PHYSICAL REVIEW B 84, 184408 (2011)

Spin and charge transport induced by gauge fields in a ferromagnet
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We present a microscopic theory of spin-dependent motive force (“spin motive force”) induced by
magnetization dynamics in a conducting ferromagnet, by taking account of spin relaxation of conduction
electrons. The theory is developed by calculating spin and charge transport driven by two kinds of gauge
fields; one is the ordinary electromagnetic field A}", and the other is the effective gauge field Aj, induced by
dynamical magnetic texture. The latter acts in the spin channel and gives rise to a spin motive force. It is found
that the current induced as a linear response to A, is not gauge invariant in the presence of spin-flip processes.
This fact is intimately related to the nonconservation of spin via Onsager reciprocity, so is robust, but indicates a
theoretical inconsistency. This problem is resolved by considering the time dependence of spin-relaxation source
terms in the “rotated frame,” as in the previous study on Gilbert damping [H. Kohno and J. Shibata, J. Phys. Soc.
Jpn. 76, 063710 (2007)]. This effect restores the gauge invariance while keeping spin nonconservation. It also
gives a dissipative spin motive force expected as a reciprocal to the dissipative spin torque (“f term”).
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I. INTRODUCTION

Manipulation of magnetization by electric currents'= has
been studied intensively for a decade because of promising
spintronic applications.* Among them, it was demonstrated
theoretically® and experimentally® that an electric current in
a conducting ferromagnet can drive magnetic textures such
as domain walls and vortices. This is understood as due to
spin torques that a current exerts on magnetization through
a microscopic exchange interaction. They include the spin-
transfer torquf:,7‘10 which is based on the conservation of total
angular momentum, and its dissipative correction called the
B term,''"!7 which arises in the presence of spin-relaxation
processes in the electron system.

In 1986, Berger predicted a reciprocal effect that a moving
domain wall accompanied by a periodic rotation of magneti-
zation generates an electromotive force, in analogy with the
Josephson effect of superconductivity.'® This effect is now
understood as a motive force acting in the spin channel, hence
called the spin motive force,'?” which drives majority-spin
and minority-spin electrons in mutually opposite directions.
It is also understood to arise from a time-dependent magnetic
texture in general. Recently, it was experimentally detected by
Yang et al.?® for a vortex wall in a ferromagnetic nanowire.
Similar phenomena have also been studied in systems with
interfaces or nanoparticles.?®-3?

A theoretical framework for studying spin motive force in
ferromagnets was presented by Volovik,'® or earlier by Koren-
mann et al.** To treat electrons in a spin (or magnetization)
texture, they introduced a local spin frame whose quantization
axis coincides with the local spin direction,® n; then there
arises naturally an effective U(1) gauge field, Afb, acting in
the electron’s spin channel, which gives rise to an effective
“electric” field'*->*

h h .
E), = z(a,-A§ — QA?) = 2" (3;n x i) (D
or a spin motive force, Fy = —eE; (—e : electron charge).

Recently, it was pointed out that it acquires a dissipative
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correction?%*

. h
ES = B v din @)

in the presence of spin relaxation of conduction electrons. The
total field is then given by E; = E” + E%. These two terms
are reciprocals to the spin-transfer torque and the spin torque
B term, respectively,”>>* and the dimensionless parameter j
is the same as that of spin torque.''~!”

A spin motive field E induces an electric current

J =UTEs+OL(_Es)=UsEs (3)

where o4(0) is a conductivity of majority- (minority-) spin
electrons, and o5 = o4 — o is the “spin conductivity.” In most
theoretical studies, this relation is used to identify a spin motive
force.?>2* In the presence of spin-orbit coupling, it induces
in addition a charge Hall current, osyn x E g, where ogy is
a spin Hall conductivity,’® and as a reciprocal to this, a spin
Hall current induced by external electric field will exert a spin-
transfer torque.’” Enhancement of magnetization damping due
to induced spin current was also discussed.’%%°

The purpose of this paper is to develop a microscopic
theory of spin motive force based on the gauge field mentioned
above. For this, we found it instructive to treat spin and charge
channels in parallel. We thus study spin and charge transport
induced by two kinds of gauge fields, one acting in the charge
channel (ordinary electromagnetic field) and the other acting
in the spin channel (spin motive field). Particular attention is
paid to the effects of spin relaxation of conduction electrons.

In the first part of this paper, we study spin and charge
transport in a uniformly magnetized state induced by an
ordinary electromagnetic field. Our calculation is equivalent to
the well-studied two-current model,*>*3 but some interesting
crossover is pointed out in diffusion modes.

In the second part, we study a spin motive force by
calculating electric and spin currents induced by magneti-
zation dynamics. We encounter a difficulty that the current
induced as a linear response to the effective gauge field A7,
contains gauge-noninvariant terms in the presence of spin-flip
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processes. This difficulty is resolved by noting that there is
another contribution from the source term of spin relaxation,
as realized in the study of Gilbert damping.!” We also found
that such additional contribution reproduces the dissipative
spin motive force.

Such additional contributions may look tricky, but their
necessity can be understood on general grounds. In the
present gauge-field formalism, in which spin and charge
channels are treated equally, spin conservation and gauge
invariance (in the spin channel) are equivalent at the linear-
response level because of Onsager reciprocity. However, the
former is violated by spin-flip processes whereas the latter
should always hold in order for the theory to be consistent.
These contradictory aspects can only be reconciled by some
additional contributions.

