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Rotational motion of magnons and the thermal Hall effect
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Due to the Berry curvature in momentum space, the magnon wave packet undergoes two types of orbital
motions in analogy with the electron system: the self-rotation motion and a motion along the boundary of the
sample (edge current). The magnon edge current causes the thermal Hall effect, and these orbital motions give
corrections to the thermal transport coefficients. We also apply our theory to the magnetostatic spin wave in a
thin-film ferromagnet and derive expression for the Berry curvature.
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I. INTRODUCTION

Recently in the spintronics field, the magnon (spin wave)1

transport in an insulating magnet attracts much attention as
a candidate of a carrier of the spin information with good
coherence and without dissipation of the Joule heating. In
particular, magnon can propagate over centimeter distance in
some magnets,2 e.g., yttrium-iron-garnet (YIG), and this is
long enough compared with the spins in metals and doped
semiconductors. The magnon current can be experimentally
generated by the spin Hall effect,3 and its motion can
be observed by the time- and space-resolved measurement
methods.4 Moreover, a precise control of the spin information
is necessary for the application in spintronics devices.

The thermal Hall effect (Righi-Leduc effect) of the magnon,
which is useful to control the magnon transport, is predicted
theoretically by Katsura et al.5 and observed experimentally
by Onose et al.6 Katsura et al. considered a ferromagnet
with the Kagomé lattice structure and calculated a thermal
Hall conductivity by use of the Kubo formula; Onose et al.
measured the thermal Hall conductivity using an insulating
ferromagnet Lu2V2O7 that has a pyrochlore structure with the
Dzyaloshinskii-Moriya (DM) interaction. On the other hand,
we found in our recent study7 that there are correction terms
to the thermal Hall conductivity in the linear response theory
and showed that the thermal Hall effect of the magnon arise
from the edge current of the magnon in the semiclassical
picture. Our theory is applicable not only to the quantum
mechanical spin wave, e.g., in Lu2V2O7, but also to the
classical magnetostatic spin wave, where the wavelength is
long and exchange coupling is negligible, e.g., in YIG film.

In the present article, we develop the transport theory of
magnons with detailed calculations. Some parts of the theory
has been published in Ref. 7. There are two approaches; the
semiclassical theory and the linear response theory. From the
semiclassical equation of motion, the magnon edge current are
described by the Berry curvature in momentum space and does
not depend on the details of the system such as the shape of the
boundary of the sample. From this magnon edge current, we
obtain the magnon current and energy current density under a
spatial variation of the temperature or the chemical potential,
resulting in the thermal Hall effect of the magnon. Since our
result of the thermal Hall conductivity does not agree with
the previous works in Refs. 5 and 6, we reformulated the
linear response theory in analogy with the electron system7 by
noting that the temperature gradient is not a dynamical force

but a statistical force. It is identified that the difference from
the previous work arises from orbital motions of the magnon
and that the magnon rotates around itself besides the magnon
edge current.

We apply our theory to Lu2V2O7 and calculate the orbital
angular momenta of the rotational motions of the magnon. For
another application, the expression of the Berry curvature for
the magnetostatic forward volume wave in YIG is derived.
In this case the Berry curvature of the highest energy band
enhances and that of the other bands converges to 0 at k = 0.
In addition, the Berry curvature becomes larger as the magnetic
field becomes small.

This article is organized as follows. We present the
semiclassical theory for the magnon and consider the thermal
Hall effect of the magnon in Sec. II. The linear response theory
with a temperature gradient and the orbital motions of the
magnon are discussed in Sec. III. Section IV and Sec. V are
devoted to applications of our theory to Lu2V2O7 and YIG,
respectively. We conclude with a summary in Sec. VI, and
a brief review of the linear response theory for the electron
system and some useful equations are presented in Appendix.

Throughout this article we consider two-dimensional in-
sulating magnetic systems for simplicity and assume that
magnons do not interact with each other. Generalization to
three-dimensional magnets is straightforward.

II. SEMICLASSICAL THEORY

Our approach is based on the semiclassical theory, in
analogy with the electron system.8,9 We consider a magnon
wave packet which is well localized around the center (rc,kc)
in the phase space

|Wn〉 =
∫

dkan(k,t) |φnk〉 , (1)

where |φnk〉 is the Bloch wave function in the n-th magnon
band, an(k,t) satisfies∫

dk |an(k,t)|2 = 1, (2)∫
dk |an(k,t)|2 k = kc, (3)

and |Wn〉 satisfies

〈Wn| r̂ |Wn〉 = rc. (4)
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Hereafter we omit the index c for brevity. The dynamics of
the wave packet is described by the semiclassical equation of
motion, which includes the topological Berry phase term:

ṙ = 1

h̄

∂εnk

∂k
− k̇ × �n(k), (5)

h̄k̇ = −∇U (r). (6)

Here n is the band index, εnk is the energy of the magnon in the
n-th band, �n(k) is the Berry curvature in momentum space

�n(k) = i

〈
∂un

∂k

∣∣∣∣ ×
∣∣∣∣∂un

∂k

〉
, (7)

with |un(k)〉 being the periodic part of Bloch waves in the
n-th band defined as φnk(r) = un(k,r)eik·r . U (r) is a confining
potential that exists only near the boundary of the sample. This
potential U (r) forbids the magnon wave packet going outside
of the sample, and its gradient exerts a force on magnons.
Such an approach of the confining potential is successful in
describing the edge picture of the quantum Hall effect in
electron systems.10 Thus, we have similarly introduced the
confining potential for magnons. Strictly speaking, for the
validity of Eqs. (5) and (6), the spatial variation of U (r) should
be much slower, compared with the size of the wave packet.
Nevertheless, as we can see from the quantum Hall effect as
an example, many of the results for the slowly varying U (r)
are expected to carry over to the case of rapidly changing U (r)
as well.

