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Mechanical lattice instability and thermodynamical properties in classical solids
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In this paper, we revisit the onset of the instability of the solid state in classical systems within self-consistent
phonon theory (SCPT). Spanning the whole phase diagram versus volume and versus pressure, we identify two
different kinds of mechanisms: one mainly relevant at constant volume, associated with the vanishing of the
SCPT solution, and one related to the disappearing at a spinodal temperature of the solid phase as a metastable
energy minimum. We show how the first mechanism occurs at extremely high temperatures and it is not reflected
in any singular behavior of the thermodynamical properties. In contrast, the second one appears at physical
temperatures which correlate well with the melting temperature, and it is signalized by the divergence of the
thermal compressibility as well as of the lattice expansion coefficient.
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I. INTRODUCTION

The solid-liquid transition is one of the most common
and extensively studied phase transitions in condensed matter.
As a first order transition, overheating the solid beyond the
melting temperature is possible in nature,1–10 following the
metastable equilibrium state (Fig. 1). This route is however
limited by the intrinsic instability of the metastable phase one
is considering. Focusing on the metastable solid phase, a priori
the maximum temperature of overheating (for a surface-free
and perfect crystal without any defect or impurity) could be
identified with the temperature above which the solid phase
is not a sustainable phase. The breakdown of the solid phase
independent of the competition with the liquid phase is thus
associated with the concept of intrinsic instability of the solid
phase, i.e., with the breakdown of the conditions which make
a solid phase sustainable even at a metastable level.

Historically, the problem of the mechanical melting11 of
a solid was discussed indirectly by the one-phase theories
addressing the standard melting.12–18 For instance, Lindemann
in the original paper14 assumed that the melting would take
place when the amplitude of the thermal vibrations of atoms
becomes so great that direct collisions occur between neigh-
boring atoms. Successively Lindemann’s idea was transformed
into a phenomenological criterion19 with an ad hoc critical
ratio which does not reflect any lattice instability but works
reasonably well to describe the standard melting for a variety
of materials.20 A dimensional analysis based on Buckingham’s
theorem was proposed as theoretical justification for it.21 Born,
on other hand, proposed that a rigidity catastrophe occurs,
caused by a vanishing elastic shear modulus, that determines
the melting within the bulk crystal.15 Similarly, other kinds of
instability were discussed later.16–18

Although these theories cannot explain the standard melt-
ing, they have been reconsidered, with a modern point of
view, for a theoretical description of the instability of an
overheated solid. Such a phenomenon, which was once
thought to be unobtainable, has become now practical due
to novel experimental advances in heating techniques and in
the fabrication of special samples, as has been reported in
a wide number of different systems.1–10 These experiments

have stimulated a renewed theoretical interest for the problem
of mechanical melting.

Recent molecular dynamics simulations have been also
carried out to clarify the underlying microscopic mechanism
which sets the stability limits of an overheated solid.22–26 In
particular, Jin and coworkers found that above the equilibrium
melting point Tm, local lattice responses are in agreement with
both Born and Lindemann criteria at a well-defined mechanical
melting temperature Tmax

22 above which the material cannot
survive in crystalline order for any finite time interval.
Interestingly, the temperature of the mechanical melting was
also associated with a sudden and drastic rise of the atomic
volume corresponding to a large peak of the compressibility
of the system.22

Although a homogeneous and perfect crystal without any
kind of extrinsic structural defects can be conceived at least
at low temperatures, overheating such a system at elevated
temperatures enhances unavoidably the probability to have
thermal activated processes as defects,25 diffusion loops,26 or
nucleation of liquid droplets.27 They play an important role
for the dynamics of the melting of an overheated solid. In this
regard, a static criterion for the lattice instability represents
a temperature upper bound above which the lifetime of the
metastable solid is strictly zero independent of the kinetic
mechanisms determining its escape rate.

The crystal instability comes ultimately from anharmonic
effects that may soften the lattice when the thermal fluctuations
are large. To this issue, the mechanical melting was also
addressed in the past by using extensively the self-consistent
phonon theory (SCPT),28–40 which represents a suitable
method to take into account the anharmonic effects of the
atomic oscillations. Within this microscopic approach, the
breaking of the self-consistent solution of the SCPT is thought
to represent the mechanical instability of the solid phase, and
it defines a maximum temperature T ∗ which was commonly
assumed as an upper estimation of the melting temperature
(the variational free energy obtained by the SCPT is an
upper bound of the exact free energy). However the values
of the temperatures T ∗ obtained in this way are much higher
than the experimental melting temperatures Tm (even of two
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FIG. 1. (Color online) Pictorial evolution of solid/liquid Gibbs
free energy G as a function of temperature T . At the melting
temperature Tm, the Gibbs free energies of the solid and liquid
phases are equal, and the system undergoes a first order transition.
A metastable solid phase (dashed line) can be still obtained up to a
maximal point Tmax.