The paper is organized as follows. After describing a model
in Sec. II, we examine in Sec. III the density and current
response to the ordinary electromagnetic field, Aj". Here the
magnetization is assumed to be static and uniform. In Sec. IV,
we consider the case that the magnetization varies in space and
time. By introducing another gauge field, A}, which expresses
the effects of magnetic texture and dynamics, we examine the
density and current within the linear response to A?,, with an
unpleasant, gauge-dependent result. This problem is resolved
in Sec. V, where a dissipative correction to spin motive force is
also obtained. The results and discussion are given in Sec. VI,
and the paper is summarized in Sec. VII. Calculational details
are given in appendices.

II. MODEL

We consider a ferromagnetic conductor consisting of
conducting s electrons and localized d spins. We assume
that the s electrons are degenerate free electrons subject to
impurity scattering, and localized d spins are classical, which
are mutually coupled via the s-d exchange interaction. The
Lagrangian for s electrons is given by L = L¢; — Hyq:

L /drT 'ha+h2V2~|—5 V: 4)
= C mn— -~ - im C7
el ar | 2m F P

Hg=—M / drn-(cloc), )

where ¢f(x) = (c;(x),ci(x)) is the electron creation operator
at x = (¢,r), er is the Fermi energy, M is the s-d exchange
coupling constant, n is a unit vector representing the direction
of d spin,® and ¢ is a vector of Pauli spin matrices. The
impurity potential is modeled by

Vimp(r) =i »_8(r = R) +u,y_8(r— R)S; -0 (6)
i J

where u; and R; are the strength and position of normal
impurities, which introduce momentum relaxation processes,
and us and R/j are those of quenched magnetic impurities with
spin S;, which introduce spin-relaxation processes.'*!” We
take a quenched average for the impurity spin direction as
S% =0 and*

ST (@, =x.y),

= )
§? (a.p=02),

SeSiB = 86" x

PHYSICAL REVIEW B 84, 184408 (2011)

as well as for the impurity positions, R; and R’;. When the
magnetization is uniform and static, n = Z, the impurity-
averaged Green’s function is given by

1
Gio(2) = - 8
ko (2) 7 — &k + &0 + I Ypsgn(Imz) ®

where k is a wave vector, & =h2k2/2m, and eg, = € +
oM. The subscript 0 = 1, | represents the majority and
minority spins, respectively, and corresponds to o = +1, — 1
in the formula (andto & = | , 1 or —1, +1). Treating Vin, as
perturbation, the damping rate y, is evaluated in the first Born
approximation as

h ~ -
Yo = =, +Tavs) (9)
27,

where v, = mkg, /2712712 is the density of states at eg, with

kps = v/2megs /R and

I =nu’+ nsu2§ (10)

s~z

) = 2nu28% (11)

with n; and n¢ being the concentration of normal and magnetic
impurities, respectively. The first and second terms in Eq. (9)
come from spin-conserving and spin-flip scattering processes,
respectively.

In this paper, we assume y, < &g, and focus on diffusive
transport induced by slowly varying external perturbations
(electromagnetic fields or time-dependent magnetic texture).
Let g and w be wave number and frequency of the perturbation,
and define

Xy = (Dyq* — i)ty (12)

with a diffusion constant D, . Then our assumption throughout
the paper is expressed as y, < €p, and | X,| < 1.

III. SPIN AND CHARGE TRANSPORT IN UNIFORMLY
MAGNETIZED STATE

A. Linear response to electromagnetic field

Let us examine the density and current response in the
charge channel, j, = (p, j), and spin channel, js, = (ps, J,),
to the external electromagnetic field, A5 = (— ™, ASM) 4445
Here ¢°™ and A°™ are scalar and vector potentials, respectively,
and the time and space components of the four currents are
given by

p=—eclc (=js"), (13)
—eh <
J=i0+ Spam jO=—ZclVe, (14
m 2mi
po = —ecloic (<)), (15)
—eh <
Jo= 00+ Spam, jO =" lieie  (16)
m 2mi
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with ¢!Ve = ¢TVe — (Vel)e. We have defined ps and j to
have the same dimensions as p and j, respectively. The
coupling to the external fields is given by

Hon = [ dr(pgm = -4

/dr](O)Ae"‘ (17)

The currents, j, and j, ,, are evaluated in the linear response
to AZ’" as
(Ju@)w =€ K°° 2(g,0 +i0)AT (w), (18)
o @) = €K (.0 + i0)AT () (19)

where Aflm (w) is a Fourier component of AS™(x). The response
functions K3 ¢ and K} °¢ are obtained from

T A
ERS@ion = [ drd (1 0.0/ o)
0
e
+ 2 p) 1~ b0, (20)

1/T
K (g.iw) = / dte' (T, jO(q.1)j"(—q)
0

+ (0 81 = 810) @1
by the analytic continuation, iw, — hw + i0, where w;, =
2w AT (A : integer) is a bosonic Matsubara frequency. In this
paper, we focus on absolute zero, 7 = 0. The average (- - - ) is
taken in the equilibrium state determined by L. The Fourier
components of the currents are given by

i@ =—eY vuck ek, 0 (22)
k,o
JO) =—e> ovueh i (23)
k,o
with
{;tk /m EZ _ 10)_ 1,2,3), (24)

andkp = k+q/2.