Near the edge of the sample, there exists an edge current of
magnons due to the anomalous velocity term −k̇ × �n(k) =
∇U (r)/h̄ × �n(k) in Eq. (5). For example, the magnon edge
current for the edge along the y direction is expressed as

Iy =
∫ b

a

dx
1

V

∑
n,k

ρ(εnk + U (r)) [∇U (r)/h̄ × �n(k)]y ,

= − 1

h̄V

∑
n,k

∫ ∞

εnk

dερ(ε)�n,z(k), (8)

where x = a and x = b are chosen well inside and outside
of the sample so U (a) = 0 and U (b) = ∞, V is the area
of the sample, ρ(ε) is the Bose distribution function ρ(ε) =
[eβ(ε−μ) − 1]−1, β = 1/kBT , kB is the Boltzmann constant, μ

is the chemical potential, and T is the temperature. Henceforth,
the magnon current means the current of the magnon number.
We used in Eq. (8) the fact that �n(k) in the two-dimensional
system is perpendicular to the plane.

The chemical potential μ can be nonzero when the magnon
number is conserved. Nevertheless, in real materials, there are
inelastic scatterings that violate magnon conservation, and μ

becomes zero. In experiments one can change the chemical
potential by the parametric pumping of magnons.11 It is
possible because the magnon number is almost conserved only
within a short time scale. Eventually, the chemical potential
is relaxed to zero anyway. In our theory, we introduced μ

for theoretical convenience; namely we first consider nonzero
chemical potential by assuming conservation of the number of
magnons and set μ = 0 at last because the magnon number
does not conserve due to inelastic scatterings.

Similarly to Eq. (8), we obtain the edge current for the
edge along the x direction Ix , which is identical to Iy . Thus

FIG. 1. Coordinate of the ferromagnet, used for the calculation
of the edge current. U (r) is a confining potential.

the edge current does not depend on the edge direction or
the expression for the confining potential U (r). Therefore, the
magnon moves even along the curved edge. Here we should
note that, in addition to the velocity along the edge [i.e., the
second term in the right-hand side of Eq. (5)], there exists a
group velocity [the first term in the right-hand side of Eq. (5)].
Because of this group velocity, a single wave packet does not
go purely along the edge. What we have shown is that there is
an additional velocity along the edge due to Berry curvature,
and the total magnon edge current is given by Eq. (8) when all
the magnons in thermal equilibrium are summed over.

If the chemical potential μ or temperature T varies spatially,
the thermal Hall effect will occur because the magnon edge
current no longer cancels between one edge and the opposite
edge and a net current will appear. In the following we show the
details and calculate thermal transport coefficients. We focus
on the edge current in the x direction, with small temperature
gradient in the y direction as an example, and set the coordinate
system shown in Fig. 1. Here w is the width of the system and
a, b1, b2 is defined as U (a) = 0, U (b1) = U (b2) = ∞, and
b1 < −w/2 < a < w/2 < b2. The current density is obtained
by summing up the local current density jx(y) and dividing it
by the width:

jx = 1

w

∫ b2

b1

dyjx(y) = 1

w

∫ b2

a

dyjx(y) + 1

w

∫ a

b1

dyjx(y).

(9)

Here we defined jx(y) as follows:

jx(y) = 1

h̄V

∑
n,k

ρ[εnk + U (r); T (y)]
∂U (r)

∂y
�n,z(k). (10)

This quantity is nonzero when ∂U (r)/∂y �= 0, i.e., y ∼ ±w/2.
At these points,

ρ[εnk + U (r); T (y)]

≈
{

ρ
[
εnk + U (r); T

(
w
2

)] (
y ∼ w

2

)
,

ρ
[
εnk + U (r); T

(−w
2

)] (
y ∼ −w

2

)
.

(11)

Thus, Eq. (9) is written as

jx = 1

w

1

h̄V

∑
n,k

∫ ∞

εnk

dε

×
{
ρ

[
ε; T

(
w

2

)]
− ρ

[
ε; T

(
−w

2

)]}
�n,z(k)

= ∂

∂y

{
1

h̄V

∑
n,k

∫ ∞

εnk

ρ[ε; T (y)]�n,z(k)dε

}
. (12)
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The edge current along the y direction with the temperature
gradient in the x direction is similarly written as

jy = − ∂

∂x

{
1

h̄V

∑
n,k

∫ ∞

εnk

ρ[ε; T (x)]�n,z(k)dε

}
. (13)

In the presence of the chemical potential gradient the edge
current can be written as the same form like Eqs. (12) and
(13). Therefore, if the spatial variation is well gradual, the
edge current density is written as

j = ∇ × 1

h̄V

∑
n,k

∫ ∞

εnk

ρ(ε)�n(k)dε. (14)

In the same way, the energy current from the edge current
density is written as

jE = ∇ × 1

h̄V

∑
n,k

∫ ∞

εnk

ερ(ε)�n(k)dε. (15)

From Eqs. (14) and (15), we can derive various transverse
transport coefficients. For instance, in the presence of the
temperature gradient in the y direction again, the edge current
and energy current density in the x direction are written as

(j )∇T
x = T

[
∂y

(
1

T

)] ∑
n,k

∫ ∞

εnk

ε − μ

h̄V

(
dρ

dε

)
�n,z(k)dε,

(16)

(jE)∇T
x = T

[
∂y

(
1

T

)] ∑
n,k

∫ ∞

εnk

ε(ε − μ)

h̄V

(
dρ

dε

)
�n,z(k)dε.