orders of magnitude) observed in several systems.40 Moreover,
they compare badly also with the experimental overheating
temperatures Tmax, which are generally located between Tm

and ∼1.5 Tm.23

In this paper, we revise the SCPT focusing on its extension
for crystals at constant pressure P , taking into account in
particular the lattice volume variation as a function of both
temperature and pressure. Our main results are summarized in
the schematic phase diagram depicted in Fig. 2. In particular,
we find that within the SCPT the physical description of
the mechanical instability of the solid phase approached at
constant volume is qualitatively and quantitatively different
from the mechanical instability achieved at constant pressure.

P>Pc

V

Pc

cP<P

T

T *

TS
κ   < 0T

no SCPT solution

FIG. 2. (Color online) Schematic phase diagram for the break-
down of the mechanical stability of the solid phase within the SCPT.
Increasing the temperature at fixed volume (solid green vertical line),
the solid phase disappears at T ∗, which represents, in this case, the
highest temperature at which the variational approach (SCPT) has
a self-consistent solution (red line). Due to the lattice expansion,
the mechanical instability at fixed (reasonable) pressure (P � Pc) is
first encountered in terms of the disappearing of the metastable solid
state, defining a spinodal temperature T = TS(P ) (blue long dashed
line) within a well-defined SCPT solution. Below the line TS(P ) the
compressibility κT is negative.

In the first case, the instability of the solid phase occurs at
rather high temperatures and it is associated with a breakdown
of the SCPT solution at T ∗, not reflected in any singular
behavior of the thermodynamical quantities. On the other hand,
the mechanical instability approached at fixed pressure can
be properly interpreted in terms of a spinodal temperature
TS at which the solid phase, always defined, disappears as
a metastable minimum. In the latter case, the mechanical
instability is thus reflected in the divergence of the isothermal
compressibility κT as well as in the divergence of the lattice
expansion coefficient α at T = TS . This means that small
fluctuations of the two controlling fields (T ,P ) produce large
volume fluctuations �V/V = α�T and similarly �V/V =
−κT �P , pointing out that the system is mechanically unstable,
as previously discussed phenomenologically.18

To show the main features of our analysis, we focus
initially on the specific case of solid argon, and we generalize
later these results for other rare-gas solid systems (Ne, Kr,
Xe), resulting in TS in fair agreement with the experimental
values of the melting temperatures Tm. The paper is structured
as follows. In Sec. II, we present our model for generic
classical solids, recalling the SCPT for fixed volume and
discussing its extension for the fixed pressure case. The results
for the specific case of solid argon are shown in Sec. III,
pointing out how it is possible to achieve two qualitatively and
quantitatively different mechanical instabilities by working at
constant volume or at constant pressure. We also discuss there
the singular behavior of the thermodynamical properties of
the system. In Sec. IV, we explain the phase diagram shown
in Fig. 2. In Sec. V, we drawn our conclusions.

II. THE MODEL

We consider a classical solid formed by N particles with
mass m and interacting via an isotropic U (r) = U (r) pair
potential

H =
∑

i

|pi |2
2m

+ 1

2

∑
i �=j

U (ri − rj ), (1)

where i = 1, . . . ,N and where pi and ri are the momenta and
the positions of the particles. The classical partition function
of the system reads

Z(T ,V ) =
∫ ∫ ∏

i

dridpi

h3
e−H/kBT , (2)

which is a function of the total volume of the system V . The
statistical average for a generic physical quantity O is given
by

〈O〉 = 1

Z

∫ ∫ ∏
i

dridpi

h3
O(ri ,pi) e−H/kBT . (3)

For sake of clarity, we consider here a monatomic crystal with
cubic symmetry. At zero temperature, the crystal is frozen,
and in absence of defects and far from boundary surfaces,
the particles are fixed at their lattice positions ri = Ri with
a = |Ri − Rj | when (i,j ) are neighboring atoms. Because we
work at a fixed particle number, we have the simple relation
V ∝ Na3.
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At low temperature, the thermal fluctuations can be de-
scribed in the harmonic approximation in which we expand
the interatomic potential for small lattice displacement of the
particles ui = ri − Ri around their average position Ri . By
assuming a mean field approximation (the Einstein model),
we can write