The response functions are evaluated with the ladder-
type vertex corrections*® (Fig. 1). Deferring the details to
Appendix A, we give the results in the next subsection. The
results are concisely expressed with the quantities

Yo = Doq’ —iw, (25)
Z =YY, + 27T (Yv) (26)

and a notation (- - - ), meaning to sum over o = 1, ; for exam-
ple, (v) = vy +vy, {(ov) =v4 — v, (Dv) = Dyvy + Dyvy,
and (0 Dv) = Dyvy — Dyv,. By defining (¥Y), = Y5, we
may also use (DvY) = Dyv1Y, + Dyv Y, and (cDvY) =
D¢VTY¢ —D¢U¢YT.
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CcC
(a) K;u/ — /U/j, UI/ + U,LL /UV

b) A =

FIG. 1. (a) Diagrammatic expression of K. The thick (thin)
solid line represents an electron line carrying Matsubara frequency
ie, +iw, (ig,). The shaded part represents the vertex function, A¢.
(b) Dyson equation for AJ. The dotted lines represent impurity
scattering, either with (I’;) or without (T';) spin-flip scattering.

B. Result
1. Charge channel
The response functions K (¢, + i0) [Eq. (20)] for the

electric density/current are obtamed as
K = q*K, 27
Kis = Ki = qiokK, (28)

K = iw {(Dv) (5,-,» _ qj_q;) —iw q"—Z"} (29)
q q
where

_ (DY) + 27T, (v)(Dv)
VY 2rly(Yy)

(30)

The following properties are seen:
(i) Gauge invariance*’ and charge conservation are satis-
fied,
Kqv =0, q.K;, =0 3D
where g, = (—w.q) is a four wave vector.*?
(i) For I'; = 0 (without spin-flip scattering), we have

DvY Dyv,
_ Dy >=Z Yo (32)
Y)Y, D,q* —iw

This means that up- and down-spin electrons diffuse indepen-
dently, and there are two independent diffusion modes.

(ili) For T'; #0, and in the long-wavelength and low-
frequency limit, rs;' =2nT5(v)/h > |Y,|, we have

Ko DY /e a3
(Dv)q? —io(v)  Deiig® — i
where
Dv Divi+ Dv
Doy = 2V _ P & Dyvy (34)
(v) v+ vy
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is the effective diffusion constant, and

o =e*(Dv) =€* ) Dy, (35)

is the electrical conductivity. There is only one diffusion mode
owing to the spin mixing I',. In the opposite limit, ts}l <L Y5,
we have the behavior (32).

Finally, the charge density p = (jo(¢q)), and the current
density j = (ji(q)), are given by

p = —’KdivE, (36)
L, (D?vY) + 275 (Dv)?

j =o.E +e =
S =0 Y. Y, + 270 (Y )

V(divE) (37)

where E(q,w) is a Fourier component of the electric field:
E(q,0) = —iq¢*™(q,0) + iwA™(q,w) with divE = iq - E
and V(divE) = iq(iq - E).

2. Spin channel

The response functions K (¢, +i0) [Eq. (A8)] for spin
density and currents are obtained as

Ko = q*(K* + AKY), (38)
K = qioo(K® + AK®), (39)
K}y = qioK®, (40)
K =i {(aDv) (3,, _ q"—‘f) _ ia)KSqi—Zj} (41)
q q
with
K5 — (o DVY) + 2nf‘~2(v)(oDv)’ 42)
YTY¢ + 27TF2<Y|))
K+ AKS = (o DVY) + 2711=‘~2(ov)(Dv)' 43)
Y¢Y¢ + 27TF2<Y1))
The difference
AK® = 20T (ov)(Dv) — (v){o DVv)

Yy Y, +2700(Yv)

= 2nf‘2(acv, — cher)/Ze2

= 2nTyv 0P, — P))/Zé? (44)
arises if I'> # 0 (and P, # P;).In Eq. (44),

o5 = e*(o Dv) = &> ZaDava (45)
o
is the “spin conductivity,” and P, = v_/v, and P; = o /0.
represent spin asymmetry in the density of states and in
current density, respectively, which are different in general.
The following properties are seen:
(i) Gauge invariance is satisfied,

K90 =0 (46)
but spin conservation is not,
4, K, = —(q%8,0 + 0q;8, )0 AK® # 0 (47)
if I'y # 0, where i is a space component.**
(i) Depending on the relative magnitude of rsgl and

|Y,|, there are two regimes similarly to the charge channel.
More interestingly, however, for ts}l > |Y,|, the magnitudes
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of ps and j, can be independent, governed, respectively,
by asymmetry in density of states and by asymmetry in
conductivity: ps o P,o. and j,  os.

Finally, the spin density p; = (Js,0(¢))» and the spin-current
density j, = (Js,i(¢)). are given by

ps = —e*(K* + AK®*)divE, (48)
, (0 D*vY) + 27T (Dv) (o Dv)

j.=0E +e =
Is Y Y, + 2L (Y )

V(divE).

(49)

3. Spin-resolved channel

From Egs. (36), (37), (48), and (49), we obtain the “spin-
resolved” density and current,

py = —e’K,divE, (50)
jo =00E +e’Dy Ky V(divE) (51)

where
SRk

From Egs. (50) and (51), we may derive

Jo =06E — DsVp, (33)

where
Oy = ezDa Vo (54)

is the “spin-resolved” conductivity. Further discussion will be
given in Sec. VL.

IV. SPIN AND CHARGE TRANSPORT IN
TIME-DEPENDENT SPIN TEXTURE

In the previous section, we studied spin and charge transport
in a ferromagnetic conductor in its uniformly magnetized state.
In the second part of this paper, which consists of Sec. IV
and Sec. V, we consider a more general case in which the
magnetization varies in space and time. This magnetic texture
and dynamics induce density change and current even if A"
is absent, which are calculated in this paper in the first order
in both spatial gradient and time derivative.