(17)

Here we note that the temperature gradient affects these
currents through the Bose distribution function as ∂T ρ (ε) =
(ε − μ) [∂ρ (ε) /∂ε] T ∂T (1/T ). Similarly, we obtain these
currents in the presence of the gradient of the chemical
potential in the y direction:

(j )∇μ
x = −(∂yμ)

1

h̄V

∑
n,k

∫ ∞

εnk

(
dρ

dε

)
�n,z(k)dε, (18)

(jE)∇μ
x = −(∂yμ)

1

h̄V

∑
n,k

∫ ∞

εnk

ε

(
dρ

dε

)
�n,z(k)dε. (19)

Now we define a heat current as jQ ≡ jE − μ j and write
down the linear response of the magnon current and heat
current as

j = L11 [−∇U − ∇μ] + L12

[
T ∇

(
1

T

)]
, (20)

jQ = L12 [−∇U − ∇μ] + L22

[
T ∇

(
1

T

)]
. (21)

From Eqs. (16)–(19), the transverse thermal transport coeffi-
cients L

xy

ij can be derived as

L
xy

ij = − 1

h̄Vβq

∑
n,k

�n,z(k)cq(ρn), (22)

where i,j = 1,2, cq(ρn) = ∫ ∞
εnk

dε[β(ε − μ)]q(− dρ

dε
) =∫ ρn

0 (log 1+t
t

)qdt , q = i + j − 2, and ρn ≡ ρ(εnk). For
example, c0(ρ) = ρ, c1(ρ) = (1 + ρ) log(1 + ρ) − ρ log ρ,

and c2(ρ) = (1 + ρ)(log 1+ρ

ρ
)2 − (log ρ)2 − 2Li2(−ρ), where

Li2(z) is the polylogarithm function. Finally, we derive the
thermal Hall conductivity in a clean limit by substituting
Eq. (22) to κxy = L

xy

22/T ,

κxy = 2k2
BT

h̄V

∑
n,k

c2(ρn)Im

〈
∂un

∂kx

∣∣∣∣∂un

∂ky

〉
. (23)

Thus, the thermal Hall conductivity is expressed as the Berry
curvature in momentum space, which is sensitive to the
magnon band structure. Since the Berry curvature part is
expressed as

Im

〈
∂un

∂kx

∣∣∣∣∂un

∂ky

〉
=

∑
m(�=n)

Im
〈un| ∂H

∂kx
|um〉〈um| ∂H

∂ky
|un〉

(εnk − εmk)2
. (24)

Hence, κxy in Eq. (23) is enhanced if there is an avoided band
crossing.

III. LINEAR RESPONSE THEORY

Compared with our result in Eq. (23), the expression for the
thermal Hall conductivity obtained in the previous works,5,6

κ̄xy = 2

h̄V T

∑
n,k

ρnIm

〈
∂un

∂kx

∣∣∣∣
(

H + εnk

2

)2 ∣∣∣∣∂un

∂ky

〉
, (25)

differs in some points. As we see later in this section, in the
linear response theory, our result [Eq. (23)] consists of two
parts, (S)xy

ij + (M)xy

ij [defined in Eqs. (32)–(34)], while the
result in Refs. 5 and 6 [Eq. (25)] contains only (S)xy

ij . The
correction term (M)xy

ij comes from orbital motions of magnons.
In the following, we apply the linear response theory to the
magnon system in analogy with the electron system.12–17 In
Appendix, we briefly review the linear response theory under
the temperature gradient in the electron system and derive
some useful expression for the thermal transport coefficients.

Here we briefly discuss the linear response theory with
external fields.12–17 In the presence of the temperature gradient,
it is convenient to introduce a fictitious gravitational potential
ψ(r), which exerts a force proportional to the energy of the
particle.18 This is because in order to obtain the thermal
transport coefficients by the linear response theory, we need
to take the temperature gradient into the Hamiltonian as an
external field. However, it is not possible to directly incorporate
the temperature gradient into the linear response theory, since
the temperature gradient is not a dynamical force that exerts
force to the particles but rather a statistical force that affects the
particles through the distribution function. Therefore, to avoid
this difficulty, the fictitious potential ψ , giving a dynamical
force, has been introduced. As we see in Appendix, the thermal
transport coefficients from the temperature gradient are derived
by calculating the coefficient from the gradient of the fictitious
potential ψ . This is analogous to the situation that the transport
coefficients from the gradient of the chemical potential can be
obtained by calculating the coefficients from the electric field.

