were
perfectly coherent, then |m| = 1 would hold at all times.

FIG. 4. (Color online) Magnetization dynamics induced by a
pulse field applied at 90◦ to the bias field. Hbias = 2.08 kA m−1

(26.1 Oe) parallel to the hard anisotropy axis and Hpulse ∼
0.47 kA m−1 (5.9 Oe). The in-plane angle of the magnetization φ

relative to the hard axis is shown by the blue triangles. The black
squares show the magnetization vector length |m| as a function of
time.

Instead, the reduction of the magnitude of the magnetization
vector indicates the excitation of spin waves with wavelengths
shorter than the diameter of the laser spot used to make the
MOKE measurements.5 The laser spot in these experiments
is an ellipse with axes of 28 and 42 μm. This means that the
existence of spin waves with wave vectors k > 1.1 × 105 m−1

may reduce the measured |m|. Any spin waves that could
be excited directly by the microstrip line would have a wave
vector k < 6500 m−1. Therefore any spin waves contributing
to a measured reduction in |m| must have been excited by
a secondary process. These secondary processes represent
extrinsic (in the case of two-magnon scattering by impuri-
ties) and/or intrinsic (in the case of three- or four-magnon
scattering) damping mechanisms.

To gain further insight into the underlying damping mech-
anisms of the magnetization dynamics, additional measure-
ments were carried out for a range of applied magnetic fields
parallel to the easy and to the hard anisotropy direction. In
Fig. 5 the reduction in |m|, when the magnetization is at
its maximum excursion angle with respect to the bias field
direction, is shown for different bias fields. The length of the
error bars is given by the difference of the magnitude of the
magnetization vector between its first maximum and minimum
during its temporal evolution for the respective bias field.

There are two key results. First, there is a much larger
decrease in |m| for hard-axis biasing than for easy-axis biasing.
This is consistent with the results of Silva et al.5 Second, for
larger bias fields there is a smaller decrease in |m|, indicating
that fewer spin waves are excited. The second half of this paper
is concerned with showing how four-magnon scattering of the
large-angle precession may account for these results.

III. FOUR-WAVE SCATTERING THRESHOLD

In this section we outline a semiclassical, perturbative
spin-wave theory to calculate the threshold for four-wave
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FIG. 5. The reduction in |m|, when the magnetization is at its
maximum excursion angle with respect to the bias field direction, is
shown as a function of the bias field for (a) easy-axis bias and (b)
hard-axis bias.

scattering of the uniform mode to create spin waves with
wavelengths smaller than the MOKE laser spot size. The full
three dimensional (3D) theory of Ref. 11 is not needed here for
the case of such a thin 15-nm Permalloy film, and instead we
will use a 2D theory. Hence many of the expressions in Ref. 11
are greatly simplified and we provide them for the reader in
the Appendix. The method is very similar to that of Dobin and
Victora.9

We consider a perfect film with no defects. The energy of
the film can be written as an integral over the film’s area

E = L

∫
A

d2rW (r), (11)

where L = 15 nm is the film thickness and W (r) is the energy
density at position r given by

W (r) = −1

2
M(r) · hdip(r) + α

∂Mμ

∂xν

∂Mμ

∂xν

− Huni

M0
[M(r) · n]2 − M(r) · (Hbias + Hpulse). (12)

Here the exchange constant is assumed to be α = A/(2πM2)
with A = 10−11 J m−1, Huni is the effective anisotropy field
equal to 0.63 kA m−1 (7.9 Oe), n is a unit vector in the
direction of the uniaxial anisotropy axis, and the Zeeman
energy includes contributions from both the bias field and
the pulse field.