A. Transformation to local spin frame

To treat the effects of space- and time-dependent mag-
netization, we introduce a local spin frame where the spin
quantization axis of s electrons is taken to be the d-spin
direction n(x) at each space-time point.'”3**% The original
spinor c¢ is then transformed to a spinor a in the new frame
(rotated frame) as ¢ = Ua, where U is a 2 x 2 unitary
matrix satisfying cf(n - ) ¢ = a'oa. It is convenient to take
U =m - o with

m sin o cos ¢, sin 0 sin ¢, cos 0 (55)
= |sin = , —sin ¢, -
2 2 2
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where 6 and ¢ are ordinary spherical angles parametrizing n.
From space and time derivatives, d,c = U(9,, +iA,)a, there
arises an SU(2) gauge field

A, =—iU%,U = A%". (56)

This is an effective gauge field, which represents space and
time variations of magnetization. The Lagrangian in the rotated
frame is then given by L = L — He_a,

. J,0 B,
Lg= [ dra th5+—v + &g —

2m Vimp + Mazi| ¢

(57)
h T qo h2 apa T
Hepn=—— [drj,A, +5— | drAfAja'a (58)
2m
where ]/‘j = (p“, }'a) is a four current representing spin and

spin-current densities (“paramagnetic” component) in the
rotated frame,

5% = —ea'o®a (:fg‘) (59)

~a h

J =—e—a U"‘Va (60)
mi

The spin part of the impurity potential \Zmp is expressed
as $¢(clo%c) = §4(1)(alo?a), where 52(r) = R“(R’,,1)S" is
the impurity spin in the rotated frame'” with

R = 2m*mP — 5% (61)

being a 3 x 3 orthogonal matrix representing the same rotation
as U. Hereafter, the anisotropy axis of impurity spins is defined
in reference to the rotated frame
= =7 S_2 o,B=x,y),
SlaS]'B = 61-]-8“5 X _J_ ( ﬂ y) (62)
$2 (@B =2).

B. Effective U(1) gauge field

There is some arbitrariness in the choice of the rotated
frame; one could take ¢ = U’a’ with U’ = Ue ™' %/2 where x
is an arbitrary function of x. This arbitrariness is a gauge degree
of freedom in the sense that physical quantities should not
depend on it. It is in fact expressed as the gauge transformation
onaand A,

a =e X2, (63)
A;,L _ —i(U’)TBMU/ _ eiafx/zAue—me/z —6%9,x /2.
(64)
or, componentwise,
AV +iAY = e X (A% +iA)), (65)
A=A = 9,x/2. (66)

Note that its z component A7, transforms like a gauge potential
in ordinary electromagnetism, hence can be regarded as a
U(1) gauge field. In the following, when we refer to gauge
transformation, it means Egs. (63)—(66). In the next subsection,
we study spin and charge transport driven by magnetization
dynamics as a linear response to this effective gauge field A7,.

PHYSICAL REVIEW B 84, 184408 (2011)

Generally, one can do a gradient expansion in terms of
A%. The expansion parameter is qvg, T, and wt, (for A%),%
where ¢~! and  are characteristic length and frequency,
respectively, of the magnetic texture. In this work, we consider
only the lowest nontrivial order in the expansion by assuming
qUrs Ty < 1 and wt, <« 1. This condition coincides with
the condition, |X,| = |Dyq°> —iw|t, < 1, declared below
Eq. (12). In typical experiments with Permalloy (vp, ~
105m/s, 7, ~ 107 145),% qfl ~ 100 nm, @ ~ 100 MHz,°
we have D,g?t ~ 107 and wt, ~ 107%, and the above
conditions are satisfied quite well.

C. Linear response to AJ" and A,

Let us examine the density and current response to the two
gauge fields, A7™ and A}, . Spin density and currents considered
here are the ones Whose spm is prOJected on n (or Z in the
rotated frame); i.e., ps = §° and j, = J°. The total current
densities contain the gauge fields as

Ju=(p. J+ (epA™ +1np" A%)/m), (67)
Jsuw = (ps, Js+ (epsA™" +TipA%)/m) (68)
for charge and spin channels, where p = —ea’a and j =

(—eh/2mi) aT%a. By generalizing Eqgs. (18) and (19), we may
write

(ju(@)o = KA + en K AL, (69)

(su(@)o = KA + eh K35 AT (70)
The response functions, K;‘ and K “v, are obtained from
Egs. (20) and (21) by replacing the electron operators in the
original frame, c (c'), by those in the rotated frame, a (a'),
and are already calculated as K5, and K in Sec. III. Thus
the response to AZ‘“ in Egs. (69) and (70) exactly follows the
results there.

Let us then focus on the response to A%, in particular,
on K&, (K5, will be presented in Appendix D.) From the
definition (linear-response formula), one can show that the
Onsager’s reciprocity relations hold,

Re(q.ioy) = K5(~q, — i) (1)
or
KCs V(g0 +i0) = Ksc( q, — o —i0). (72)
From this, we see that
4. K, = K3q. = 0; (73)

namely, the charge conservation is satisfied also in the response
to Af. On the other hand, if I'; # 0, spin is not conserved,

K ‘e 75 0 as seen before. This fact, combined with Eq. (72),
1mphes that K 4y 18 DOt gauge invariant,

Kq0 =q. K5, #0 (74)

if 'y # 0. The gauge-noninvariant terms in Eq. (69) may be
extracted as

Ji(q.0) = eh AK*{q*8,0 + qi 8, } A . (75)
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To summarize, the calculation based on the gauge field
A}, fails to respect gauge invariance in the presence of
spin-flip scattering. Stated more explicitly, the density and
current calculated as a linear response to Aj, are not gauge

invariant.°

V. CAREFUL TREATMENT OF SPIN
RELAXATION EFFECTS

A. Restoration of gauge invariance

The lack of gauge invariance encountered in Sec. IV C is
due to an oversight of some contributions. We recall that the
quenched magnetic impurities in the original frame become
time dependent in the rotated frame, S (@) = R (R’ J)Sf .
Therefore, we should treat the spin part of the impurity
potential

Ho=u,y f dr$;0s(r — R) - (@'oa),  (76)
J

as a time-dependent perturbation. The same situation was met
in the calculation of Gilbert damping.'’