Hharm =
∑

i

|pi |2
2m

+ 1

2

∑
i �=j

U (Rij ) + 1

2

∑
i

ui · k̂ · ui , (4)

where Rij is a short notation for Rij = |Ri − Rj | and k̂ is
the elastic tensor responsible for the restoring force on each
particle. In the cubic symmetry, the tensor k̂ is diagonal
and isotropic in the three axial directions α = x,y,z, so
that kαβ = kδαβ . We thus obtain the well-known result for
the mean thermal fluctuation 〈u2〉 = 3kBT /k = 3kBT /mω2

0

where the Einstein frequency is ω0 = (k/m)1/2. As we raise
the temperature to approach the melting point and beyond it
(the overheated regime), anharmonic effects are expected to be
relevant. We can take them into account by using a variational
method, the self-consistent phonon theory, which we discuss
in the next paragraph.

A. The SCPT at fixed volume

We recall the standard scheme of the variational methods.
A (quadratic) trial Hamiltonian Hv containing variational
parameters is introduced. The corresponding partition function
reads

Zv(T ,V ) =
∫ ∫ ∏

i

dridpi

h3
e−Hv/kBT . (5)

Then the Gibbs-Bogoliubov inequality gives as the upper limit
of Z:

Z = Zv〈e−(H−Hv)/kBT 〉v � Zv e−〈(H−Hv)/kBT 〉v , (6)

where 〈· · ·〉v denotes the average as in Eq. (3) on the
trial Hamiltonian Hv. From Eq. (6), we have the following
inequality for the Helmholtz free energy F (T ,V ):

F = −kBT ln Z � −kBT ln Zv + 〈H − Hv〉v = Fv, (7)

where the r.h.s is the variational free energy Fv(V,T ). Then
the variational parameters are determined by the minimization
of Fv.

We now apply the above described variational approach
within the context of the SCPT, assuming a harmonic local
model for every temperature. We write

Hv = 1

2

∑
i �=j

U (Rij ) +
∑

i

( |pi |2
2m

+ kv

2
|ui |2

)
, (8)

where the local force constant kv is the variational parameter.
It describes an effective elastic force with frequency ωv =
(kv/m)1/2. We use the Hamiltonian Hv, Eq. (8), to calculate
the r.h.s. in Eq. (7), the variational free energy Fv(T ,V ) whose
first term reads

− kBT ln Zv = 1

2

∑
i �=j

U (Rij ) − 3NkBT ln

(
kBT

h̄ωv

)
. (9)

By using the equipartition theorem for the quadratic term, we
have directly the average of the exact Hamiltonian over the
trial Hamiltonian:

〈H 〉v = 1

2

∑
i �=j

〈U (|ri − rj |)〉v + 3

2
NkB, (10)

and the average of the trial Hamiltonian

〈Hv〉v = 1

2

∑
i �=j

U (Rij ) + 3NkBT . (11)

Summing up Eqs. (9)–(10), and (11), we finally get the
variational free energy per particle:

Fv

N
= −3kBT ln

(
kBT

h̄ωv

)
+ 1

2N

∑
i �=j

〈U (ri − rj )〉v − 3

2
kBT .

(12)

It is convenient to introduce the smeared potential Ũ defined
as

Ũ
(
Rij ,u

2
v

) = 〈U (ri − rj )〉v

=
∫

dk

(2π )3 U (k) eiRij ·k〈ei(ui−uj )·k〉v

=
∫

dr U (r + Rij )
e−r2/(4/3)u2

v(
4
3πu2

v

)3/2 , (13)

where u2
v = 〈u2〉v is the thermal fluctuation in the SCPT

u2
v = 3kBT

kv
. (14)

Equations (12)–(14) define at this stage the explicit form of
the variational free energy Fv which has to be minimized with
respect to kv. Assuming isotropy along the x, y, z directions,
from the condition dFv/dkv = 0 we get

kv = − 1

N

∑
i �=j

∫
dk

(2π )3 U (k)
|k|2

3
eiRij ·k〈ei(ui−uj )·k〉〉v

= 1

3N

∑
i �=j

∑
α=x,y,z

∂2Ũ (Rij ,u
2
v)

∂R2
ij,α

, (15)

which must be solved self consistently since the smeared
potential Ũ depends implicitly on kv via Eqs. (13) and (14).
In the case of a fully isotropic potential U (Rij ) = U (Rij ), and
keeping in mind Eq. (14), we get the compact self-consistent
solution for u2

v

3kBT

u2
v

= 1

3N

∑
i �=j

(
d2Ũ

(
x,u2

v

)
dx2

+ 2

x

dŨ
(
x,u2

v

)
dx

)∣∣∣∣∣
x=Rij

.