The dipolar field felt at position r is denoted by hdip and
is found by solving Maxwell’s equations by use of a Green’s
function method for the 2D film geometry. It is given by

hdip(R) = −4π

A

∫
A′

d2 R′ ∑
k

Ĝ(k)M(R′)eik·(R−R′), (13)

where A is the area of the film’s surface and k, R, and R′

are 2D wave and position vectors in the plane of the film. The
tensorial Green’s function for the dipolar field is given by

Ĝ(k) = Ĝ(k,ψ)

=

⎛
⎜⎝

P (k) sin2 ψ 0 1
2P (k) sin(2ψ)

0 1 − P (k) 0
1
2P (k) sin(2ψ) 0 P (k) cos2 ψ

⎞
⎟⎠ ,

(14)

where the z axis is made to coincide with the equilibrium
magnetization direction and the y axis is perpendicular to the
film plane. ψ is the angle of propagation of the spin-wave k,
measured relative to the z axis or, equivalently, relative to the
internal field direction when the pulse field is applied. Also,
the dipolar function P (k) = 1 − 1−e−kL

kL
(Ref. 28) depends only

on the magnitude of the spin-wave vector k and the thickness
of the film L.

The energy [Eq. (11)] is transformed into a Hamiltonian
containing two-, three- and four-wave interactions by means
of methods shown in the Appendix. The final form is

H =
∑

k

ωkb
∗
kbk + 1

3

∑
1,2,3

U
(3)
k1,k2,k3

δ(k1 + k2 + k3)

× [bk1bk2bk3 + c.c.] +
∑
1,2,3

U
(1)
k1,k2,k3

δ(k1 + k2 − k3)

× [b∗
k1

b∗
k2

bk3
+ c.c.] +

∑
1,2,3,4

V
(1)
k1,k2,k3,k4

× δ(k1 − k2 − k3 − k4)[b∗
k1

bk2
bk3

bk4
+ c.c.]

+ 1

2

∑
1,2,3,4

V
(2)
k1,k2,k3,k4

δ(k1 + k2 − k3 − k4)b∗
k1

b∗
k2

bk3
bk4

+ 1

4

∑
1,2,3,4

V
(4)
k1,k2,k3,k4

δ(k1 + k2 + k3 + k4)

× [bk1
bk2

bk3
bk4

+ c.c.] + · · · , (15)

where the variable b∗
k and bk are elliptical spin-wave variables,

c.c. represents the complex conjugate, and the coefficients
give the strength of interaction between different spin waves.
Higher order interactions are neglected.

The two-wave coefficient provides the theoretical disper-
sion relation for the thin film, and this in turn provides
information on exactly which nonlinear interactions will be
resonant in the system and which spin waves can be excited
by the uniform precession. In Fig. 6 we plot the theoretical
spin-wave band for the film with a bias field of 1.35 kA m−1

(17.0 Oe) applied along the hard direction. What can be seen
is that the bottom of the spin-wave band is very shallow, and
this means that there are no spin waves with frequency ωk

at half the uniform precession frequency ω0. This in turn
means that three-wave decay of the precession k = 0 mode
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FIG. 6. (Color online) The spin-wave band (shaded) for the
Ni81Fe19 film with a bias field of 1.35 kA m−1 (17.0 Oe) applied along
the hard anisotropy direction. The horizontal black line represents all
spin waves that may be resonantly excited by four-wave scattering
of the k = 0 mode and that may alter the measurement of |m|
(k > 1.1 × 105 m−1).

is nonresonant in the system, and that it is four-wave decay
which results in an excitation of traveling spin-wave modes
(for a discussion, see Ref. 29 or 11). In Fig. 6 the spin
waves that may be resonantly excited via four-wave scattering
of the uniform mode and that contribute to a reduction in
|m| (k > 1.1 × 105 m−1) are illustrated by a horizontal line.

We now write the Hamiltonian equation of motion for
a spin-wave amplitude bk that we expect to be resonantly
excited. The approximate equation of motion is given by

∂bk

∂t
= −i

δH

δb∗
−k

(16)

∼ −(iωk + ηk)bk − iV
(2)

0,0,k,−kb0b0b
∗
k, (17)

where a damping constant ηk = αGγ (Htotal + 2πMs) (αG

is the Gilbert damping constant and Htotal is the total of
the applied and uniaxial anisotropy fields) has been added
phenomenologically into the equation as a complex part of the
frequency.30