Since the first-order (linear) response vanishes, S‘]" (1)=0,
let us consider the second-order (nonlinear) response,

A]n(%a))

*® do' TE =
= —ensuff e X2 (q: 0,08 — ) 8P ()],
oo 2T

(77

where $%(w) is the Fourier component of ) ; §%(1) 8(r — R'),
and ij’g is the nonlinear response function.'” To calculate it,

it is simpler to use the path-ordered Green’s function.’! The
contribution represented in Fig. 2 is given by

* de
Xﬁﬁ(%w’w/) = Z/ 2—mtr[(vﬂ + A)Gy, (e4)0”
ki T

x Gy(e + ol Gy_(e)]7,
(78)

where &, = ¢ + w. The Green’s function G(¢) now stands
for a path-ordered one, whose lesser component is given by

G; (&) = f(&)(Gy(e) — Gi(e) (79)

with f (&) being the Fermi distribution function. In Eq. (78), we
adopt a matrix notation, (G)s,o' = G866/, (Apoor = AZ8(T(T’
with A7 given by Eq. (A6), and “tr” means trace in spin space.

etw o etw o

aff _
X,u - /U,u
E+w

FIG. 2. Diagrammatic expression of X;fﬁ. The wavy line repre-
sents scattering from impurity spins, which are time-dependent in the
rotated frame. The shaded part represents the vertex function Af.
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We expand x2#(¢; w,') with respect to @ and o' as
X:fﬂ(%w,w/) = AZ’S - ia)Bft"3 — ia)/Ciﬂ +--- (80)

where A%, Bef, and C% are the expansion coefficients.
Substituting Eq. (80) into Eq. (77), we have

Aju(q.0) = —enul[ B 8,(5*5F) + 2P §@, 58 |

’

1)

where S = S() is time dependent. [We have dropped a term
containing A,‘f‘f , which does not reflect the time dependence of

S(7).] From

q,»

529,58 = (S25%7 + S2 5°:57)(R9, R)"* (82)
where (Saf = §%F — 52282 and the relation!’
(RO, R)* = 267 A7, (83)

we see that Eq. (81) describes a response to AJ. The
coefficients are calculated as (see Appendix B)

1
af __ aff
B = ) cyr,
(0Y) 8,0 +iqi(cDY)§,;
Y Y, + 2705 (Y)

=TV eP (84)

where ¢*f = ¢%¥* and we have dropped unimportant terms
proportional to 8% or §225P<,

We thus have
Aju(q.0) = ehAK S AL (85)
with
AKS, = —AKq*8,0 + qi08,i}8.0. (86)

This new contribution cancels the gauge-dependent terms,
Eq. (75), and restores the gauge invariance,

(K, + AKS)g, =0. (87)

v

Note that it does not affect the charge conservation since
quAK, =0, nor does it affect the spin nonconservation

(g, K5, # 0) since it does not contribute to K5,

The gauge-invariant result for the charge density
o™ (g .w) and current density j™ " (g,w) induced by
magnetization dynamics is summarized as

P = —? K divEY, (88)
jsmf(l) — O_SES
2 (6 D*vY) 4 2[5 (Dv){o Dv)

N V(divEY).
1Y, + 2705 (Yv)

(89)

The first term on the right-hand side of Eq. (89) has the form
of Eq. (3), and implies the existence of spin-dependent motive
force described by the effective “electric” field E°. The second
term of Eq. (89) represents a diffusion current arising from
charge imbalance induced by E?, as made clear in Sec. VI.
This term implies the existence of nonlocal spin-transfer torque
as the reciprocal effect, whose study will be left to the future.
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B. Dissipative correction

It is important to note that there is one more contribution
within the same order in gradient expansion. It is essentially
given by Eq. (77), but with one more factor of A} . The response

function, denoted by fo’ ¥, is obtained from Eq. (78) by further
extracting A;’i via Eq. (58). These are expressed as (Fig. 3)

imf(Z)(q CL)) —ehn MZZf

x [8%(w — ) SP(@)]y_g Al (90)

aﬂy .
X (g 0,0

where
X (g o.0) =) f
kK
$ {0} Gri(64)07 Gai(64)0°G (e + o’ Gy ()
+ 0] Gri(e1)0Grle + @) Gy (£)a” Gy(e))

tr|:(vﬂ + AL

1 <
+— 8,07 Gy (e:)0 Go(e + w/)aﬁGk@)] 1)
m

with vijE = (k; &= ¢;/2)/m. We have put ¢’ = 0 in Eq. (91), but
retained ¢ and w. Note that the terms with y = z cancel out,
and Ali does not contribute. In the same way as in Sec. V A,
By _ pA%PY _

i i
B"‘ﬂ)’

we expand X:Zs 7 with respect to w and ' as x,,
. afy . aBy
ioB,;” —io'C" + -
and CZ‘IS Y. Deferring the details to Appendix C, we cite the
result

and focus on the coefficients

1
afy _ = ~aBy
B == Coi
— (802 By _ sBroayy Yt o \RA
= (8%eP7 — 6P )4M;o(Lm) (92)
etw o 5—0—w o
o; '
afy
Xpi = U,
€
etw o £tw o
+ U, + Uy
h e+uw € 36+w’
ow; o o, O
e4w o
+5;1i%
e+ w
€ 3