(16)

The SCPT allows us to evaluate in a self-consistent way the
mean thermal fluctuations u2

v (and hence the effective elastic
constant kv) for a given temperature. In the literature,28–40

such an approach has been employed in the analysis of
lattice mechanical stability against anharmonic fluctuations
as temperature raises at fixed volume.41 The temperature of
instability was thus identified with the maximum temperature
T ∗ above which a self-consistent solution for u2

v disappears.
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B. Extension at fixed pressure

After the minimization, the SCPT provides us an
approximated expression for the Helmholtz free energy
F (T ,V ) � Fv(T ,V ) as a function of the volume V . In order
to describe how the volume per particle V/N evolves with
temperature and pressure, we introduce in the usual way the
Gibbs free energy G defined as G(T ,P ) = Fv[T ,V (T ,P )] +
P V (T ,P ), where now the volume V = V (T ,P ) has to itself
be considered as a function of the temperature and of the
pressure, and it is given by the relation (∂G/∂P )T = V or,
equivalently, by inverting the relation(

∂Fv(T ,V )

∂V

)
T

= −P, (17)

which gives an implicit definition of the volume V = V (T ,P ).

III. RESULTS

In order to keep the calculations at the most analytical level,
we assume in the following a particularly suitable form for
the potential U (r) which reproduces the standard molecular
potentials in the effective range of distances experienced by
the particles at zero temperature as well as in the vicinity of the
instability temperature TS . We consider in particular a potential
given by the linear combination of two Gaussian representing
a long range attractive tail and a short-range repulsion:36

U (r) = U0

β+ − β−

(
β−e−β+(r2−r2

0 ) − β+e−β−(r2−r2
0 )
)
, (18)

where r = |r| and where U0 is the potential minimum at the
point r = r0. By a proper choice of the two parameters β+,β−,
it is thus possible to reproduce the behavior of the standard
molecular potentials as, for instance, the Lennard-Jones or
the Morse potential in the range in which we are interested.
We stress that the two parameters β+,β− are independent of
temperature. An example is given in Fig. 3, where we compare

-1

 0

 1

 0.8  1  1.2  1.4  1.6

U
(r

)/
 U

0

r / r0

Ugaus.
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FIG. 3. (Color online) Comparison between the Morse and the
Gaussian-like potential for the case of argon. Model parameters are
here r0 = 3.76 Å, U0 = 146.8 K, and γ = 1.55 Å−1 for the Morse
potential, and r0 = 3.76 Å, U0 = 146.8, β+ = 0.45, and β− = 0.16
for the Gaussian-like model, β+,β− obtained by the best fitting
of the Morse potential. The filled circles and horizontal double
arrows represent the lattice parameter and the lattice fluctuations
at low temperature (T � 1 K) where a ≈ 0.98r0 and at the instability
temperature T ≈ TS = 227 K where, for P = 0, we have a ≈ 1.2r0

due to thermal expansion.

the Gaussian-like potential of Eq. (18) with the Morse potential
describing argon.40

In Fig. 3, the lattice parameter a (black dots) and the range
of the corresponding lattice fluctuations (double arrows) are
also shown for T ≈ 0 and for T = TS(P = 0) � 227 K as
representative cases of low and high temperature, respectively.
As we see, the agreement between the Morse potential for
argon and our Gaussian-like potential is practically perfect
in all the physical range of r spanned at both low and high
temperature. This agreement is particularly important since
it assures that the results of the variational method for two
potentials are indistinguishable.

For the Gaussian-like form of Eq. (18), the smeared
potential reads

Ũ (r) = U0

β+ − β−

∑
σ=±

σβ−σ(
1 + 4

3βσu2
v

)3/2

× exp

[
−βσ

(
r2

1 + 4
3βσ u2

v

− r2
0

)]
. (19)

In the zero temperature limit (u2
v = 0), the smeared potential

reduces to the bare potential Ũ (r) = U (r) and the elastic
constant Eq. (15) to the bare elastic constant kv = k0. The zero
temperature/zero pressure nearest neighbors distance a0 =
a(T = 0,P = 0) is found by minimizing the classical ground
state energy E0 = (1/2)

∑
i �=j U (Rij ). For the argon parame-

ters considered in this section, we get k0 = 350.5 U0/r3
0 and

a0 = 0.98 r0, which is in good agreement with the experimen-
tal value a

exp.

0 = 0.99 r0.42 Note that the value a0 = 0.98 r0

is slightly different from the potential minimum r0 due to
the contribution of the second nearest neighbors atoms in the
total energy. By increasing the temperature, both the thermal
fluctuations u2

v and the lattice parameter a will have a nontrivial
dependence on temperature.