Equation (17) is an approximation of Eq. (16), since the
sum over all possible four-wave scattering processes has been
replaced by only one scattering term, which corresponds to
the scattering of two precession modes into two spin waves
of equal energy but with finite momentum k and −k. Other
nonlinear terms, such as those that result in such interesting
effects as nonlinear frequency shift and nonlinear damping,
are ignored since only terms proportional to |b0|2 are kept.
This is a good approximation to make for small time scales
when the system has just gone above threshold because we
assume that the only mode of appreciable amplitude, straight
after the pulse is applied, is the spatially uniform precession.
All other spin waves with wave vectors k are assumed to be
at thermal levels. However, Dobin and Victora’s numerical
calculation showed that for a 2D Fe film the traveling spin-
wave amplitudes become comparable to the uniform mode’s
amplitude after only 0.5 ns (Ref. 9) and then the analytic
theory breaks down. Schlömann showed that including more
processes within an analytic theory is difficult.31 Methods,
such as S theory, exist for dealing with the turbulent processes
far above threshold but only in steady-state limits and for
continuous pumping of the system.29,32 We certainly do not

have a steady-state situation for the time duration of the pulse
when the magnetization precession angle changes drastically
over 2 ns. An analytic calculation of the reduction in |m|
seems to be impossible, but we can still calculate the threshold
for four-wave scattering in order to qualitatively explain the
experimental results shown in Fig. 5.

The equation of motion [Eq. (17)] can be solved by
considering that bk is a perturbation of its linear solution which
varies as e−iωk t , namely

bk(t) = Bke
�k(t)t e−iωt . (18)

The incremental rate of increase/decrease of the spin-wave
amplitude is found by substituting Eq. (18) into Eq. (17):

�k(t) = ∣∣V (2)
0,0,k,−k

∣∣|B0|2(t) − ηk. (19)

The condition for the exponential increase in spin-wave
amplitude bk is that this incremental rate is positive. This
defines the threshold uniform precession amplitude for the
excitation of spin waves with wave vector k15,33:

|B0|2 >
ηk∣∣V (2)

0,0,k,−k

∣∣ . (20)

For continuous pump experiments, this threshold may be
given in terms of the rf field’s power, rather than in terms
of the amplitude of precession. What is perhaps more useful
in these large-angle experiments is to give the threshold in
terms of precession angles. However, the precession is highly
elliptical for such thin films, so we write two threshold angles,
corresponding to the out-of-plane angle (−) and to the in-plane
angle (+) during precession that occur precisely at threshold.
The result from Ref. 11 is

φ±
k > 2 arcsin

⎡
⎣√

ηkγ

2M0

∣∣V (2)
0,0,k,−k

∣∣ |u0 ± v0|
⎤
⎦ , (21)

where u0 and v0 are the Bogoliubov transformation coefficients
[Eq. (A14)].

However, Livesey et al. in Ref. 11 pointed out that
precession must be far above threshold to measure a detectable
change in |m| for short time scales t . An effective threshold to
measure a change in |m| in time t is given by

φ±
k (t) � 2 arcsin

[√
γ ln |atherm|

2tM0

∣∣V (2)
0,0,k,−k

∣∣ |u0 ± v0|
]

, (22)

where |atherm| is the thermal spin-wave amplitude at room
temperature for frequencies in the gigahertz regime and is on
the order of

√
(kBT )/ω ∼

√
10−22 erg s. By averaging over

one precession period, the effective threshold can be written
as an average angle

φav
k (t) � 2 arcsin

⎡
⎣

√√√√γ
(
u2

0 + v2
0

)
ln |atherm|

2tM0

∣∣V (2)
0,0,k,−k

∣∣
⎤
⎦ . (23)

Notice that the damping constant η does not enter into this
equation for the effective threshold to measure a change in |m|
in a time t .
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IV. RESULTS AND DISCUSSION