FIG. 3. Diagrammatic expression of x:ff‘ ¥ The gray circle repre-
sents the interaction with Al
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where v = vy 4+ vy, and L7 ’s are given by Eqs. (Al5) and
(A17). Note the order of the subscripts, i x. We thus have

:ﬂ%ZG(L

=A, —2(2-A,), and

.sm A
i@ (g.0) A A e 93)

where Alf
T _— -
B = Mnsug(Si + S2)(vy +v)) (94)
is a measure of spin relaxation. With the relation
A Ay =1n-dn (95)
which is gauge invariant under (65), we finally obtain

—* K divE®, (96)
jsmf(2) -0 Edis
= o, E!

psmf 2) —

DY) + 271 (D D ‘

A LTDVY) + 27 ToDVIO DY) G 4y, i
Y1Y, + 275 (Yv)

7

where E%* is given by Eq. (2). Since E%* contains 8 as
a prefactor, Egs. (96) and (97) come from spin-relaxation
processes. This S is exactly the same as the coefficient of
the B term of current-induced torque,l“’17 consistent with the
fact that these are reciprocal to each other.?>?*

VI. RESULTS AND DISCUSSION
The results obtained in this paper are summarized as

(DVYF) + 275 (v)(DVF)

=- - , 98
P YTY¢ +27TF2(Y1)) ( )
j =o0.E + osE;

(D*vYVF) + 27T, (Dv)(DVvVF) ©99)
YTY¢+27TF2< \)) ’
(oDvYF) + 27T (ov)(DVF)
ps = 2 . (100)
Y¢Y¢ + 27TF2(Y1))
js = GSE + acEs
(6 D2VYVF) 4+ 21T (0 Dv)(DVVF) (oD

Y1Y, + 2r (Y v)

where F, = ¢*divE, F, = ¢*divE,, and F, = F, + o F,. The
notations are as before: for example, (DvVF) = Dy, VF; +
D,v,VF,. From these relations [or Eqs. (104) and (105)
below], we identify the spin motive field to be

h
Esi= 5 {=n-(n x 3;n) + B(n-d;n)}. (102)
e
The spin-resolved density and current are given by
po = —e*div(K, E + K. E), (103)
ja = UJEU - DoVPa, (104)
E, =E+0E; (105)

where E, is the total field felt by spin-o electrons. The

coefficient K, is given by Eq. (52), and K by

oD,Ys + 215 (0 Dv)
YT Y‘L + 27‘[1;2<Y1)>

/

Vg (106)
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There are two characteristic regimes depending on the relative
magnitude of TS}I =2nl"»(v)/h and |Y,|. For rs}l < Y51,
Eq. (103) becomes

o

po =~ —————divE,

107
Ds;qg* —iw (107

meaning that the spin-o electrons respond only to E,, not
to E;, and the two spin components (1 and |) behave
independently. In particular, the response to a spin motive
field E; (set E = 0 for simplicity) is opposite in sign between
1 and |, electrons. In the opposite limit, rs?l > |Ys|, Eq. (103)
becomes

Vo /(V)

Do =2 “Dd?—im div(o1 E4+ +0E )

(108)
Deirq? — i

where Dgg = (Dv)/(v). In this case, the density of spin-o
electrons is affected not only by E, but also by E;. This
is due to the strong spin mixing; as an elementary process,
po 1s induced solely by E,, not Ez, but subsequent spin-
flip processes tends to equilibrate o4 and p,. Note that 1
electrons and |, electrons respond to E with the same sign.
(The common sign is determined by that of o4 — 0.)

The above features oppose the picture of two independent
currents, but they are actually described within the conven-
tional two-current model.*** This is best demonstrated by
the relation

8 o (o2
—pg—l-divj(,:—(p _ P ) (109)
ot Tst,o Tsf,6
where
Ty =205 /R (110)

is the spin-flip rate for spin-o electrons. The right-hand side of
Eq. (109) represents a coupling between 1 and |, electrons. In
deriving Eq. (109), we have used Egs. (103), (104), (106), and
(52), and the relations (6 K /v) = (¢ DY)/Z and (cK'/v) =
(DY)/Z. Note that p,, being given by Eq. (103), represents
a deviation from the equilibrium value. One may define the
deviation of chemical potential, § 4, from equilibrium by

Po = _evUSMO" (111)
Then Eq. (109) can be put in a familiar form,*>*3
d . 05 Slbe — Slus
2 +divj, = J2 ot — Oy 12
apPe Tdvie =~ 7 (112)

[

where £, = /D, T - 1s the spin diffusion length for spin-o
electrons.

The present work is therefore within the two-current
picture. This fact was implicitly used in identifying the spin
motive force on the basis of Eq. (3).

VII. SUMMARY

In this paper, we have studied spin and charge transport
in a conducting ferromagnet driven by two kinds of gauge
fields, Azm and Ali, which act in the charge channel and
spin channel, respectively. In particular, we have given a
microscopic calculation of spin motive force by taking spin-
relaxation effects into account.

In the first part, we calculated density and current in
both spin and charge channels in response to the ordinary

PHYSICAL REVIEW B 84, 184408 (2011)

electromagnetic field A" in a uniformly magnetized state.
We observed a crossover from two diffusion modes to a single
mode as the spin-flip rate is increased (for a fixed frequency or
wave number of the disturbance), or as the frequency or wave
number is decreased (for a fixed spin-flip rate). However, if
expressed in terms of spin-resolved density and current, the
so-called two-current model is shown to hold irrespective of
the strength of spin-flip scattering.