A. Constant volume

We discuss first the case where the lattice parameter a is
assumed to be independent of T and set to the value a = a0,
i.e., its value at zero temperature and zero pressure. In this case,
the effective elastic constant kv(T ) and the lattice fluctuations
u2

v(T ) can be simply obtained as functions of the temperature
by the self-consistent solution of Eqs. (13)–(16), setting the
a = a0 in the lattice sum. The graphical solution of Eq. (16)
for three representative temperatures is shown in Fig. 4.

The physical quantity u2
v (and hence kv) is obtained from

the lowest-u intersection of the l.h.s function and of the r.h.s.
function which is an implicit function of u2

v. In the zero
temperature limit, this solution corresponds to the harmonic
limit u2

v(T ) � 3kBT /k0. On the contrary, the second solution,
which is not shown in Fig. 4, starts at T � 0 K from values
much higher than the nearest neighbors distance a, and then it
decreases with temperature. It corresponds to a local maximum
which does not minimize the free energy, and it can be
disregarded. The behaviors of uv(T ) and k2

v(T ) as functions of
the temperature are plotted in Figs. 5(a) and 5(b).

For a temperature independent volume, above an upper
temperature T ∗(a0) no solution is found (see Fig. 4). The
maximum temperature found in this way at a = a0 for the
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FIG. 4. (Color online) Graphical solution of the self-consistent
equation Eq. (16) for fixed lattice parameter a = a0 and for the argon
parameters. The dashed lines correspond to the l.h.s. of Eq. (16)
for three representative temperatures, while the solid line represents
the r.h.s. of Eq. (16) which does not depend parametrically on the
temperature.
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FIG. 5. (a) Mean lattice fluctuations u2
v(T ), (b) effective elastic

constant kv(T ), solutions of the self-consistent equation (16) for fixed
lattice spacing a = a0. (c) The compressibility κT as a function of
temperature.
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FIG. 6. (Color online) Graphical solution of the self-consistent
Eq. (16) at given temperature kBT = 1.5 U0 and at different lattice
spacing a � a0. The solid line and the dotted lines represent,
respectively, the l.h.s. and the r.h.s. functions of Eq. (16) for the
argon parameters.

argon potential parameters is T ∗ = 66.4 U0/kB ≈ 10000 K,
much larger than the experimental melting temperature of the
argon Tm = 0.56 U0/kB ≈ 82 K. Note that the temperature T ∗
is so high that the linear behavior of u2

v(T ) ∝ T (valid for an
harmonic crystal) is confined to a very small temperature range
T 
 T ∗ [Fig. 5(a)].

We would like to stress that, as remarked in Ref. 35, the
breakdown of the SCPT solution at T ∗ is not signalized by
any precursor singular behavior in u2

v nor in kv. In this regard,
it is worth it to analyze explicitly even the behavior of the
isothermal compressibility

κT = − 1

V

(
∂V

∂P

)
T

, (20)

as a function of the temperature close to the instability
temperature T ∗ where the solution of Eq. (16) disappears.
The SCPT solution for the compressibility κT is thus reported
in Fig. 5(c), showing that κT is well-behaved as the instability
temperature at fixed volume T ∗ is approached. As we are going
to see, the behavior of κT is qualitatively different when the
thermal lattice expansion at fixed pressure is considered.

B. Constant pressure

Before discussing explicitly a system at constant pressure,
let us consider first the interatomic distance a as an external
and tunable parameter in order to gain some useful preliminary
insight. In Fig. 6, we show the behavior of the graphical
solution of Eq. (16) for fixed temperature at varying a. We
observe that the global effect of increasing the lattice spacing
is to reduce the effective elastic constant kv and to increase
thus the mean lattice fluctuations u2

v. Thus, according to the
Lindemann criterion, we can argue that the breakdown of
the solid phase can occur at temperatures lower than the one
corresponding to the constant volume case.

In a more compelling way, the physical value of the
lattice parameter a(T ) [or the volume per particle V (T )/N] is
obtained for a given pressure P and temperature T by inverting
the relation Eq. (17). In Fig. 7, we show as an example the
case of zero pressure P = 0 which simply corresponds to the
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FIG. 7. (Color online) Dimensionless free energy fv = Fv/NU0

as a function of a in the argon case for different temperatures.
The filled symbols represent the minima of fv and the dot-dashed
line shows their evolution with T . Inset: a closeup for T ≈ TS =
1.55 U0/kB (T = 1.35,1.40,1.45,1.50,1.55 U0/kB ). For the sake of
visibility, in the main panel and in the inset each curve of the
dimensional free energy has been shifted by a factor fv → fv +
3kBT /2U0, which does not affect however the determination of a at
the minima.

minimization of the free energy Fv with respect to the volume
V or, equivalently, to a. The evolution of the minimum of Fv

at different temperatures shows the thermal expansion of the
system at constant pressure P = 0.