We now consider the magnon system. Since the magnon
has no charge, we cannot use the electric field E as an external
field. Instead, we again use the gradient of the confining
potential −∇U (r), which appeared in Eq. (6). The perturbation
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Hamiltonian is written as H ′ = ∑
j U (rj ) + 1

2 {H, 1
c2

∑
j rj ·

∇ψ(r)}, where rj is the position of the j th magnon, H is the
unperturbed Hamiltonian, and {Â,B̂} = ÂB̂ + B̂Â represents
the anticomutator. In equilibrium, the magnon current density
and energy current density are written as

j (0)(r) = 1

2

∑
j

{vj ,δ(r − rj )}, (26)

j (0)
E (r) = 1

2
{H, j (0)(r)}, (27)

where vj is the velocity operator of the j th magnon. In the
presence of the external fields H ′, they acquire additional
terms,

j (r) = j (0)(r) + 1

2

{
j (0)(r),

1

c2

∑
j

rj · ∇ψ(r)

}
, (28)

jE(r) = j (0)
E (r) + 1

2

∑
j

{U (rj ), j (0)(r)}

+ 1

4c2

∑
j

({{H,rj · ∇ψ(r)}, j (0)(r)}

+ {{ j (0)(r),rj · ∇ψ(r)},H }), (29)

where c is the speed of light. Correspondingly, the thermal
transport coefficients consist of two parts: (L)αβ

ij = (S)αβ

ij +
(M)αβ

ij . Here α,β = x,y, i,j = 1,2, and in this section the

thermal transport coefficients (L)αβ

ij are defined as:

J = (L)11

[
−∇U − T ∇

(
μ

T

)]
+ (L)12

[
T ∇

(
1

T

)
− ∇ψ

c2

]
,

(30)

JE = (L)12

[
−∇U − T ∇

(
μ

T

)]
+ (L)22

[
T ∇

(
1

T

)
− ∇ψ

c2

]
.

(31)

A deviation of the distribution function from the equilibrium
state generates (S)αβ

ij , which is calculated by the Kubo formula;
a deviation of the current operator due to external fields from
the equilibrium state generates (M)αβ

ij . In the clean limit they
are expressed as

(SB)αβ

ij = ih̄

V

∫
ρ(η)Tr

[
jα
i

dG+

dη
j

β

j δ(η − H )

− jα
i δ(η − H )jβ

j

dG−

dη

]
dη, (32)

(MB)αβ

11 = 0,

(MB)αβ

12 = 1

2V

∫
ρ(η)Tr[δ(η − H )(rαvβ − rβvα)]dη,

(33)

(MB)αβ

22 = 1

V

∫
ηρ(η)Trδ(η − H )(rαvβ − rβvα)dη

+ ih̄

4V

∫
ρ(η)Trδ(η − H )[vα,vβ]dη. (34)

Here G± is the Green’s function G±(η) = (η − H ± iε)−1

with ε being the positive infinitesimal, ρ(η) is the Bose
distribution function ρ(η) = (eβ(η−μ) − 1)−1, j1 = v, j2 =
1
2 (Hv + vH ), v is the velocity of magnons, and superscript
B denotes a boson. By using Eqs. (A10)–(A13), these thermal
transport coefficients for the magnon system can be written by
the wave function of magnons:

(SB)αβ

ij = 2

h̄V
Im

∑
n,k

ρn

〈
∂un

∂kα

∣∣∣∣
(

H + εnk

2

)q ∣∣∣∣ ∂un

∂kβ

〉
, (35)

(MB)αβ

ij = −(SB)αβ

ij

+ 2(kBT )q

h̄V
Im

∑
n,k

cq(ρn)

〈
∂un

∂kα

∣∣∣∣∂un

∂kβ

〉
, (36)

where we have taken μ = 0 since the magnon number is not
conserved. We note that q = i + j − 2 and (MB)αβ

11 = 0. Thus
the total thermal transport coefficients are written as

(LB)αβ

ij = (SB)αβ

ij + (MB)αβ

ij ,

= − (kBT )q

h̄V

∑
n,k

cq(ρn)�n,z(k), (37)

and from this equation we again derive the same thermal
Hall conductivity as in Eq. (23). The result in Refs. 5 and 6,
shown in Eq. (25), contains only the contribution from (SB)αβ

22 .
Therefore, the difference between the results of Refs. 5 and 6
and ours arises from the correction terms (MB)αβ

ij .
As we can see from Eqs. (33) and (34), these correction

terms (MB)αβ

ij are related to the orbital motion of the particle,
namely a reduced orbital angular momentum (which is defined
as an usual orbital angular momentum without a mass of the
particle: 〈r × v〉). Equation (36) indicates that (MB)αβ

ij are
expressed as the Berry curvature in momentum space, which
is generally nonzero. Hence, in this case, the magnon has
finite orbital angular momentum due to the Berry curvature.
This orbital angular momentum consists of two parts: the edge
current and the self-rotation motion of the wave packet. The
reduced angular momentum for the edge current per unit area
is derived from Eq. (8),

ledge
z = − 2

h̄V

∑
n,k

∫ ∞

εnk

dερ(ε)�n,z(k), (38)

and that for the self-rotation motion is calculated in analogy
with the electron system19 as

lself
z = − 2

h̄V
Im

∑
n,k

ρn

〈
∂un

∂kx

∣∣∣∣ (H − εnk)

∣∣∣∣∂un

∂ky

〉
. (39)

It is easy to show that l
edge
z + lself

z = 2(MB)xy

12 . This result is
expected from the Eq. (33), i.e., the correction terms comes
from the orbital angular momentum of the magnon.

Therefore, due to the Berry curvature, the magnon generally
has a nonvanishing orbital angular momentum in equilibrium.
This orbital motion of magnon can be regarded as a generalized
cyclotron motion. However, since the magnon has no charge,
it feels no Lorentz force and cannot have a cyclotron motion in
the same sense as that of electrons. In this respect, this motion
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purely reflects the magnon band structure. A similar effect
can be found in various wave phenomena such as electrons,9

photons,20 and so on.
As mentioned earlier, within the semiclassical theory, the

result for the edge current is derived under the assump-
tion that the spatial variation of the confining potential is
slow. Nevertheless, as we have seen in this section, the
linear response theory, which does not need assumptions
for confining potential, gives the same transport coefficients
as the semiclassical theory. This strongly suggests that the
edge-current picture carries over to the abrupt spatial variation
of the confining potential. In quantum Hall systems, this idea is
indeed true; at the abrupt edges of the quantum Hall system, the
electrons undergo a skipping motion, namely, near the edge,
electrons undergo a cyclotron motion and when electrons hit
the edge they are bounced. As a whole, the electrons go along
the edge with skipping orbitals, which are regarded as the
chiral edge current in the quantum Hall system. Therefore,
we can similarly expect that in the ferromagnets with edges,
the magnon will undergo a superposition of a skipping motion
along the edge and a motion along the group velocity of the
magnon.