The calculated four-wave scattering thresholds can be used
to explain the experimental results for the behavior of |m|
versus bias field (Fig. 5). In Fig. 7(a) the in-plane effective
threshold angle [Eq. (22)] is plotted as a function of bias field
magnitude for both easy-axis biasing (solid line) and hard-axis
biasing (dashed line). First, the calculated in-plane threshold
angles are smaller than those seen in the experiment, indicating
that four-wave scattering is possible. For example, for Hbias =
2.08 kA m−1 (26.1 Oe) in the hard direction, the in-plane
threshold angle (which is the maximum angle during elliptical
precession) is 9◦, which is smaller than the experimental angles
seen (see Fig. 4). Second, the hard-axis biasing shows a much
lower threshold than the easy-axis biasing. This can explain the
fact that more spin waves are excited and a greater reduction in
|m| is seen for hard-axis biasing than for easy-axis biasing (see
Fig. 5). Third, the threshold increases with bias field, which
is consistent with a smaller reduction in |m| measured during
precession for larger bias field, again as seen in Fig. 5. Note
that there is a minimum in the threshold for hard-axis biasing
at Hbias ∼ 1.19 kA m−1 (15 Oe) since the magnitude of the
total effective field Hbias + Hpulse + Huni is at a minimum
here. This minimum is not evident in the experimental results
[Fig. 5(b)] but this is presumably because data are only
collected for hard-axis biasing with Hbias > 1 kA m−1 and
therefore if the minimum is slightly lower than predicted, it

FIG. 7. (Color online) (a) The in-plane threshold angle [Eq. (22)]
required to see a reduction in |m| during 2 ns and (b) the reorientation
angle of the magnetization due to the pulse field, both as a function
of bias field strength. For biasing along the easy anisotropy axis, the
results are given by a solid line (red online) and for hard-axis biasing,
the results are given by a dashed line.

cannot be seen. The bias fields used must be this large in order
to ensure that the magnetization is fully saturated before and
after the pulse field is applied.

This is not the whole story, however, since the supercritical-
ity of the system (how far above threshold it is) also determines
the degree of nonlinearity and the relative decrease in |m|. In
Fig. 7(b) the reorientation angle of the magnetization vector
due to the pulse field is shown as a function of bias field
for both easy-axis biasing (solid line) and hard-axis biasing
(dashed line). This gives a rough indication of the maximum
precession angles that are attainable in the experiment. For the
hard-axis biasing there is a larger switching angle and thus
a higher level of supercriticality, so we can argue again that
there should be a larger decrease in |m| compared to the case
of easy-axis biasing.

Qualitatively, four-wave scattering can account for the
experimental measurement of |m| as a function of field Hbias.
But, can two-wave scattering also explain the experimental
results? The same spin waves, those degenerate with the FMR
modes, are excited via both processes. A simple estimate of
the two-wave scattering rate in Ni81Fe19 films from experiment
is described below and indicates that two-wave scattering
cannot cause the observed reduction in |m| in such short time
scales.

The field-swept ferromagnetic resonance linewidth �H

can be related to a frequency-dependent Gilbert damping
contribution together with a constant inhomogeneous broad-
ening �H0 according to �H = �H0 + κω, where κ is the
slope of the fit.34,35 The inhomogeneous broadening gives
an estimate of the two-magnon scattering rate by multi-
plying by the gyromagnetic ratio γ = 1.76 × 1011 s−1 T−1

(1.76 × 107 rad Oe−1 s−1). In large-angle experiments, this
scattering rate does not change from the small-angle value,
because the structural and magnetic inhomogeneities do
not change (however, there is a larger number of excited
magnons that may scatter, and so a larger change in the
dynamics is seen). Thus it is justifiable to use FMR linewidth
to estimate the two-magnon scattering rate in large-angle
experiments and to compare this to the four-wave scattering
rate.

For a 50-nm thick sputtered Ni80Fe20 film, �H0 ∼
0.2 kA/m ∼ 2.5 Oe (Ref. 36) giving a damping rate of

�2m = (2π )−1γ�H0 ∼ 7 × 106 s−1. (24)

This can be considered as an upper estimate, because the
film studied in our work is epitaxially deposited, rather than
sputtered, and so presumably contains less inhomogeneities.
Also, our 15-nm thick film is thinner and the trend is for a
smaller two-magnon scattering rate for thinner films.36 The
corresponding decay time is on the order of 100 ns, which
is much longer than the time scale of precessional switching
(see, for example, Fig. 4).