In the second part, we have developed a microscopic
theory of spin motive force in the framework of gauge-
field method. We readily encountered the problem of gauge
noninvariance; the current calculated as a linear response
to Aj depends on the gauge (choice of local spin frame).
This fact is intimately related to the nonconservation of spin
(due to spin-flip scattering) by Onsager reciprocity, hence is
robust. This theoretical puzzle was resolved by noting the fact
that the spin-dependent scattering terms (quenched impurity
spins) are time-dependent in the rotated frame. By calculating
the second-order (nonlinear) response to this time-dependent
perturbation, we could recover a gauge-invariant result while
keeping the spin nonconservation. The dissipative correction
to the ordinary spin motive force, which is the inverse to the
spin-torque B term, is also obtained.

Note added. After submitting the manuscript, we became
aware of a closely related work by Kim et al.>*
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APPENDIX A: CALCULATION OF RESPONSE
FUNCTIONS K AND K

In this Appendix, we evaluate the electromagnetic response
functions in the ladder approximation shown in Fig. 1(a). From
Egs. (20) and (21), they are written as

K (qio) =—T Y LS (g:ie, +iw.ic,), (Al)
n,o

K(qion) = =T Y oLl (qiien +iws.ie,) (A2)

with
(A3)
(A4

LS, =117, + T0A7

uv

HZV = Z quvaJr,(r(isn + iwk)Gk,,(r(isn)
k

where ¢, = (2n + 1) T (n: integer) is a fermionic Matsubara
frequency. The vertex function A satisfies [Fig. 1(b)]

A =A% + T T, A7 + 2T A (AS)

where T, = I15,, and A9 = ['\T15, + L1015, is the lowest
order contribution. Equation (A5) is solved as

. 7S — 5 (A9 — TH19)

Y 1=Tiy 4+ Ty + (O = BT,

(A6)
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Performing the analytic continuation, iw; — w +i0 and
retaining terms up to the first order in @, we obtain

cc o \RA
K (q w—+i0) = V+(Sy_08v0 + 7 ; (Ly_v) ’ (A7)

SC . l(l) o RA
K(q0 +i0) = v-8,080 + 5— > o(Ls,)" (A8

where vy = vy £ v, . The function (L, )** is obtained via the

analytic continuation, i(¢, + w,) — ¢ + ® +i0 and ig, —

& — 10, as indicated by the superscript “RA”. We assume y, <
€Fo» and discard (L9,,)*® and (L )** as in usual calculations
of transport coefficients. The k integrals are evaluated up to
O(1X,]) or O(1X,|°) as

(MR = Z Gt o (@G (0) > 2mv,7,(1 — X,), (A9)
H:’O Z v; Gk+,0(w)G£_,U(O) ~ —27iq; Dyv, s,
(A10)
(H” E:UJUG§+U@DG ,(0) = 27 Dy, 8;; (All)
k

where D, = véato/S, Vps = hkgs/m, and X, = Y, 1, with
Yy, = Dyg® —iw. Using these formulas, we obtain

)M Ys +2n0) 1

(A7) = . —, (A12)
Y1 Y, +2xT2(Yv) s
D, Y5 +27[ 1
YTY¢+2ﬂF2( ) 'CU
and thus
Ys +2nT
(L) = 270, 2 ) (A14)
Y¢Y¢+2]TF2<YV)
Y5 +2n[
(L5)™ = —2migiv, D, 2 F2T2W 5
YTY~L + 27TF2(YV>
DyYs + 215 (D
(L5)™ = —2rigv, e 22DV Ty
YTY¢ +27TF2(YU>
& \RA qi4;
(L7;) =2m,,Da{<5,-j—?>
i Ys +2nT
_ iTds Yo+ 2Ll } (A17)
q Y¢Y¢+27‘[F2( )
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APPENDIX B: CALCULATION OF C,"fﬂ

The nonlinear response function X/‘fﬁ in Eq. (78) is written
as

1 g 0,0) =) 167 +ioe”) 555

* de
[
0o 2T

B
is given by Eq. (A3), and I,(¢) =), G, ().
Following the Langreth’s method,’>>* the lesser component

of L§,(q;¢ +w,e)l5(e + ') = LI is calculated as

+89°8578,14]

0,36+ 0.0 (e + )]

o
where L "

(LD~ = f(e)(LR* —
+ f(e + w)(LA —

LRR)IR+f(€+w/)LRA(IA _ [R)
LRAYA, (B2)

Note that the ordering of Green’s functions in LI is G(e +
w)G(e + @')G(¢e) [see Eq. (78)]. The superscripts RA, A,
etc., specify the analytic branch; for example, LRA (e + w,e) =
L(e + w +i0,e —i0), I*(e) = I(¢ — i0), etc. Thus the coeffi-
cients in the expansion X""g = A“’S - za)BO"3 —iw C"‘ﬂ + -
are obtained as

1 Z
o af | .« o
B 21 aa,[(% +i0e%) 855 + 87787851,

x [Lg,(g;0,0]** 1200), (B3)

i B | .« «
G = T Z[((Sf +i06%) 855 + 878785151

x [LG,(q: w,O)]RAImI(}f,(O). (B4)

We have retained only the lowest order term in y,, . Substituting
Egs. (A14) and (A16) together with I}}(O) = —imv, (whose
real part is dropped consistently with the self-energy) into
Eq. (B4), we obtain Eq. (84).