The corresponding results for the elastic constant kv and
for the thermal fluctuations u2

v are reported in Figs. 8(a) and
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FIG. 8. (Color online) (a) mean lattice fluctuations u2
v and

(b) effective elastic constant kv as functions of temperature at constant
pressure P = 0. They are obtained from the minimization of Fv with
respect to a(T ) as illustrated in Fig. 7. The dashed lines correspond to
the solution of the self-consistent equations for fixed lattice spacing
a = 1.0,1.1,1.2a0.
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FIG. 9. (Color online) (a) Mean lattice fluctuations u2
v, (b) effec-

tive elastic constant kv and (c) lattice parameter a as functions of T

for P = 0.0,0.5,1.0 U0/r3
0 . The corresponding spinodal temperatures

are TS = 1.55,1.80,2.05 U0/kB . The triangles in (c) correspond to
experimental data after Ref. 42.

8(b). For comparison, Fig. 8 also shows the behavior of u2
v

and kv obtained by the self-consistent solution of Eq. (16) as
functions of the temperature but assuming three representative
fixed lattice spacing a. Note that the physical behavior of the
elastic constant kv as a function of the temperature is quite
different in the two cases, with a softening of kv with T at
fixed pressure whereas a hardening of kv is predicted when
working at fixed volume.

Our calculated data in Fig. 8 (case P = 0) extend up to the
spinodal temperature kBTS ≈ 1.55U0, above which the mini-
mum of Fv as a function of a disappears. It is worth noting that
such a temperature kBTS is much lower than kBT ∗ ≈ 66.4 U0

related to the existence of the self-consistent solution for the
lattice fluctuation, and it is of the same order of magnitude as
the experimental melting temperature kBTm ≈ 0.5 U0.

Similar results are obtained for fixed finite pressure P �= 0.
As mentioned in Sec. II, the thermal lattice expansion can be
traced by minimizing the Gibbs free energy or, equivalently,
by inverting Eq. (17) to obtain a as a function of T and
P . The behavior of the average fluctuation, the effective
elastic constant, and the lattice parameter are reported in
Fig. 9. Available experimental data of a(T ) in argon, in an
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FIG. 10. (Color online) Temperature behavior of the thermal
expansion coefficient α/α(T =0) for three representative pressures
P = 0.0 ,0.5 ,1.0 U0/r3

0 . Inset: logarithmic plot of α/α(T =0) vs the
reduced variable |1 − T/TS |, showing the power law behavior with
α ≈ |1 − T/TS |−ζ .

experimental setup at saturated conditions corresponding to
P ≈ 10−3U0/r3

0 ≈ 0,42 are also reported in Fig. 9(c), showing
an agreement between our calculations and the experimental
data. We observe here that raising the pressure leads to a
weaker increase of u2

v (weaker decrease of k2
v) as a function

of T . In other words, the finite pressure leads to an increase
of the spinodal temperature TS(P ) at which the solid phase
disappears as a metastable solution. We also note that, in a
similar way as in the analysis at constant volume, neither u2

v,
kv, nor the lattice parameter a show any singular behavior at
TS(P ).

In the present case at constant pressure, however, an
additional tool of investigation is provided by the thermal
lattice expansion coefficient α defined as

α = 1

V

(
∂V

∂T

)
P

. (21)

The temperature dependence of α at fixed temperature is
reported in Fig. 10, showing the singular behavior at TS . In
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3
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3

FIG. 11. (Color online) Internal energy U as a function of
V (T ), varying the temperature T for different pressures P =
0.0, 0.5, 1.0 U0/r3

0 .

the inset, we plot the thermal expansion coefficient α as a
function of the reduced variable |1 − T/TS | in a log-log scale,
showing a power-law divergence α ≈ |1 − T/TS |−ζ , where
ζ � 0.6 was obtained by a fitting procedure.