The coherence length of the magnons is important in the
orbital motions and transport of magnons. For the validity of
the linear response theory developed above, it is implicitly as-
sumed that the coherence length of the magnons is sufficiently
short compared with the system size. By this assumption, when
we apply temperature difference between the two opposite
sides of the system, we can define a local temperature, and the
temperature gradient becomes uniform. The linear response
theory is then justified. Otherwise, when the coherence length
is as long as the system size, the magnon transport is described
in the similar way as the Landauer formula, and the linear
response theory no longer applies.

Orbital motions of electrons generate magnetic moments by
their charge. On the other hand, magnons do not have charge
but do have magnetic moments. Therefore, we can regard the
rotating magnon as a circulating spin current. As is similar
to the magnetoelectric effect in noncollinear spin structure,21

the rotation of the magnon is expected to generate an electric
polarization. For this effect, the spin-orbit coupling interaction,
such as the DM interaction, is necessary.

IV. EXAMPLE 1: LU2V2O7

In this section we apply our results to the ferromagnetic
Mott-insulator Lu2V2O7 with pyrochlore structure, for which
the thermal Hall effect has been measured and analyzed in
Ref. 6. Following Ref. 6, we briefly review the magnetic
properties of the material. The magnetization comes from
spin-1/2 V4+ ions with the DM interaction. The ground state is
a collinear ferromagnet, because at the ferromagnetic ground
state the total DM vectors for the six bonds sharing a single site
is zero.6 The DM interaction affects the spin-wave dispersion,
and the effective spin-wave Hamiltonian is written as
Heff = ∑

〈i,j〉 −J Si · Sj + Dij · (Si × Sj ) − gμB H · ∑
i Si ,

where 〈i,j 〉 denotes the nearest-neighbor pairs, J is the
exchange interaction, D is the DM vector, g is the g
factor, μB is Bohr magneton, and H is the magnetic
field in the z direction. The temperature is assumed to be

much lower than the Curie temperature TC = 70 (K), for
the existence of well-defined Bloch waves of magnons.
There are four magnon bands, and the lowest band is well
separated from the other higher bands, with the separation
much larger than kBT . Actually, the differences of the
energy between the lowest band and other bands near
k = 0 are written as ε2 − ε1 � 4JS

√
1 + f (k) � 8JS and

ε3 − ε1 = ε4 − ε1 � 4JS + 2JS
√

1 + f (k) � 8JS, where
f (k) = cos(2kxA) cos(2kyA) + cos(2kyA) cos(2kzA) +
cos(2kzA) cos(2kxA) and 8JS � 13.6 meV. Therefore, the
contribution from the lowest band is dominant, whose Berry
curvature is �1,z � − A4

8
√

2
D
J

Hz

H
(k2

x + k2
y + 2k2

z ) as calculated
in Ref. 6, with A being a quarter of the lattice constant. We
can estimate the orbital angular momentum of the magnon
from both the self-rotation motion Lself

z and the edge current

L
edge
z . Near k = 0, the lowest-band dispersion is quadratic

and we can introduce the effective mass of the magnon of
the lowest band m∗

1, defined as m∗
n ≡ h̄2(∂2εnk/∂k2)−1. The

orbital angular momentum of the self-rotation motion is
analytically calculated from Eq. (39):

Lself
z � m∗

1l
self
z = −16JSm∗

1

h̄V
Im

∑
k

ρ(ε1k)

〈
∂u1

∂kα

∣∣∣∣∂u1

∂kβ

〉

= −JSm∗
1

h̄A

D

J

1

24π2

(
kBT

JS

)5/2 ∫ ∞

0

x3/2

e(x+βgμBH ) − 1
dx

= −JSm∗
1

h̄A

D

J

1

32π3/2

(
kBT

JS

)5/2

Li 5
2

(
e
− gμB H

kB T
)
. (40)

We obtain Lself
z � −0.009h̄ and L

edge
z = m∗

1l
edge
z � +0.008h̄

per unit cell. The thermal Hall conductivity κxy is also
calculated by assuming that the contribution of the lowest
band dominates. Figure 2 show the result of the thermal
Hall conductivity that is calculated from (S)αβ

ij + (M)αβ

ij (solid

curve) and (S)αβ

ij (broken curve). They correspond to our results
and the previous results in Ref. 6, respectively. Our result (solid
curve in Fig. 2) roughly agrees with the experimental data in
Ref. 6.