APPENDIX C: CALCULATION OF Cff 4

Consider the nonlinear response function XZ? ¥ given by
Eq. (91). As in Appendix B, we take a lesser component,
extract the '-linear term, and retain terms containing both GR
and G* to obtain Bz?y = —(1/2)CZ‘?V and

afy P o/
Cﬂi _la 7 X

w'=0
:—thr vM+ARA)v,{Gk+U Gk+6 DolGlh

+ Gk+c7 DoPGro”Gr )]
- Z Sui Y _t[o? GR oD 0P Gy ]. (C1)
k
Here (ARM)gor = (A)**854 is given by Egs. (A12)-(Al13),
and ) = Zk,(G‘;, — G}},)/2m’ is a matrix of density of states,

D)oo’ = V5856'- In Eq. (C1), all G’s are evaluated at ¢ =0
except for thosein A, in which ¢, w are retained. Equation (C1)
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is written as

ColY =iy [8*(0 8] — e s

ni

— 87087 —ie® W, | M (q.0)+MS,(q.0)}

(C2)
where
MS(q.0) = 0% (@) + (A7) 05(q), (C3)
M2(q.0) = 0%:(q) + (A7) 05, (). (C4)
0%:(q) =Y v Gy_,Gr Gr ,|._o=[00(-]"
k

(C5)

In the lowest order in y,,, we see that

o Vi o o \RA

Mm'(q’w) = M/u(qrw) = _m(LZM) (C6)

where (L7,)** is given by Egs. (A15) and (A17). Noting that
M+ M[, ==, o(L7,)* /2M is independent of o, we
obtain the leading term as

aBy _ saz By _ sBzpayy Ut o \RA
CPr = _(5gPr _ b7 V)ZMZU(LW) . (€T

i
o

APPENDIX D: SPIN CURRENT INDUCED BY SPIN
MOTIVE FORCE

The response function K ffv in Eq. (70) is evaluated as

B iw - RA
K;SU = V48,0800 + " XU:U(LS*’“’) ’ (DD

oo /

PHYSICAL REVIEW B 84, 184408 (2011)

LS = 0Ty + TR0 AL, (D2)
The spin-current vertex function A¢ , which satisfies
A7, =27, + TG AL, — LI A7, (D3)

with A7, = o (I 10, — [L105,), is given by

)RA _ oYs +2nf‘2(av) 1
N YTY~L + 27‘[1‘:‘2<YU> To ’

(Ag’,0 (D4)

. 0D,Ys + 25 (c Dv) 1 DS)
= —1q; = —.
DY, T oY) 1

(A7)

Hence, we have

Ys +2x[
(L) = 20y, e 272000 (D6)
’ Y¢Y¢+27TF2<YU)
Ys; +2xT
(L730)" = —2niq Dy, L2 T 22OV (D7)
” Y¢Y¢ + 275 (Yv)
D,Ys +2nT5(c Dv
(L2))™* = —2migive > +2nlhloDy) (D8)

Y Y, + 215 (Yv)

s \RA 0D, Y5 4+ 21T (0 Dv)
(Ls,ij) = 27TDaVa{G5ij —4qi9q; .

Y1Y, +2r (Y v)
(D9)

Note that K v S thus obtained satisfy neither spin conservation
nor gauge invariance, g, I%ffv = Igsjtqﬂ #0,if [y #0.

Asin Sec. V, time-dependent magnetic impurities, Eq. (76),

in the rotated frame also induce a spin current

AJi ®) = —engu? d_a) “Bg:w,0)[S*(w — )5S (w')]
Js.u(q, @) sUg Xs (@ ©,0)[S( )SP ()],

oo 2T

*do TE =
—ehnsuf Z/ . Xs,ﬁ?(q; w,0)[S%(w — a)’)Sﬁ(w’)]q,qrA;/,i
g 7T

where

kK

/ oo d€ o / <
X (giw.0) =) / o tr[(v,0° + As )G, (6 + ©)0*Gy(e + )P Gy ()17,
—00

(D10)

(D11)

67 / *© dS / <
X(go.0) = / o7 W0u0 + AL G 6+ ©)07 G, (6 + @)0“ G (e + )0’ G (2)]
—0o0

kK

2 * ﬁ z - ary N y <
+ i tr[(v,o° + Ag v G, (e + 0)o“Gr(e + @)o" Gy _(e)o? Gy _(¢)]
—00

kK
1

kK

o0
d
+Z i 67° Z [m 2—; tr[Gy, (¢ + w)o*Gy(e + @)oP Gy (e)]~

(D12)

with vii = (k; == ¢;/2)/m. We have put ¢’ = 0 in Eq. (D12). By taking the lesser component and extracting the w- and «’-linear

terms, we have

. - SS eh o
Ajy = ehAR AT + — > o (L RN AR A,

with
AI?;SU = —4xTHvy,

(Y)8,0 —iqi (DY),

(D13)

Y1 Yy + 2205 (Y)

8,0. (D14)
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The first term in Eq. (D13) corrects (the first two of) the
following response functions,

K3 4+ AKS = ¢°K), (D15)
R+ AR = igi{(Dv) — ¢*K2), (D16)
K$ = qiok, (D17)
I?f/s = io{(Dv)di; — qiq; K2} (D18)

where

K — (DVY) +2nI:2(~ov)(oDv)’ (D19)
YTyl + 27TF2<YU>
_ (DWY) + 27T (0 Dv)?

Y Y, +2nT5(Y)

(D20)
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and restores the gauge invariance. This leads to a spin-current
density

2

-smf (1) _ ¢ o \RA L0
Jjimi(g,0) = EZU(LS’”L) E'. (D21)
The second term in Eq. (D13) gives
2
. e o RA i
JS P (g.w) = EZG(LS,W) ES. (D22

Therefore, the total spin-current density induced by the total
spin motive field E; = E° + E% is given by

oM = —e?K | divE;,
J = 6 Eg + 2K, V(divEy).

(D23)
(D24)
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