At the spinodal temperature, the divergence of the lattice
expansion coefficient α coincides with a singular behavior of
the compressibility κT as could be guessed by the general
thermodynamical relation21,43

α2 = CP − CV

V T
κT , (22)

where Cp and CV are respectively the heat capacitance at
constant pressure and constant volume. Note that a general
condition for the lattice stability is the positiveness of the
two heat capacitances ordered as CP > CV > 0.44 Using
thermodynamical relations, their difference reduces to45

CP − CV = V

[
P +

(
∂U

∂V

)
T

]
α, (23)

where we have the internal energy as defined in Eq. (10):
U = 〈H 〉v. Using Eq. (23), we can rewrite Eq. (22) in the
more convenient form

α = 1

T

[
P +

(
∂U

∂V

)
T

]
κT . (24)

From Eq. (24), the divergence of α at the spinodal temperature
TS implies the divergence of κT provided that the quantity
(∂U/∂V )T has a finite value as T approaches TS . We found that
both U = U (V,T ) and its derivatives have a regular behavior
for any value of temperature and pressure, pointing out that
α is proportional to κT at the spinodal temperature TS . As
an example, we show in Fig. 11 the internal energy U as a
function of V at constant pressure.

IV. PHASE DIAGRAM

In the previous sections, we have identified two different
mechanisms for the breakdown of the solid state phase within
the SCPT model, working respectively at fixed volume and
at fixed (moderate) pressure. In the first case, the solid
phase instability is pointed out by the breakdown of the
self-consistent solution of the SCPT at a temperature T ∗, with
no other evident signature in the thermodynamical properties.
On the other hand, a solid state phase is always defined in
the second case, which however disappears as a metastable
minimum at a spinodal temperature TS , where the thermal
expansion coefficient α and the compressibility κT diverge.
The competition between these two different behaviors can
be better clarified by analyzing in more details some typical
isothermal curves in a wide range of temperatures as shown in
Fig. 12. We can thus distinguish between two different pressure
ranges.

For high pressures (P > Pc with Pc ≈ 1.02U0/r3
0 ), we have

only one volume solution for given pressure by increasing
temperature. In this range, the isothermal curves are mono-
tonic as a function of pressure, corresponding to a positive
isothermal compressibility. This behavior holds true at high
temperatures (kBT � 2U0) for any pressure. Increasing the
temperature at constant pressure leads to a rapid increase
of the volume until the self-consistent solution of the SCPT

184305-7



G. RASTELLI AND E. CAPPELLUTI PHYSICAL REVIEW B 84, 184305 (2011)

 1

 10

 0  0.2  0.4  0.6  0.8  1  1.2  1.4  1.6  1.8  2

V
/ V

0 

P/PC

T=0

t=1.55 t=1.75
t=2.05

t=3.55

t=5.00
t=6.50

FIG. 12. (Color online) Representative isothermal curves of dif-
ferent regimes, for kBT /U0 = t = 0,1.55,1.75,2.05,3.55,5.00,6.50.
Solid line regions represent the case where the compressibility κT is
positive, while dashed line regions correspond to κT < 0. The volume
is expressed in units of V0 = Na3

0 , and the pressure in units of the
critical pressure Pc = 1.02 U0/r3

0 , whose meaning is discussed in the
text.

disappears at the temperature T ∗. At P � 1.3Pc, we have for
instance kBT ∗ = 6.50 U0 (Fig. 12).

Below the critical pressure Pc, the isothermal curves are
nonmonotonic with three possible volume solutions for a given
pressure, and an intermediate region V1(P ) < V < V2(P ) of
negative compressibility κT < 0 (dashed lines in Fig. 12). In
this case, the physical more stable solution is the one with a
smaller volume.46 Increasing the temperature thus leads to a
slight increase of V until the first physical solution disappears
at the spinodal temperature TS where dP/dV = 0, and the
compressibility κT diverges (for P � 0.4, we have kBTS ≈
1.75 U0 corresponding to a volume V ≈ 2V0; see Fig. 12). At
higher temperature, disregarding phase separated phases, the
only physical solution is associated with the large volume
case (for P � 0.4, we have V ≈ 8V0 for kBT � 1.75U0).
This sudden jump of the volume at T = TS reflects thus the
divergence of the lattice expansion coefficient α at the spinodal
temperature.

Increasing the temperature further, even this high volume
solution will break due to the breakdown of the self-consistent
SCPT solution at a high temperature T ∗. As a matter of fact,
this kind of instability is driven by the disappearing of the
SCPT solution at T ∗ (the same encountered when working at
constant volume) in contrast to the compressibility divergence
at TS . We can summarize all the above discussion in a compact
phase diagram, Fig. 13, which reproduces on a quantitative
level the schematic phase diagram sketched in Fig. 2.

The different kinds of instabilities of the solid phase
as a function of the pressure are depicted in Fig. 14,
where the dashed line represents the spinodal temperature
TS accompanied by the divergence of the lattice expansion
coefficient α and of the compressibility κT , while the solid
line marks the disappearing of the SCPT solution, as a function
of temperature, not reflected in any singular behavior of the
thermodynamical properties. Note that for T < TS , T ∗ is not
defined.