V. EXAMPLE 2: MAGNETOSTATIC SPIN WAVE

In the following, we apply our theory to the magnetostatic
spin waves in a ferromagnet. In the magnetostatic spin wave,

FIG. 2. (Color online) Dependence of the thermal Hall conductiv-
ity on a magnetic field. The red (broken) curve denotes the result that
is calculated from only (S)αβ

ij calculated in Ref. 6; the green (solid)

curve denotes the result that is calculated from (S)αβ

ij + (M)αβ

ij .
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FIG. 3. Geometry of the coordinate axes. The magnetization M
precesses around M0.

the wavelength is sufficiently long and the exchange coupling
between spins is negligible. The magnetic anisotropy comes
from the demagnetizing field determined by the sample shape.
This magnetic anisotropy due to the demagnetizing field plays
the similar role as the spin-orbit coupling in electronic systems.
It then induces the Berry curvature, and the Hall effect of spin
waves appears.

Let us consider the YIG film that is magnetized by an
external magnetic field. We introduce two coordinate systems,
xyz and ξηζ , shown in Fig. 3. The film is taken to be infinite
in the η and ζ directions, and perpendicular to the ξ direction.
The ζ axis is chosen to be along the magnon wave vector
k. The z direction is parallel to the saturation magnetization
M0 and the internal static magnetic field H0. We assume that
the spin-wave mode has a form of the plane wave: m(ξ,ζ,t) =
m(ξ ) exp[i(kζ − ωt)], where ω is a frequency of the spin wave.
The equation of motion of the magnetization is written as the
following integral equation:22

ωH m(ξ ) − ωM

∫ L/2

−L/2
dξ ′Ĝ(ξ,ξ ′)m(ξ ′) = ωσym(ξ ). (41)

Here we use the SI units, L is the thickness of the film, σy =
( 0 −i

i 0 ) is the Pauli matrix, m(ξ ) = [mx (ξ )
my (ξ )] is the vector Fourier

amplitude of the spin wave that is perpendicular to M0, ωH =
γH0, ωM = γM0, and γ is the gyromagnetic ratio. Ĝ(ξ,ξ ′) is
the 2 × 2 complex matrix of the Green’s function:

Ĝ(ξ,ξ ′) =
(

Gxx Gxy

Gyx Gyy

)
, (42)

Gxx = [GP − δ(ξ − ξ ′)] sin2 θ − iGQ sin 2θ cos ϕ

−GP cos2 θ cos2 ϕ, (43)

Gxy = Gyx

= −iGQ sin θ sin ϕ − GP cos θ sin ϕ cos ϕ, (44)

Gyy = −GP sin2 ϕ, (45)

where

GP = k

2
exp(−k|ξ − ξ ′|), (46)

GQ = GP sgn(ξ − ξ ′), (47)

and θ , ϕ are the spherical coordinates of M0 in the ξηζ

space (see Fig. 3). We note that we adopt the definitions
of θ and ϕ used in Ref. 22, and they differ from the
standard definition of the spherical coordinates. The integral
equation (41) is equivalent to the linearized Landau-Lifshitz

equation d M/dt = −γ (M × H), Maxwell equation in the
magnetostatic limit ∇ × H = 0, ∇ · B = 0, and the usual
boundary conditions for H and B. Since the equation (41)
is a generalized eigenvalue problem, we have to modify the
prescription of our theory of the Berry curvature. Similar to
the previous work,23 the Berry curvature is defined as

�n,γ (k) = iεαβγ

〈
∂mn,k

∂kα

∣∣∣∣ σy

∣∣∣∣∂mn,k

∂kβ

〉
, (48)

where εαβγ is the antisymmetric tensor, n is the band index of
the spin wave mode, and the bra-ket product means an usual
inner product of vectors and integral over z.

In some cases, Eq. (48) becomes zero because of the
symmetry of the system. This occurs when the saturation
magnetization M0 is in the film (θ = π/2). When θ = π/2,
we can show �n,γ (k) = 0 explicitly by performing a gauge

transformation m′ ≡ U−1m = ( 1 0
0 i )m. Then Eq. (41) becomes

a generalized eigenvalue problem with real coefficients:

ωH m′(ξ ) −ωM

∫ L/2

−L/2
dξ ′Ĝ′(ξ,ξ ′)m′(ξ ′) = − ωσxm′(ξ ), (49)

where Ĝ′(ξ,ξ ′) is

Ĝ′(ξ,ξ ′) = U−1Ĝ(ξ,ξ ′)U =
(

G′
xx G′

xy

G′
yx G′

yy

)
, (50)

G′
xx = GP − δ(ξ − ξ ′), G′

xy = −GQ sin ϕ, (51)

G′
yx = GQ sin ϕ, G′

yy = −GP sin2 ϕ. (52)

Since all the terms in Eq. (49) are real, the eigenvector m′
is also real. Correspondingly, the Berry curvature Eq. (48)
becomes

�n,γ (k) = iεαβγ

〈
∂m′

n,k

∂kα

∣∣∣∣U−1σyU

∣∣∣∣∂m′
n,k

∂kβ

〉
, (53)

= εαβγ Im

〈
∂m′

n,k

∂kα

∣∣∣∣ σx

∣∣∣∣∂m′
n,k

∂kβ

〉
. (54)

Because m′ is real and there is no imaginary part, this Berry
curvature vanishes. Thus, when M0 is in the film, we cannot
expect either an orbital rotational motion of spin wave packet
or the thermal Hall effect due to the Berry curvature effect.
In other words, in the magnetostatic backward volume wave
(MSBVW) and the magnetostatic surface wave (MSSW), the
effects of the Berry curvature do not appear.