The four-magnon scattering rate can be calculated with
Eq. (19). The elliptical spin-wave amplitude |B0|2 at the start
of the large-angle switching process first needs to be known. It
can be determined by use of the Bogoliubov coefficients and
the maximum in-plane magnetization precession angle φmax
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according to11

|B0|2 = 2M0 sin2
(

φmax

2

)
γ

(
u2

0 + v2
0 + 2u0v0

) . (25)

By means of Fig. 4, which shows the dynamics for hard-
axis biasing with Hbias = 2.08 kA m−1, we estimate φmax ∼
10◦. By use of Eqs. (19), (25), and (A18), the four-magnon
scattering rate is �4m ∼ 4 × 109 s−1. This corresponds to a
decay time of approximately 0.25 ns, and so it is in agreement
with the subnanosecond damping seen in Fig. 4.

V. CONCLUSION

We have measured all three components of the magneti-
zation as a function of time during magnetic field-induced
precession lasting a few nanoseconds. During this precession,
an apparent reduction of the magnetization vector length |M|
is measured, indicating the secondary excitation of traveling
spin waves with wavelengths smaller than the laser spot size.
We have shown that four-wave scattering, and not two-wave
scattering by impurities or inhomogeneities, accounts for the
experimental trends for |M| as a function of bias field and
the strong nonlinearity on such small time scales. Note also
that, although the uniaxial anisotropy energy is small in the
Ni81Fe19 film, the direction of biasing can dramatically change
the switching dynamics when small applied fields are used.
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APPENDIX: CLASSICAL HAMILTONIAN FORMALISM
FOR 2D FILMS

Here we present the classical spin-wave theory for a very
thin (2D) magnetic film. As mentioned in the main text, the
expressions are simplified compared to those contained in
Ref. 11, where a full 3D theory is given.

We start with the energy of the thin magnetic film,
expressed in Eq. (11), and we perform the classical analog
of a 2D Holstein-Primakoff transformation to transform from
magnetization to spin-wave variables. This transformation is
given by

M+(R) = Mx + iMy

=
√

2γM0a(R)
√

1 − γ

2M0
a∗(R)a(R), (A1)

M−(R) = [M+(R)]∗, (A2)

Mz(R) = M0 − γ a∗(R)a(R), (A3)

where the single-site variables are related to the k-dependent
spin-wave variables via

a(R) =
∑

k

ake
ik·R. (A4)

Both k and R are 2D vectors in the plane of the thin film.
Fourier amplitudes a∗

k and ak are the classical analogs of
magnon creation and annihilation operators. If we were includ-
ing the finite thickness of the magnetic film, we would need
to modify this expansion by use of appropriate orthonormal
functions through the film thickness, as in Ref. 11. However,
in that work Livesey et al. showed that a 2D treatment gives
the same result for a 15-nm Ni81Fe19 film, and this vastly
simplifies the mathematics involved.

The classical 2D Holstein-Primakoff transformation has
the result that the energy becomes a Hamiltonian for the
system in the sense that the torque equation of motion for
the magnetization,

∂ M
∂t

= γ M ×
(

− δE

δM

)
, (A5)

is transformed into a Hamiltonian equation of motion in terms
of the spin-wave variables, namely

∂ak

∂t
= −i

δH

δa∗
k

. (A6)

The Hamiltonian contains two-, three- and four-wave terms,
plus higher order terms that we shall ignore. It has the form

H = H2wave + H3wave + H4wave + · · ·
=

∑
k

[
A(k)a∗

kak + 1

2
B(k)(aka−k + c.c.)

]

+
∑
1,2,3

δ(k1 − k2 − k3)[C(k3)a∗
k1

ak2
ak3

+ c.c.]

+
∑

1,2,3,4

δ(k1−k2−k3−k4)[F (k4)a∗
k1

ak2
ak3

ak4
+ c.c.]