 0.1

1

 10

0 1 2 3 4

k
B

T
/ U

0

V/V0

κT < 0

P=Pc

no SCPT
solution

T*

TS

FIG. 13. (Color online) Phase diagram for the solid instabilities
in the volume-temperature space. The SCPT solution disappears for
T > T ∗. The long dashed line represents the spinodal temperature TS

where the compressibility is negative (κT < 0 blue shadow region)
for T < TS . Also shown is the isobaric curve (tiny solid black line)
corresponding to P = Pc.

The physical mechanism of the breakdown of the solid
phase is determined by the first instability encountered by
increasing the temperature. For P < Pc this is given by the
compressibility divergence at TS . For P > Pc no thermody-
namical instability is encountered, and the unique instability
of the solid phase is associated with T ∗.

Figure 14 permits us to also clarify in simple terms why
the mechanical instability at constant volume occurs at much
higher temperature T ∗ and with different phenomenology than
at constant pressure. Considering for simplicity a constant
volume a = a0 (V = V0), increasing the temperature is indeed
associated with an effective increase of P . Such an increase
is negligible however on the scale P ≈ Pc, so that the first
encountered solid phase instability occurs at much higher
temperatures, as shown in the inset, and it is related to the
SCPT breakdown at T ∗.
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FIG. 14. (Color online) Pressure dependence of TS and T ∗ for the
argon case. Also shown as symbols is the P vs T dependence of the
isochoric line for V = V0. Inset: same quantities in a large axes scale,
in order to show the intercept of the isochoric line with T ∗, which
defined the solid phase instability at fixed volume V = V0.
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V. DISCUSSION AND CONCLUSIONS

In this paper, we have revisited the SCPT to analyze the
mechanism of the mechanical instability of an overheated
metastable solid at finite pressure. Within this approach, we
have predicted that two different instabilities are possible
for the mechanical melting. They occur at very different
temperatures, depending on whether we work at fixed volume
or pressure. In the first case, the instability of the solid phase
occurs at rather high temperatures, and it is associated with
a breakdown of the SCPT solution at T ∗, not reflected in
any singular behavior of the thermodynamical quantities. On
the other hand, the mechanical instability approached at fixed
pressure, for pressures smaller than a critical pressure Pc, can
be properly interpreted in terms of a spinodal temperature
TS at which the solid phase, always defined, disappears as
a metastable minimum. In the latter case, the mechanical
instability is reflected in the divergence of the thermal
compressibility κT as well as in the divergence of the lattice
expansion coefficient α at T = TS . This kind of spinodal
instability disappears for P > Pc, where only the instability
at T ∗ driven by the breakdown of the SCPT solution remains.
The value of Pc is found to be of the order of Pc ∼ U0/a

3
0 ,

where U0 is the energy minimum of the pair potential and a0

the lattice spacing. For the weakly bound rare-gas solids, we
have U0 of the order of a few meVs, corresponding thus to a
critical Pc of the order of some MPa.

For a quantitative comparison with real systems, in this
paper we have mainly focused on the specific case of an argon
classical solid where intensive theoretical and experimental
investigation have been performed in literature (as an example,
see Ref. 24 and references therein). A similar analysis can
be however carried out in a simple way as well for other
rare-gas solids (Xe, Ne, Kr). The results are collected in Table I,

TABLE I. Experimental melting temperature Tm of (Ne, Ar, Kr,
Xe) compared to the temperatures of the mechanical lattice instability
as obtained by the SCPT at fixed volume (T ∗) with a = a0 and at fixed
pressure (TS) with P = 0.

Tm (K) T ∗ (K) TS (K)

Ne 25 2450 69
Ar 83 9747 228
Kr 116 18 986 317
Xe 161 21 662 445

where we report the theoretical T ∗ and TS compared also
with the experimental melting temperature Tm. As we can
see, TS is systematically much lower than T ∗, and it is
of the same order of magnitude as the experimental melt-
ing temperature Tm. Inclusion of higher order anharmonic
terms47 and the development of models beyond the Einstein
one40,48 (i.e. taking into account the full phonons dispersion)
might further reduce TS towards the empirical range for
overheating Tmax ∼ 1.5 Tm.23 Such an analysis points out that
taking into account the lattice expansion is of fundamental
importance not only for a proper quantitative estimate of
the instability temperature of the solid phase, but also for
revealing the different instability mechanisms associated or
not associated with a singular behavior of the thermodynamical
properties.
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