On the other hand, the Berry curvature is finite if the
saturation magnetization is perpendicular to the film (θ = 0),
i.e., in the magnetostatic forward volume wave (MSFVW).
In the following, we demonstrate the calculation of the Berry
curvature for MSFVW. We note that ξ coincides with the z

direction when θ = 0. The solution of the integral equation
(41) of the n-th band for θ = 0 is written as24

mnk(z) =
(

mx
nk(z)

m
y

nk(z)

)

=
√

N

(
iκ ν

−ν iκ

) (
kx

ky

)
cos

(√
pkz + nπ

2

)
, (55)
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FIG. 4. (Color online) (a) Dispersion relation for the MSFVW
mode with n = 0,1, . . . ,5 and the Berry curvature for the MSFVW
mode for (b) H0/M0 = 0.1, (c) H0/M0 = 1.0, and (d) H0/M0 = 2.0.

where κ = ωMωH/(ω2
H − ω2

n), ν = ωMωn/(ω2
H − ω2

n), and
p = −1 − κ > 0 and ωn is the n-th band energy for n =
0,1,2, . . . , which is determined by

√
p tan

(√
pkL + nπ

2

)
= 1, (56)

and N is a normalization factor that is determined by

〈mn,k|σy |mn,k〉 = 1. (57)

To obtain Eq. (55), we have rewritten the solution in Ref. 24
in the polar coordinate into the form of the plane wave.
The dispersion determined by (56) is shown in Fig. 4(a) for
H0/M0 = 1.0. We use the normalization Eq. (57), because
m†

n,kσymn,k is proportional to the energy density for the
magnon.25

Substituting this solution to Eq. (48), we can calculate the
Berry curvature for the n-th MSFVW mode. For simplicity
of the notation, we set Fn(k,z) ≡ √

N cos(
√

pkz + nπ
2 ). Then

the Berry curvature is written from Eq. (48),

�n,z(k)/2

= Re

[〈
∂mx

n,k

∂kx

∣∣∣∣∣∂m
y

n,k

∂ky

〉
−

〈
∂mx

n,k

∂ky

∣∣∣∣∣∂m
y

n,k

∂kx

〉]

= (κ2 + ν2)k
∫ L/2

−L/2
dz

∂Fn

∂k
Fn

+
[
k

(
κ

∂κ

∂k
+ ν

∂ν

∂k

)
+ κ2 + ν2

] ∫ L/2

−L/2
dzF 2

n . (58)

Using the normalization condition of Eq. (57), one obtains

2κνk2
∫ L/2

−L/2
dzF 2

n = 1. (59)

Derivative of Eq. (59) in terms of k leads to∫ L/2

−L/2
dzFn

∂Fn

∂k
= −

(
1

2κ

∂κ

∂k
+ 1

2ν

∂ν

∂k
+ 1

k

) ∫ L/2

−L/2
F 2

n dz.

(60)

Thus, Eq. (58) is rewritten as

�n,z(k)/2 = 1

4κνk

ω2
M

ω2
H − ω2

n

(
1

κ

∂κ

∂k
− 1

ν

∂ν

∂k

)
. (61)

Since κ and ν satisfy the following relation:

1

κ

∂κ

∂k
− 1

ν

∂ν

∂k
= − 1

ωn

∂ωn

∂k
, (62)

the Berry curvature is derived as

�n,z(k) = 1

2ωH

1

k

∂ωn

∂k

(
1 − ω2

H

ω2
n

)
. (63)

Figures 4(b)–4(d) shows the numerical results of Eq. (63) for
various magnitude of the magnetic field. It is surprising that
the Berry curvature for any MSFVW mode is always positive,
because ωH < ωn and the group velocity ∂ω/∂k is positive.
In the vicinity of k = 0, we can calculate asymptotic forms
of the Berry curvature. When k ∼ 0, ωn is close to ωH . If we
set ωn = ωH + �ωn, p can be written as p � ωM/2�ωn �
1 since �ωn is small near k = 0. Using an approximation
tan x � x (x � 1), we find

�ωn =
{

1
4ωMkL (n = 0)
ωM

2

(
kL
nπ

)2
(n > 0)

. (64)

Therefore, the Berry curvature near k = 0 can be obtained
from Eqs. (63) and (64) as follows:

�n,z(k)/L2 �
{(

1
4

M0
H0

)2
(n = 0)

1
2

(
1

nπ

)4(M0
H0

)2
(kL)2 (n > 0)

. (65)

It is easy to see that �n,z(k = 0) = 0 for the n > 0 mode and
that for the n = 0 mode �0,z(k) enhances up to (L

4
M0
H0

)2 but
does not diverge at k = 0.

VI. CONCLUSIONS

In summary, we found that magnon wave packet has
two types of orbital motions due to the Berry curvature in
momentum space: the magnon edge current and the self-
rotation motion. The magnon edge current causes the thermal
Hall effect of magnon, and the self-rotation motion of magnon
without Lorentz force is expected to accompany an electric
polarization. We showed that our theory is applied to not only
the exchange spin wave (quantum-mechanical magnon), e.g.,
in Lu2V2O7, but also the classical magnetostatic waves, e.g.,
in YIG. In both cases, the Berry curvature is enhanced near
the band crossings, where the magnon frequency in a focused
band is close to those of other bands. We expect to control the
Berry curvature by designing magnonic crystals.26
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APPENDIX

Here we briefly review the linear response theory for
the electron system with a temperature gradient, developed
in Refs. 12–16. In equilibrium, the electric current operator
j (0)(r) and the energy current operator j (0)

E (r) are given by

j (0)(r) = − e

2

∑
j

{vj ,δ(r − rj )}, (A1)

j (0)
E (r) = − 1

2e
{H, j (0)(r)}, (A2)

where rj denotes the position of the j -th electron, −e (e > 0)
is the electron charge, vj is the velocity operator of the j -th
electron, H is the unperturbed Hamiltonian of the system, and
{Â,B̂} = ÂB̂ + B̂Â denotes the anticomutator. We note that
rj is a quantum mechanical operator, while r is a c number.