+
∑

1,2,3,4

δ(k1 + k2 − k3 − k4)G(k1,k3)a∗
k1

a∗
k2

ak3
ak4

+ · · · . (A7)

The coefficients are made up of combinations of the physical
constants and material parameters and are given by

A(k) = 2πγM0[P (k) cos2 ψ + 1] + 2γαk2

M0

+ γ (Hbias cos � + Hpulse sin �)

+ γHuni[3 cos2(� − φ) − 1], (A8)

B(k) = 2πγM0[P (k)(sin2 ψ + 1) − 1]

−γHuni sin2(� − φ), (A9)

C(k3)

γ
√

2γM0
= −π

2
P (k3) sin 2ψ3 − 5Huni

8M0
sin 2(� − φ)

− 1

8M0
(Hbias sin � − Hpulse cos �), (A10)
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F (k4) = πγ 2

2
[1 − P (k4) sin2 ψ4]

+Huniγ
2

4M0
sin2(� − φ), (A11)

G(k1,k3) = πγ 2[4 cos2 ψk1−k3P (|k1 − k3|)
+2 cos2 ψ1P (k1) − 2]

+γ 2α

M2
0

(
k2

1 + k2
3 − 4k1 · k3

)

−γ 2Huni

M0
[3 cos2(� − φ) − 1], (A12)

where � is the angle between the bias field and the internal
magnetic field when the pulse is applied, and φ is the angle
between the bias field and the easy anisotropy axis. The dipolar
function contained in these coefficients is given by

P (k) = 1 − 1 − e−kL

kL
. (A13)

The next step is to diagonalize the Hamiltonian [Eq. (A7)] by
use of a Bogoliubov transformation from circular to elliptical
spin-wave variables b∗

k and bk
29:

bk = ukak + vka
∗
−k, (A14)

where the coefficients of the transformation are given by

uk =
√

A(k) + ωk

2ωk
, (A15)

vk =
√

A(k) − ωk

2ωk
, (A16)

and the two-wave coefficient is

ωk =
√

A2(k) − B2(k). (A17)

With this second transformation to elliptical spin-wave vari-
ables, the Hamiltonian takes the form of Eq. (15).

When three-wave decay of the precession is not allowed
in a system, then another quasilinear transformation must be

performed in order to eliminate the direct three-wave part of
the spin-wave Hamiltonian and incorporate them to second-
order in perturbation theory within the four-wave part of the
Hamiltonian.29,37 We have such a case here, as discussed in the
main text of Sec. III. However, the thin thickness of the film,
together with the fact that we excite mainly backward volume
magnetostatic spin waves (BVMSWs) or, more precisely, spin
waves with k aligned within an angle of ∼1 deg from the
internal field direction, means that this transformation has very
little effect on the four-wave scattering coefficient V

(2)
k1,k2,k3,k4

that we are interested in. This is because four-wave scattering
made up of two three-wave scattering events is nonresonant for
such a thin film with small applied field. We have confirmed
numerically that V

(2)
k1,k2,k3,k4

is relatively unchanged by the
quasilinear transformation (see Fig. 6 of Ref. 11).

The four wave scattering coefficient V (2) is given by direct
substitution of the Bogoliubov transformation [Eq. (A14)]
into the Hamiltonian [Eq. (A7)] and then grouping together
four-wave terms of the form b∗b∗bb. The unsymmetrized
coefficient is

V (2)
un (k1,k2,k3,k4)

= G(k1,k3)uk1uk2uk3uk4 + G(k1, − k2)uk1vk2vk3uk4

+G(−k3,−k1)vk1uk2vk3uk4+G(k1,k3)uk1vk2uk3vk4

+G(−k4,k3)vk1uk2uk3vk4 + G(−k3,−k1)vk1vk2vk3vk4

− 2[2F (k4) + F (−k2)]uk1vk2uk3uk4

− 2[F (k4) + F (−k1) + F (−k2)]vk1vk2vk3uk4 , (A18)

but then we force the coefficient to obey the required
symmetries by replacing it by the average of all permutations
which should be equivalent:

V
(2)
k1,k2,k3,k4

→ 1

8

[
V (2)

un (k1,k2,k3,k4) + V (2)
un (k2,k1,k3,k4)

+V (2)
un (k1,k2,k4,k3) + V (2)

un (k2,k1,k4,k3)

+V (2)
un (k3,k4,k1,k2) + V (2)

un (k4,k3,k1,k2)

+V (2)
un (k3,k4,k2,k1) + V (2)

un (k4,k3,k2,k1)
]
. (A19)
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