Under the electric potential φ(r) and the fictitious gravi-
tational potential ψ(r), the Hamiltonian is written as Htot =
H + e

∑
j rj · ∇φ + 1

2 {H, 1
c2

∑
j rj · ∇ψ(r)}, where H is an

unperturbed Hamiltonian and c is the speed of light. Sub-
sequently, the electric current operator j (r) and the energy
current operator jE(r) deviate from the equilibrium state. They
are written as

j (r) = j (0)(r) + j (1)(r)

= j (0)(r) + 1

2

{
j (0)(r),

1

c2

∑
j

rj · ∇ψ(r)

}
, (A3)

jE(r) = j (0)
E (r) + j (1)

E (r)

= j (0)
E (r) + 1

2
{φ(rj ), j (0)(r)}

+ 1

4c2

∑
j

({{H,rj · ∇ψ(r)}, j (0)(r)}

+ {{ j (0)(r),rj · ∇ψ(r)},H }). (A4)

The linear response for the electric current and energy
current is written as

J = (LF )11

[
E + T

e
∇

(
μ

T

)]
+(LF )12

[
T ∇

(
1

T

)
− ∇ψ

c2

]
,

(A5)

JE = (LF )12

[
E + T

e
∇

(
μ

T

)]
+(LF )22

[
T ∇

(
1

T

)
− ∇ψ

c2

]
,

(A6)

where F denotes a fermion, E is an electric field, μ is the
chemical potential, and (LF )ij is the transport coefficients
(i,j = 1,2). The measurable current densities J and JE are
obtained by taking average over the volume of the sample
and the quantum-mechanical and thermodynamic averages of
the current operators j (r) and jE(r), respectively. Due to the

deviations j (1)(r) and j (1)
E (r), the thermal transport coefficients

(LF )αβ

ij (α,β = x,y) consist of two parts, (SF )αβ

ij and (MF )αβ

ij :

(SF )αβ

ij = ih̄

V

∫
f (η)Tr

[
jα
i

dG+

dη
j

β

j δ(η − H )

− jα
i δ(η − H )jβ

j

dG−

dη

]
dη, (A7)

(MF )αβ

11 = 0,

(MF )αβ

12 = − e

2V

∫
f (η)Tr[δ(η − H )(rαvβ − rβvα)]dη,

(A8)

(MF )αβ

22 = 1

V

∫
ηf (η)Trδ(η − H )(rαvβ − rβvα)dη

+ ih̄

4V

∫
f (η)Trδ(η − H )[vα,vβ]dη, (A9)

where G± is the Green’s function G±(η) = (η − H ± iε)−1

that is introduced in Eq. (A7) via δ(η − H ) = −(G+ −
G−)/2πi, f (η) is the Fermi distribution function f (η) =
[eβ(η−μ) + 1]−1, j1 = −ev, j2 = 1

2 (Hv + vH ), and v is the

velocity of electrons. (SF )αβ

ij is calculated from the current

operators in equilibrium state, j (0)(r) and j (0)
E (r), with the

deviation of the distribution function from the equilibrium
state; (MF )αβ

ij is calculated from the deviation of the current

operators, j (1)(r) and j (1)
E (r), with the equilibrium distribution

function. Actually, (SF )αβ

ij is the Kubo formula, and (MF )αβ

ij

represent correction terms. The total thermal transport coeffi-
cients are their sums: (LF )αβ

ij = (SF )αβ

ij + (MF )αβ

ij .
From these results, we can derive some useful equations for

later calculations. First, we can write down (SF )αβ

ij in terms of

the Berry phase. For example, (SF )αβ

12 is written as

(SF )αβ

12 = − e

h̄V
Im

∑
n,k

f (εnk)

〈
∂un

∂kα

∣∣∣∣ (H + εnk)

∣∣∣∣∂un

∂kβ

〉
.

(A10)

Second, because the Fermi distribution function f (η) becomes
the step function �(μ − η) in the zero temperature limit,
(LF )αβ

12 and (SF )αβ

12 is written as

(LF )αβ

12 = μ

−e
(LF )αβ

11

= −2eμ

h̄V
Im

∑
n,k

�(μ − εnk)

〈
∂un

∂kα

∣∣∣∣∂un

∂kβ

〉
(A11)

and

(SF )αβ

12 = − 2e

h̄V
Im

∑
n,k

�(μ − εnk)

×
〈
∂un

∂kα

∣∣∣∣
(

H + εnk

2

)∣∣∣∣ ∂un

∂kβ

〉
. (A12)
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Thus, the relation (LF )αβ

12 = (SF )αβ

12 + (MF )αβ

12 and Eq. (A8) in
the zero temperature limit lead to the following useful formula:

Tr[δ(μ − H )(rαvβ − rβvα)]

= d

dμ

∫ μ

−∞
Tr[δ(η − H )(rαvβ − rβvα)]dη

= 2V

−e

d

dμ
(MF )αβ

12

∣∣
T →0

= −2

h̄

d

dμ

∑
n,k

�(μ − εnk)

× Im

〈
∂un

∂kα

∣∣∣∣ (H + εnk − 2μ)

∣∣∣∣∂un

∂kβ

〉
. (A13)

We note that this equation does not depend on
whether the particles are fermion or boson. Therefore,
we can apply this equation to the magnon system
as well.
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